

Legal Notices

The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

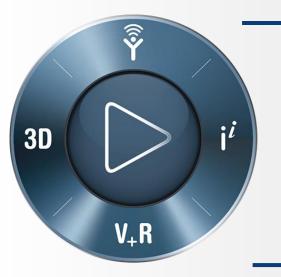
This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2019

Printed in the United States of America.


Abaqus, Tosca, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Function-driven Generative Designer

Generative Design

Additive Manufacturing Programmer

Process Planning

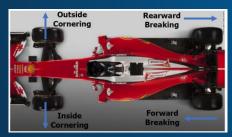
Additive Manufacturing Researcher

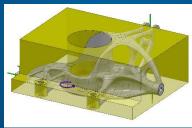
Virtual Printing

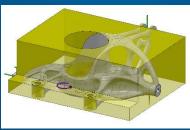
SIMULIA

Reverse Shape Optimizer

Post-processing


DS Wins First Place at Sandia Challenge!


USACM Topology Optimization Round Table 2019

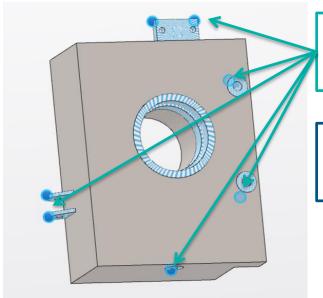

Hosted at Sandia National Labs

Challenge criteria:

- Component to optimize: Formula One suspension Upright
- Objective: minimize mass while respecting the allowables
- Three part versions: additive, cast, milled
- Three materials: aluminum, titanium, steel

- All work was completed in less than 1 day
- All work was done in 3DX Functional Generative Design

Optimization Model


▶ Objective: Minimize mass

► Constraints: 72

► Materials: Aluminium, Titanium and Steel

▶ Manufacturing constraints:

- > ALM (None)
 - ► Minimum length scale
- > Milling
 - ▶ 3 axis: all surfaces reached from any of the main axes
- - ► Y-direction, no undercuts allowed in casting direction

Points for displacement constraints

Frozen areas are not in design domain

▶ Optimizer implementation

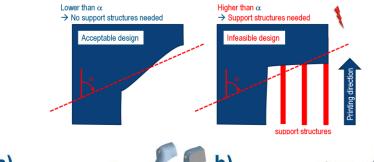
 Tosca Structure solves a non-linear constrained optimization problem using first order adjoint sensitivities calculated directly in Abaqus using sparse direct solver

SDS.COM © Dassault Systèmes | 11/15/2019 | ref.: 3DS_Document_2016

Manufacturing constraints

Overhang

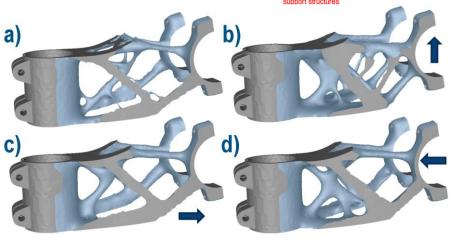
Casting restrictions



Symmetries

Design formulation:Minimize Mass

- Disp. Constraint
- Symmetry constraint

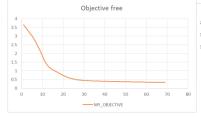

Mass

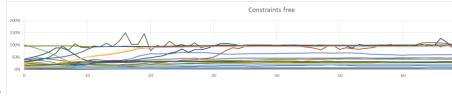
22022 (1.00)

28063 (1.27)

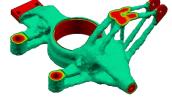
25380 (1.15)

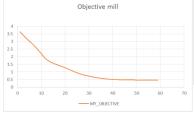
27043 (1.23)

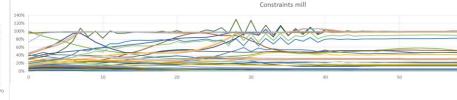

Including combinations of restrictions

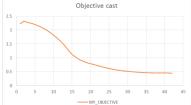

Optimization Results and Iteration Histories

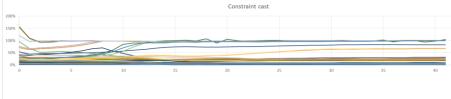
Relative Constraints:

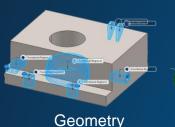

- Displacements
- Stresses

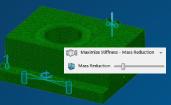


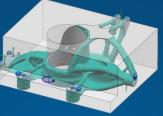


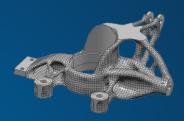


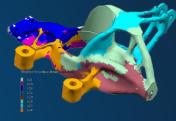







Generative Designs


Specifications
Design Space, Interfaces


Functional
Specifications
Load Cases, Mass Targets,...

Concept Generation

Exact Solid Generation

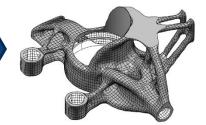
FEA Validation
Review results per Load
Cases or envelope

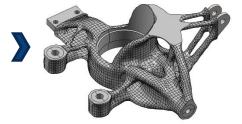
Detailed Design driven by Manufacturing Constraints (Additive Manufacturing or 3-Axis Milling)

Trade-Off Study

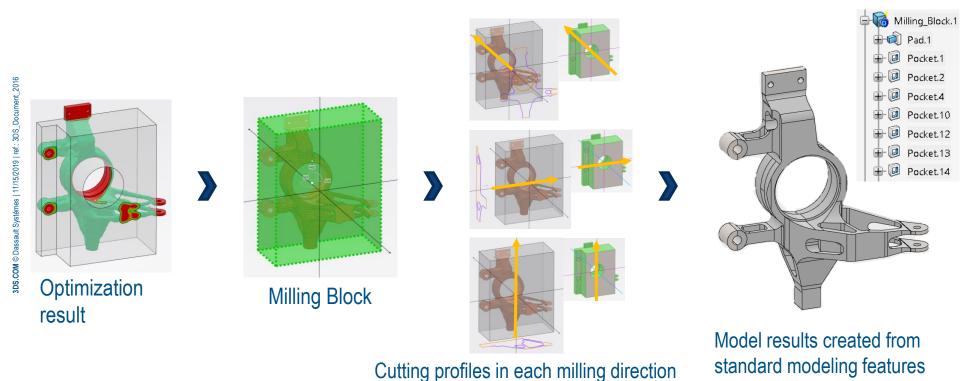
Variants Creation, here for casting

From Optimization Result Mesh to Concept Shape

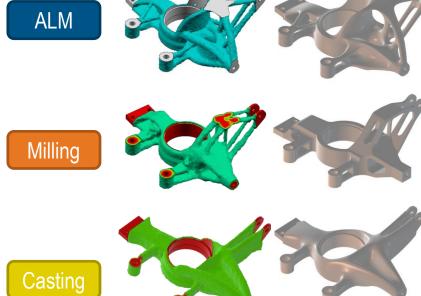

► Automatic reconstruction of the conceptual shape - no required user interaction


Optimization result mesh

Automatically computed subdivision surface



Split with split initial design space


Union with initial
frozen regions
(none-designable regions)
including full associativity transferring
load cases from designing to validation

Shape generating for milling manufacturing

Turn Around Times

► Time format: HH:mm

setup

02:00

* 02:00

Simulation Optimization Compute setup

Shape Validation

time

03:32

01:46

Concept

Detail Design CAD construction time

Design Validation

00:15

00:15

Detail

Total

07:17

05:31

00:15

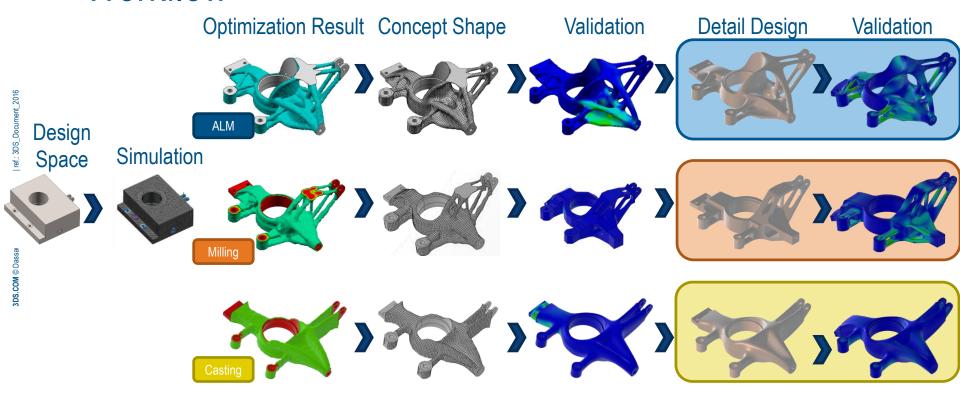
00:15

03:10 00:15 00:45

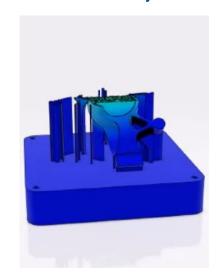
01:00

01:00

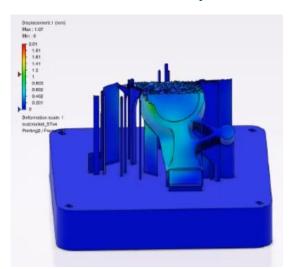
00:15 06:40


* 02:00 00:15

00:15


00:15

Workflow


Process Simulation: Thermo-Mechanical Analysis

Thermal Analysis

- Laser scan path provides input for moving heat source
- Subsequent structural model applies the result of the thermal analysis

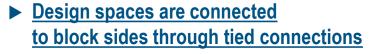
Mechanical Analysis

- ► Eigenstrain simulation is insufficient for accurate prediction of present application
- ► Thermo-mechanical analysis for robust failure detection and accurate buckling of thin-walled support members

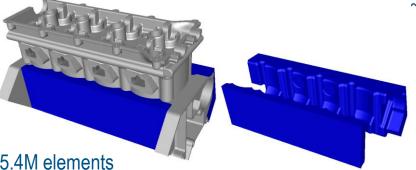
Printed successfully on a Renishaw AM Printer

Iterative Solver for Industrial Large Scale Optimization

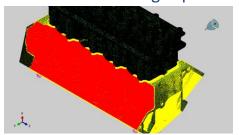
3DEXPERIENCE®

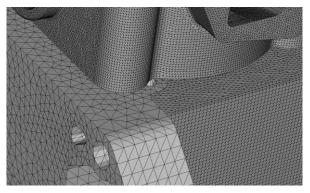

Powertrain: Two Design spaces → Total model + Ties

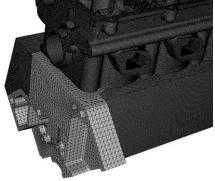
► Topology optimization with AMG iterative solver


Mesh ~ 14.8M elements ~ 4.4M nodes ~12.7M DOFs

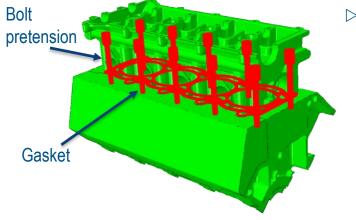
> Two block design spaces~ 2 mm C3D4 mesh size = 5.4M elements

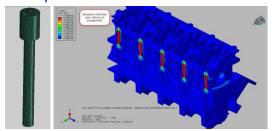

⊳ Block non-design ~ 6mm C3D10 ~ 290k elements

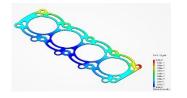


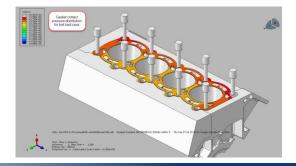

- ► Min-Max Compliance s.t. (Max-Min stiffness for the 3 load cases)
 - > 30% mass on design space 1
 - > 10% mass on design space 2

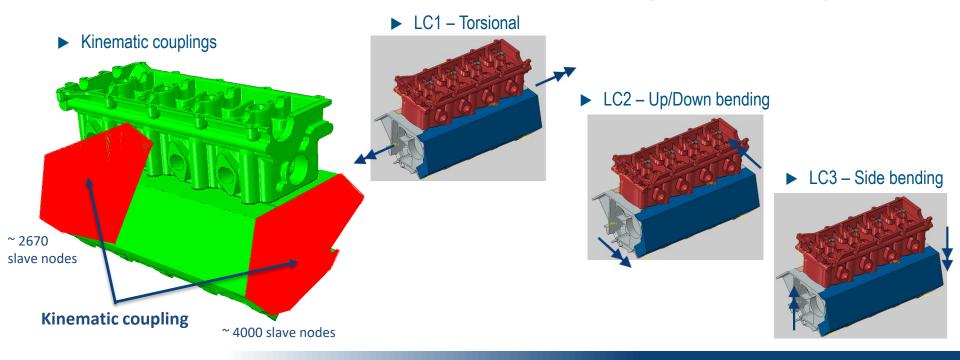
~ 68000 elements on tie surface block sides and design spaces




Powertrain: Assembly process → Bolts pretension + Contacts


1 step: Bolt preloading + 2 step: Bolt clamping

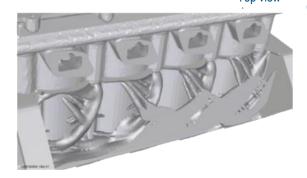

⊳ Head ~ 8.5M elems C3D4

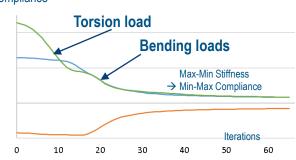

> Contact interaction: Penalty

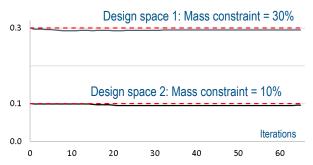
Powertrain: Service load cases → Industrial boundaries and loading

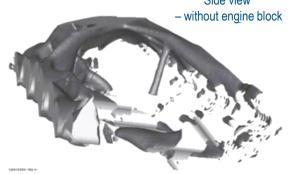
- ► Loading and restraint applied to control nodes in centerline of crankshaft
- ► Control nodes are connected to end planes of the block through kinematic couplings

Optimization Iteration History – Additive Manufacturing


Iso-cuts for CAD reconstruction Design

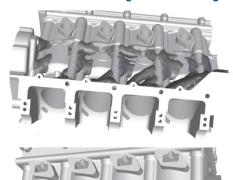

space 1 Top view


Top view

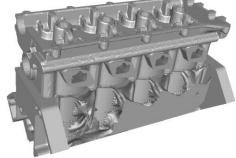


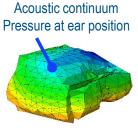
Side view – without engine block

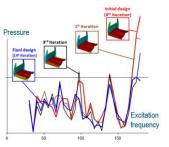
Optimization Iteration History – Casting Manufacturing

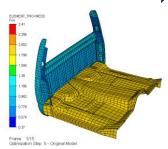

Design Design Iso-cuts for All three load cases CAD reconstruction space 1 space 2 contribute to max stiffness Top view Compliance Top view **Torsion load Bending loads** Max-Min Stiffness → Min-Max Compliance **Iterations** 10 **Bottom view** Bottom view Design space 1: Mass constraint = 30% Design space 2: Mass constraint = 10% **Iterations**

Industrial summary


- ▶ Optimization with iterative AMG solver
- ► Typically, industrial models have:
 - > <u>Unstructured meshes</u>
 - ► Circular holes for preloaded bolts
 - > Different element types
 - ► C3D4, C3D8I, C3D10
 - ▶ SPRING1
 - ► GK3D8
 - **Non-linear modelling contact > Non-linear modelling contact > Non-linear modelling contact**
 - **Constraints** inside or outside design space
 - ► Tie
 - ► Kinematic couplings
 - **▶** Bolt pre-tension sections
 - **Preloading** from assembling and three service <u>load cases</u>

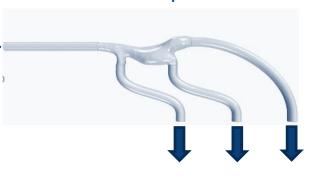

i^i 3D V₊R **3D**EXPERIENCE®


Multiphysics


Multiphysics Optimization Examples

- > Finite element Thermal optimization
 - Design variables are conductivity and convective coefficients
- Integrated CFD + Tosca Fluid for designing fluid flow systems
- ∨ Vibro-acoustic models Stead state dynamics
 - Interaction between acoustic media and structural components

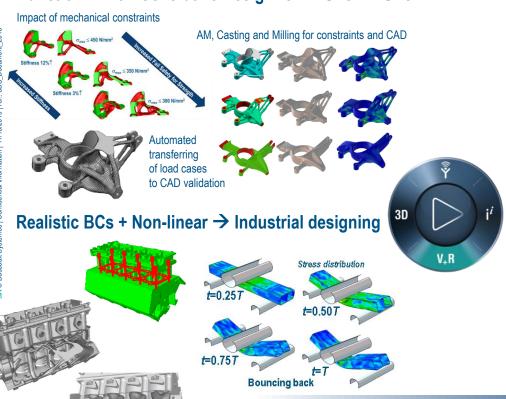
Convection


Copper → low convection

Convection

Steel →

high convection



Conclusions

3DEXPERIENCE platform: Variations in Generative Designs

Function Driven Generative Design: CAD → CAE → CAD

Topology Optimization in the Digital Thread

Digital trend: Continuity, Large sale and Design Workflow

