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HRL Laboratories is a Limited Liability Company
(LLC) with two Members:
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Government R&D contracts, subcontracts and
commercial work make up more than half of HRL's
research
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Designing for Aerospace & Automotive Applications AM

Topology Optimization is performed on a component for an application

Exemplary Component Requirements Advancing through Technology Readiness Levels
* Physical: Weight, Volume, Shape Increased Maturity
« Primary loading: Stiffness, Strength, I >

Energy absorbed Increased Time and Cost:
« Secondary loading: Multi-axial, Impact, Design, Cert. and Testing
Fatigue TRL: 2 3 5 6 9 —| “Flight
* Environmental survival: Temp., Chemical, proven
Electrical
. Life.expectanCy _ _ Concept or Analytic or Component Subsystem
* Environmental friendliness: Plays well application experimental validation in || demonstration
during integration, life and retirement formulated proof-of relevant in relevant
* Inspectable concept environment || environment
* Qualification: Material, Process, Spot
gualification

© 2019 HRL Laboratories,

Manufacturable: Rate, Cost

LLC. All Rights Reserved

Need an approach that reduces free parameters, while
considering full requirement set at initial design phase
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Optimization of deformable structures, using an approach of
architecture optimization of a scalable fabrication process

Collimated UV Light

Liquid
Monomer

Polymer
Waveguidd

Material optimization for manufacturability and
performance in freeform additive manufacturing
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Blunt Impact Ballistic Impact
Elastomeric Lattice Structure
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M.R. O’Masta, et al., Int. J.
Impact Eng., (2014).

E.C. Clough, et al., Matter, (2019).

Problems involve damage, contact, strain rate sensitivity, non-linearity and extremely
large deformation making them computationally expensive

© 2019 HRL Laboratories, LLC. All Rights Reserved
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Case Study: Designing Blunt Impact Attenuators AM

Acceleration

© 2019 HRL Laboratories, LLC. All Rights Reserve

Fixed object

w/o pad

w/ pad

CDC* Stats on Annual Head Injuries:

Time

« 52,000 Deaths (1/3" of all injury related deaths)
« 275,000 Hospitalizations

« 1,365,000 Emergency Room Visits

* About 75% of head injuries are concussions

*www.cdc.gov/traumaticbraininjury/data/index.html

“State-of-the-Art” Impact Attenuator

Materials:

« Expanded Polystyrene (single impact) invented
in 1940’s- used in most bicycle and motorcycle
helmets

 Expanded Polypropylene (multi-impact) — used
for pedestrian protection in automobile bumpers

* Polyvinyl nitrile foam (multi-impact) — used in
football helmets

Can we architect an energy absorbing material that outperforms foam?
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Approach: Architecture Optimization vs
Topology Optimization

Topology Optimization

Architecture Optimization

« Many design degrees of freedom (e.g., « Comparatively few design degrees of freedom

computationally prohibitive for present problems)

« Arbitrary design space

* However, often results in difficult-to-manufacture conception
structures (e.g. must be 3D printed)

« Guaranteed to work with process

© 2019 HRL Laboratories, LLC. All Rights Reserved

Process limited architecture optimization enables high performance
structures without excessive cost or complexity

« Manufacturability is addressed from
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Self-Propagating Waveguides as Three-Dimensional Lattice Structures

Collimated UV Light

Mask (Top View):
Defines Microlattice Architecture

Monomer

Polymer
Waveguide

Incident UV Sensitive  \yayeguide Formation with Waveguide I _
UV Light Monomer Self-Focusing Effect Propagation Polymerized
N AN 7277 Microlattice

B PR X XRR
ol | R
000l > RS
: , , g $ KX XXXX
Time Elapsed = 0s Time Elapsed = 2s Time Elapsed = 4s Time Elapsed = 18s

Large-area (>1000 cm?) rapid (<1 min.) microlattice formation

© 2019 HRL Laboratories, LLC. All Rights Reserved
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Microlattice Optimization Procedure

Define
Problem

Form
Structure and
Test

Impose
Manufacturing
Constraints

Fabricate

_ Mask and

Tooling

Collimated UV Light

Liquid
Monomer

Polymer
Waveguide

Guess a Near
Optimal
Structure

J

Run
Architecture
Optimization
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FE Simulations Experimental Results
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 Predicted absorption efficiency is nearly « Single hit efficiency for lattice outperforms SOA
flat for lattice as compared to foams

E.C. Clough, et al., Matter, (2019).

Architecture optimization enables lattice compatible with SPPW to outperform
SOA.

© 2019 HRL Laboratories, LLC. All Rights Reserved
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Forehead Rear
200 b }“- . /1| Fnam - Hit 1 220 C
180 | . = WM Foam - Hit 2 200 207 . i__ )
B2l & Lattice B - Hit 1 180 L Y >20% redugtion
160 [RAOCEL - Lattice B - Hit 2 x *%
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DOT-C headform mass: 5 kg ) 0008 0.0 . Py 001

Impact velocity: 4.3 m/s Time (s) Time (s)

E.C. Clough, et al., Matter, (2019).

>20% reduction in multi-hit peak acceleration compared to SOA helmet pads

© 2019 HRL Laboratories, LLC. All Rights Reserved
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Pioneering Materials Development for Enabling Additive A| M
Manufacturing of Optimized Parts

Topology Optimization

S6

Abaqus. Topology Optimization. (2017)

Structural Optimization
Architecture
Optimization

Material & Process Optimization

Extracting High Performance

- A designed for

,‘ AM, single part,
counter-flow,

heat exchanger.

s

&

5cm

© 2019 HRL Laboratories, LLC. All Rights Reserved

Using high strength Al vs. standard
AlSi10Mg lowers mass by 40%.
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The Right Materials for an Optimized Structure

CAM
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400

“Voxelation” in a powder-based metal additive
manufacturing process

Individually addressable “voxels”
Laser spot or

. Layer

meltpool size :
£0-300 resolution
< UM, 25-60um

Powder dig.
15-75umy

\-—-—-—-

2cm

A
Hardness |

/_;iter edge

»Position

Enabling high performance materials for AM
metal fabrication & tailorable properties and
microstructure
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e e Grain refinement &
Powder feedstock Solidification in _Solldlfymg columnar to equiaxed
powder bed AM microstructure

transition

Laser or
E-beam

Melt pool

Stock 7000
Series Al
Powder

Nucleation sites

——————
-

Al-7075 Solid p S— ‘

Build
direction

J.H. Martin et al., Nature (Sept. 2017)

Goal — Use powder surface area to deposit targeted additions that control:
1. Solidification behavior: Make traditionally “un-weldable” alloys “weldable”
2. Material composition, grain structure and dispersions
3. Meltpool shape and stability

© 2019 HRL Laboratories, LLC. All Rights Reserved
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Grain refinement &
columnar to equiaxed
transition

Solidification in Solidifying
powder bed AM microstructure

Powder feedstock

\—-.U‘" PV),

Laser or aQ\}:\
e »«K\

E-beam

Melt pool

Nucleation sites

Stock 7000
Series Al

______
s

4
. ) -7
Solid = Cs===mT

Build
direction

Laser or A

Inoculants

Melt pool @ N

rrrr

_____

Functionalized
7000 Series Al
Powder [4]

J.H. Martin et al., Nature (Sept. 2017)

Inoculant particles reduce grain size (>100X) to eliminate hot cracking.

© 2019 HRL Laboratories, LLC. All Rights Reserved
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600 T T T T T T T T T
.QI .......................................... H andbook ................. ! g HRL 7A77.50: 1st Al Spec for 3D Prlntlng
ADDITIVE 00, F values for 7075- | . = :
: / Functionalized a u?; OI to 0 Aluminum Association Introduces First-
HRL’s Al 7A77 18 02?1400 _ 7A77-T6 plate oz | Ever Material Designation System for 3D
the first alloy to = » Printing
. 0 50 o A
receive a 3 D “é 300 i 7 % Tgllllrlplljszf?ezs" Will Define Chemical Designation for Aluminum Powder Used in Fast-Growing Additive
prlnting material % Weldable AM alloy 140 g Manufacturing Segment
= . )
des | g natl on an d |S g 200 (AI S| M g) 430 5 ARLINGTON, VA — Today, the Aluminum Association released its first new material registration record
. & = in nearly 20 years. The “purple sheets” will provide clear chemical designations for aluminum powder
n OW CO m me rC | al Iy 120 used in 3D printing, also known as additive manufacturing. The purple sheets are the newest addition
a to the Aluminum Association’s long-running “rainbow sheet” series, which provides alloy designations
aval Iab I e . 100 10 and chemical composition limits for various types of aluminum. Aluminum is the first materials
0 | | | | | | | | | 0
0 1 2 3 4 5 6 7 8 9 10

Tensile Strain [%]

» Enables additive manufacturing of commonly used structural
aluminum alloys (e.g. 2000, 7000 series)!

* Provided we computationally match the correct inoculant to a
given alloy to control solidification conditions

http://www.hrl.com/products-services/materials

Functionalization mechanism allows printing of desirable, yet otherwise
unattainable, alloy compositions.

© 2019 HRL Laboratories, LLC. All Rights Reserved
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450 AM AlSi10Mg + 2 vol% WC AM AlSi10Mg

400 1.0 vol% WC 0.5 vol% WC 0.1 vol% WC

30 Stock- AISi10Mg

< 300
X
S 250
0 200 m 4.55 kg 600 cycles m2.27 kg 100,000 cycles
a Increased
=150 Strength g .
N with WC Sos 50% Wear Reduction
100 -
Content S 0.6
50 =
©04
0 502
0 1 2 3 4 5 6 = 0
i 0 )
Strain (%) Z AISI1I0Mg + 2 AISi1OMg +1 AISi10Mg +0.2  AlSi10Mg

vol% WC vol% WC vol% WC

J.H. Martin et al., MRS Commun. (June 2018)

Dispersion of uniquely small WC particles increases UTS by >20% and 2X
reduction in wear over conventional stock AISi10Mg.

© 2019 HRL Laboratories, LLC. All Rights Reserved
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Flow Path for Optimization of Materials for Additive
Manufacturing
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Final Remarks
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* For computationally expensive, deformable
structures, we have shown >20% increase
in blunt impact attenuation using
architecture optimization of a scalable and
cost-competitive process.

— Technology is currently being licensed
for commercial helmet applications.

» To realize the benefits of freeform additive
manufacturing, materials must be
optimization for both the process and
performance.

* We have shown a mechanism to tailor
properties and microstructure of metal
alloys, with >500 MPa vyield strength Al

— Success on 7000 series Al has led to
commercial sale of 7A77 Al powder

© 2019 HRL Laboratories, LLC. All Rights Reserved

Optimized
Architecture with
Scalable Production

Optimized Materials for AM
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http://cam.hrl.com/




