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Comparative Data Volumes
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Volumes of data
are growing, e.g.,
— Webpages: ~10 PB 1990 2030
— youtube: ~2.5 petabyte/year uploaded Year
— LHC: 15 petabytes/year
— Radiology: ~70 petabytes/year
— Large synoptic survey telescope LSST: several 100s PB/10 yrs
— Square kilometer array: ~1 petabyte/min, ~500,000 PB/yr

The ‘normal’” approach of downloading data to a local
machine for analysis will no longer be feasible

How do we extract “science” (specification? prediction?
insight/intuition? set of equations?) from big data volumes
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How does this impact the world of science?

Solar Data Volume Growth
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Looking for fundamental physics

Distillin

from Ext=—= mm

' =

Michael Schmidt® .

For centuries, scien
physical phenomen
natural laws and th
analytic relations a
data important and
demonstrated this a
physical systems, ra
prior knowledge abc
Lagrangians, and o
accelerated as laws
complex systems, g

athematic:
underlie n
ture (1), s
many natural laws is
served quantities an
Automated techniqu
and storing data fi
have become increa

Physical System

Schematic

Experimental Data

2 4 ] -] 10

2 4 L} ]
Time (s)
'.‘-_‘."\ # A s
11 ¥ Ty | ',‘-' v
f &1 Lo ph 1}
i1l 14 bid
{ i it 'I 1
+ 1 i 4
31 1 i
VooV

10 156 20 26 a0 36

(V5]

345 35 355 36 365 37
Time (s)

Inferred Laws

11428V + 692.32x>

Hamiltonian
W — 6.04: 111(1;: mal';flna.l
Lagrangian nd nonimear

neters to an
ic regression
the form of
[ section S6).

-142.19x, — 74.65x, + 0.12x,> —1domly com-
1.89xx> — 1.51x,° — 0.49v,> + fksalf:fythwa;i
0.41v;v, — 0.082v,” ;

cosine), con-

a—0.008v — 6.02x

Equation of motion

Lagrangian quations are
quations and

1.37-w> + 3.29-cos(6) expressions.
Lagrangian at model the

rs and aban-

2.71a + 0.054® — 3.54sin(6) juations reach
Equation of motion orithm termi-

(x _ 77_72)2 +(y— 106.48)2 that are most

Circular manifold mechanisms

is typically
1 differential
" +0.32w," — t readily find

124.13cos(6;) — 46.82cos(6s) +tions. Rather

al, we are

0.82ww,cos(0, — 6,) gnal,
Hamiltonian sical law that
may not be



Lxon (Carries . F7

Neural network soais anay) |t

<N T
background ,

L] _—

h
Dendrites (Carry
— signals in)

Inputs  Weights AAS
Synapse size changes in
W 1 response to learning

Output
y

Threshold T

McCullough & Pitts neuron [1943] to replicate biological neuron
Built into “perceptron” [Rosenblatt, 1957] with learning rule

Uses a simple step (“Heaviside”) activation function

Problem with convergence of the learning rule (step discontinuity)
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Training the neural network

Training: finding the value of network weights (i.e.,
free parameters) the minimize the error/cost
function to some “training set”.

Error < )
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Use gradient descent: w;.”l =w;—1] GE;
ow;

Use an algorithm called “Backpropagation” (of
errors), [Rumelhart, Hinton & William, Nature 1986]



Goal: Given a set of sparse measurements of quantity Q, at
location r and time t, reconstruct Q over all r at any t

e Whatis Q? Any quantity that can be measured, for example on a satellite, and
there are a large number of observations.

e Examples I'll show now:

1.  Electron number density: Use THEMIS density data (from S/C potential) June 2008
— Oct 2014, TH-A, D, E in 5-min cadence (~10° samples)

2.  Energetic electron fluxes: Use Relativistic Electron Proton Telescope (REPT) data,
Oct 2012-Oct 2014, 8 energy channels: 1.8 MeV-7.7 MeV

3.  Chorus wave intensity: upper and lower band waves, measured on THEMIS and
RBSP, ~372k samples, May 2010-June 2014.

4.  Hiss wave intensity: RBSP data, Oct 2012-Sep 2014, 280k samples.
e Examples | won’t show:
— MagkElS data, available for whole RBSP mission
— EMIC waves
— Magnetosonic (equatorial noise) waves
— Integrated ULF wave intensity
 Regressed against a time history of a geomagnetic index at 5 minute cadence
— usually symH, occasionally AE, time history of 5-10 hours

— Why geomagnetic index (and not SW)? Because it is simple, readily available, unlike
SW which often has gaps, and should contain all the information in the SW.

— Also “historic” (following SAMI3 model), but we will include in later versions.



Network Architecture
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Use a “deep” neural net architecture with 2 hidden layers. Why deep NN?
— NN: tis a universal approximator, even with 1 layer [Hornik et al. 1989; Cybenko, 1989]

— Deep: Don’t need to know the feature set a-priori, deep architecture is more efficient
and learns its own optimal feature set

— First layer: dimensionality reduction, optimal feature construction

— Second layer: more complex representations

— Sigmoid activation function in hidden layers, linear in output layer
Does it have to be a neural net? No! Just need a high variance model (SVM, HMM,
etc.) and LOTS of data [Banko & Brill, 2001]
Divide data into 3 parts: Training (70%), Validation (15%), and Test (15%)

Continue “training” the neural net until error on validation set increases for 10
consecutive times, pick minimum error point. Use Scaled Conjugate Gradient or
Levenberg-Marquardt method to optimize.

Object is to pick the most generalized representation without over-fitting
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Dynamic density

model: meridional
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Density: Prediction-observation comparison
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Plasmaspheric hiss statistical
distribution
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e Standard statistical picture of the plasmaspheric hiss distribution,
showing geomagnetic control and local time asymmetry



Whistler-mode chorus statistical distribution
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More satellites (DE1, CRRES, Cluster 1, TC1, THEMIS), but same

single-spacecraft approach!



Chorus wave
environment
(movie)

o

Whistler-mode chorus: Target: 5-min resolution log10(Bw) from THEMIS A, D, E (~6 years) and

both RBSP-A, -B from 2012-10-01 to 2015-12-01.
Input : L, sin(MLT), cos(MLT), MLAT, 5-65: AL index in 5 min resolution for the previous 3

hours, 66-114: symH index in 30 min resolution for the previous 24 hours.

Weight: 4+log10(Bw) as the weights of the targets values.
Architecture: [20 10]; Perform: factor of ~2, r=0.7263.







Hiss wave
environ-
ment
(movie)

Q

Plasmaspheric hiss: Target:

30.
Inputs: L, sin(MLT), cos(MLT), MLAT, one present value of the AL index, 6-11: symH index in 60
min resolution for the previous 5 hours.

Architecture: [20 10]; Perform: factor of ~2, r=0.617.






Prediction of radiation

belt fluxes

e High energy >1 MeV
(“Killer™) electrons

e Satellite & astronaut
hazard
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Varability of Outer belt
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Outer radiation belt exhibits variability, several orders of
magnitude, timescale ~ minutes.



POLAR HIST
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Predictability of outer belt fluxes
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e Smmilar sized storms can produce net increase (53%), decrease
(19%), or no change (28%). “ Equally intense post-storm fluxes
can be produced out of nearly any pre-existing population”

e Delicate balance between acceleration and loss, both enhanced
during storm-time, * /ike subtraction of two large numbers’ .



REPT movie

REPT data: 8 energy channels 1.8, 2.1, 2.6,3.4,4.2,5.2, 6.3, 7.7 MeV

Regressed on 10 hours of Dst only

Small number of samples, ~188k in total. Artefacts show up in higher
energy channels since few accelerations reach those energies!
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Rich vs poor data environments
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Collective wave effects

e Particles drift around the
earth

 Accumulate scattering
effects of:
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Data/model fusion approach

March 1-3
2013

Moderately
disturbed
event, Kp™4,
Dst™~-80 nT

Modest
acceleration to
~2.6 MeV

Kp

0.75 MeV 0.59 MeV

1.80 MeV

MeV
L

2.60

6.30 MeV

L L

L

cML-J-Fh.JNGNNL-JJ-'hMG\MM&-U\’;\ML—I&dﬂ\MuhUD\MU&JU\MLﬂ#MG\CMhU\M
T T 1 Fl" ] 1
r [' "
.. ﬁ . ]
T T T T
1 L 1 L f
: Bw ( (T

Observation

Observation

e e

2013 March

Flux

[em™s s ke V')

2.60 MeV 1.80 MeV 0.75 MeV 0.59 MeV Hiss Chorus g
P
QM'.AJ-b-Lnd‘\I\JLAJk-U\Q\!\thmd‘\mwbmd"wmb"J!::\'\M'u-l-h‘.ﬁ\.ﬂ‘-b-.l'.n-l-‘-Lnd‘-cmhd‘\:m_

6,30 MeV

L

L

L

Chorus+Hiss+Radial

Simulation

2013 March

T e

— --Tﬁi—-nﬂ!alﬁ‘-‘-ﬂ

Flux

[em™s'sr ke V']



Summary

Scientific data volumes are growing and a new approach is required to
extract “science”.

We presented a “unified approach to inner magnetospheric state
prediction” Bortnik et al., JGR

Take a set of observations of some quantity Q measured at (r, t), and
reconstruct Q at all r as a function of t. Q can be anything, e.g., density,
energetic particle fluxes, and different wave modes.

Used a 2-layer neural network, 5-10 hour history of sym (or AE) as
regressor, and 5 min cadence, we get few 100k samples from THEMIS
and/or RBSP data sets.

Preliminary results show good agreement (R~0.8-0.9) between model
and data, the “physics” are baked into the model and need to be
interpreted (the data deluge does NOT make the scientific method
obsolete, cf Chris Anderson WIRED magazine), e.g.

— dawnside chorus occurrence, increasing MLT with latitude,
— hiss more intense on dayside and

— relativistic REPT fluxes exhibit dynamic variability, drift shell splitting (more
intense on nightside than dayside)

Good potential for specification models (or part of physical models)
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