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Motivation

• Volumes of data 
are growing, e.g.,
– Webpages: ~10 PB
– youtube: ~2.5 petabyte/year uploaded
– LHC: 15 petabytes/year 
– Radiology: ~70 petabytes/year
– Large synoptic survey telescope LSST: several 100s PB/10 yrs
– Square kilometer array: ~1 petabyte/min, ~500,000 PB/yr

• The ‘normal’ approach of downloading data to a local 
machine for analysis will no longer be feasible

• How do we extract “science” (specification? prediction? 
insight/intuition? set of equations?) from big data volumes  



How does this impact the world of science?



Looking for fundamental physics

• Blah



Neural network 
background

• McCullough & Pitts neuron [1943] to replicate biological neuron
• Built into “perceptron” [Rosenblatt, 1957] with learning rule
• Uses a simple step (“Heaviside”) activation function 
• Problem with convergence of the learning rule (step discontinuity)



General 
neuron model 
and network

hk= [1, x1 … xm][wk0 … wkm]T

yk= Φ(vk) = 1/(1 + exp[-vk]) 
Smooth and differentiable ->    training by 
backpropagation algorithm ~1986



Training the neural network

• Training: finding the value of network weights (i.e., 
free parameters) the minimize the error/cost 
function to some “training set”. 

• Error

• Use gradient descent: 

• Use an algorithm called “Backpropagation” (of 
errors), [Rumelhart, Hinton & William, Nature 1986]



Goal: Given a set of sparse measurements of quantity Q, at 
location r and time t, reconstruct Q over all r at any t 

• What is Q? Any quantity that can be measured, for example on a satellite, and 
there are a large number of observations.

• Examples I’ll show now:
1. Electron number density: Use THEMIS density data (from S/C potential) June 2008 

– Oct 2014, TH-A, D, E in 5-min cadence (~106 samples) 
2. Energetic electron fluxes: Use Relativistic Electron Proton Telescope (REPT) data, 

Oct 2012-Oct 2014, 8 energy channels: 1.8 MeV-7.7 MeV
3. Chorus wave intensity: upper and lower band waves, measured on THEMIS and 

RBSP, ~372k samples, May 2010-June 2014.
4. Hiss wave intensity: RBSP data, Oct 2012-Sep 2014, 280k samples.

• Examples I won’t show:
– MagEIS data, available for whole RBSP mission
– EMIC waves
– Magnetosonic (equatorial noise) waves
– Integrated ULF wave intensity

• Regressed against a time history of a geomagnetic index at 5 minute cadence
– usually symH, occasionally AE,  time history of 5-10 hours
– Why geomagnetic index (and not SW)?  Because it is simple, readily available, unlike 

SW which often has gaps, and should contain all the information in the SW.
– Also “historic” (following SAMI3 model), but we will include in later versions.



Network Architecture

• Use a “deep” neural net architecture with 2 hidden layers. Why deep NN?
– NN: t is a universal approximator, even with 1 layer [Hornik et al. 1989; Cybenko, 1989] 
– Deep: Don’t need to know the feature set a-priori, deep architecture is more efficient 

and learns its own optimal feature set
– First layer: dimensionality reduction, optimal feature construction
– Second layer: more complex representations
– Sigmoid activation function in hidden layers, linear in output layer

• Does it have to be a neural net? No! Just need a high variance model (SVM, HMM, 
etc.) and LOTS of data [Banko & Brill, 2001]

• Divide data into 3 parts: Training (70%), Validation (15%), and Test (15%)
• Continue “training” the neural net until error on validation set increases for 10 

consecutive times, pick minimum error point.  Use Scaled Conjugate Gradient or 
Levenberg-Marquardt method to optimize. 

• Object is to pick the most generalized representation without over-fitting



Dynamic 
plasmaspheric 
density model: 

equatorial

THEMIS data for training
June 2008 – Dec 2012
Courtesy Xiangning Chu



Dynamic density 
model: meridional

Insight discovery! Low L-shell 
density enhancements

IMAGE, CRRES, POLAR, ISEE, CLUSTER, Courtesy X. Chu



Density: Prediction-observation comparison



The wave environment in space
Meredith et al [2004]



Plasmaspheric hiss statistical 
distribution

• Standard statistical picture of the plasmaspheric hiss distribution, 
showing geomagnetic control and local time asymmetry

Meredith et al. [2004]



Whistler-mode chorus statistical distribution

• Geomagnetic control and local time distribution
• More satellites (DE1, CRRES, Cluster 1, TC1, THEMIS), but same 

single-spacecraft approach!

Meredith et 
al. [2012]



Chorus wave 
environment 

(movie)

Whistler-mode chorus: Target: 5-min resolution log10(Bw) from THEMIS A, D, E (~6 years) and 
both RBSP-A, -B from 2012-10-01 to 2015-12-01. 

Input : L, sin(MLT), cos(MLT), MLAT, 5-65: AL index in 5 min resolution for the previous 3 
hours, 66-114: symH index in 30 min resolution for the previous 24 hours.
Weight: 4+log10(Bw) as the weights of the targets values.
Architecture: [20 10]; Perform: factor of ~2, r=0.7263. 






Hiss wave 
environ-

ment 
(movie)

Plasmaspheric hiss: Target: 5-min log10(Bw) from RBSP-A and –B from 2012-10-01 to 2014-09-
30.
Inputs: L, sin(MLT), cos(MLT), MLAT, one present value of the AL index, 6-11: symH index in 60 
min resolution for the previous 5 hours.

Architecture: [20 10]; Perform: factor of ~2, r=0.617. 






Prediction of radiation 
belt fluxes  

Explorer 1 launch:
Jan. 31st 1958

• High energy >1 MeV 
(“killer”) electrons

• Satellite & astronaut 
hazard

• Occur in 2 zones



Variability of Outer belt

Outer radiation belt exhibits variability, several orders of 
magnitude, timescale ~minutes. 

Baker et al. [2008]

2-6 MeV



Predictability of outer belt fluxes

• Similar sized storms can produce net increase (53%), decrease 
(19%), or no change (28%). “Equally intense post-storm fluxes 
can be produced out of nearly any pre-existing population”

• Delicate balance between acceleration and loss, both enhanced 
during storm-time, “like subtraction of two large numbers”.

Reeves et al. [2003]



REPT movie

• REPT data: 8 energy channels 1.8, 2.1, 2.6, 3.4, 4.2, 5.2, 6.3, 7.7 MeV
• Regressed on 10 hours of Dst only
• Small number of samples, ~188k in total.  Artefacts show up in higher 

energy channels since few accelerations reach those energies!






REPT fluxes
Data-model 
comparison



Rich vs poor data environments



Collective wave effects

• Particles drift around the 
earth

• Accumulate scattering 
effects of: 
– ULF

– Chorus

– Hiss (plumes)

– Magnetosonic

• Characteristic effects of 
each waves are different 
and time dependent Thorne [2010] GRL 

“frontiers” review



Data/model fusion approach

Observation SimulationMarch 1-3 
2013

Moderately 
disturbed 
event, Kp~4, 
Dst~-80 nT
Modest 
acceleration to 
~2.6 MeV 



Summary
• Scientific data volumes are growing and a new approach is required to 

extract “science”.
• We presented a “unified approach to inner magnetospheric state 

prediction” Bortnik et al., JGR
• Take a set of observations of some quantity Q measured at (r, t), and 

reconstruct Q at all r as a function of t.  Q can be anything, e.g., density, 
energetic particle fluxes, and different wave modes.

• Used a 2-layer neural network, 5-10 hour history of sym (or AE) as 
regressor, and 5 min cadence, we get few 100k samples from THEMIS 
and/or RBSP data sets.

• Preliminary results show good agreement (R~0.8-0.9) between model 
and data, the “physics” are baked into the model and need to be 
interpreted (the data deluge does NOT make the scientific method 
obsolete, cf Chris Anderson WIRED magazine), e.g. 
– dawnside chorus occurrence, increasing MLT with latitude, 
– hiss more intense on dayside and  
– relativistic REPT fluxes exhibit dynamic variability, drift shell splitting (more 

intense on nightside than dayside) 
• Good potential for specification models (or part of physical models)  
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