Status of NSF Space Physics

- Janet Kozyra
- Therese Moretto Jorgensen, Sunanda Basu, John Meriwether, Ilia Roussev

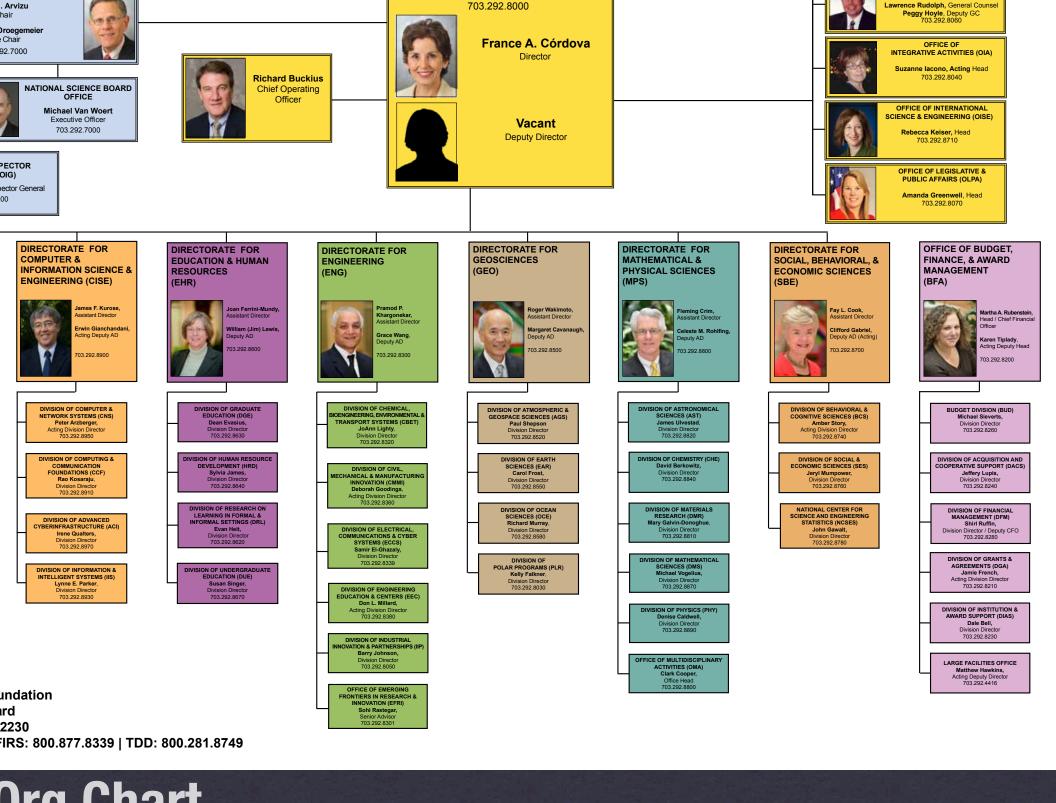
rogress on DRIVE

Diversify

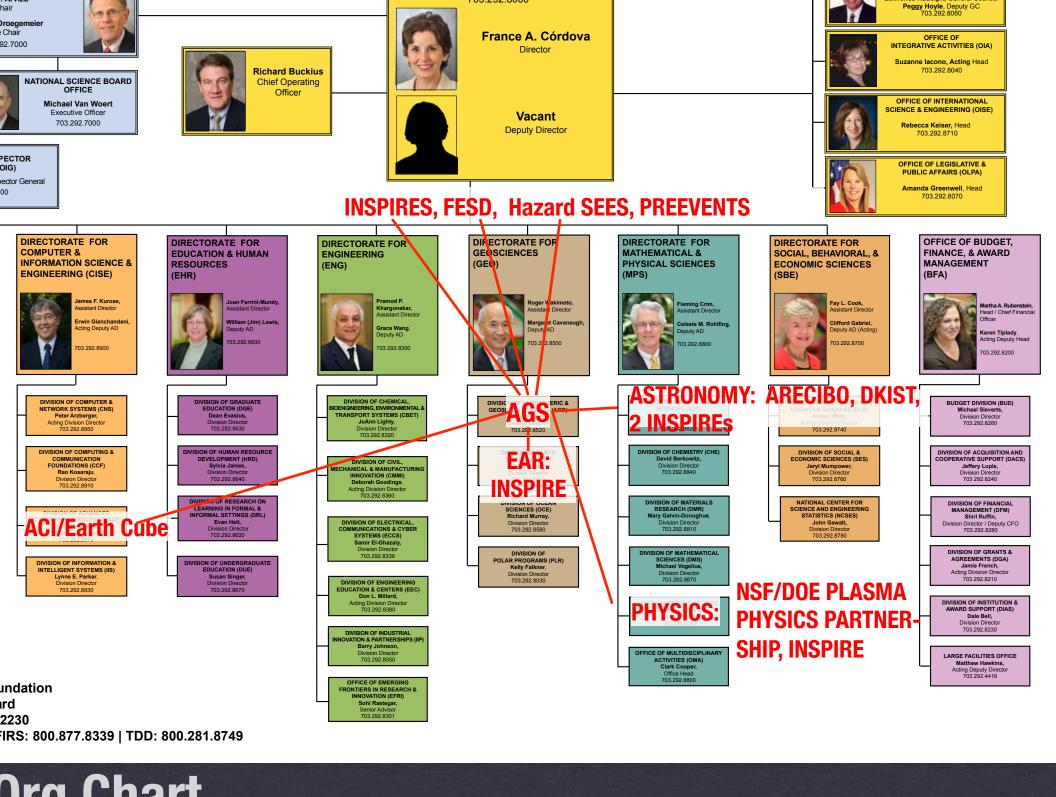
 New Instrumentation: LISN, AMISRs, AMPERE-II. CubeSa Realize

Adequately fund existing instrumentation (ISR, SuperDARN etc.)

Integrate


- Interagency Plasma Physics & Laboratory Plasmas
- Multi-disciplinary INSPIRE awards (topics that fall through to cracks: i.e., planetary ionospheres, exo-planets)
- Space- and ground-based collaborations (proposed ICON/0
 - NSF collaboration, RAX & FISR ionospheric irregularities)

Venture


 Large-scale science investigations (IMAGE, EarthCube, FE NSF-NASA SpW Modeling, PREEVENTS)

Educate

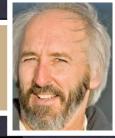
- CubeSats
- Auroroccurus

OFFICE OF THE DIRECTOR

703.292.8000

Arvizu

Lawrence Rudolph, General Counsel


2013

Roger Wakimoto, **Assistant Director**

Margaret Cavanaugh, Deputy AD

ON OF ATMOSPHERIC & PACE SCIENCES (AGS) **Paul Shepson Division Director** 703.292.8520

\$250M

2014

IVISION OF EARTH SCIENCES (EAR) Carol Frost. **Division Director** 703.292.8550

IVISION OF OCEAN **SCIENCES (OCE)** Richard Murray, **Division Director**

703.292.8580

DIVISION OF AR PROGRAMS (PLR) Kelly Falkner. **Division Director** 703.292.8030

SECTION HEAD

LINNEA **AVALLONE**

AMANDA ADAMS

ATMOSPHERE

PAT HARR SECTION HEAD

CLIMATE & LARG SCALE DYNAMICS

DEWEAVER

ANJULI BAMSAI

SYLVIA EDGE

PHYSICAL & DYNAMIC METEOROLOGY

CHUNGU EDWARD LU **BENSMAN**

CHEMISTRY

PALEOCLIMATE

DAVID VERARD

GEOSPACE

JANET KOZYRA ACTING SECTION HEAD

AERONOMY

\$9.3 M

SUNANDA BASU

\$6.8 M

JANET KOZYRA

\$7.3 M

ILIA ROUSSEV

\$5.7 M

\$14 M

THERESE MORETTO **JORGENSEN**

Geneciences Ora Chart

Roger Wakimoto, **Assistant Director**

Margaret Cavanaugh, Deputy AD

ON OF ATMOSPHERIC & PACE SCIENCES (AGS) **Paul Shepson Division Director** 703.292.8520

SARAH RUTH SECTION HEAD

LINNEA **AVALLONE**

AMANDA ADAMS

ATMOSPHERE

CLIMATE & LARGE-SCALE **DYNAMICS**

ANJULI BAMSAI

ATMOSPHERIC CHEMISTRY

SYLVIA EDGERTO

PHYSICAL & DYNAMIC METEOROLOGY

CHUNGU LU

EDWARD BENSMAN

DAVID VERARD

IVISION OF EARTH

Carol Frost. **Division Director** 703 292 8550

SCIENCES (EAR)

Data Fusion Obs. AERONOMY

\$9.3 M

SUNANDA BASU

GEOSPACE FACILITIES \$14 M

JANET KOZYRA

IVISION OF OCEAN SCIENCES (OCE) Richard Murray, **Division Director** 703.292.8580

DIVISION OF AR PROGRAMS (PLR) Kelly Falkner. **Division Director** 703.292.8030

Antarctic

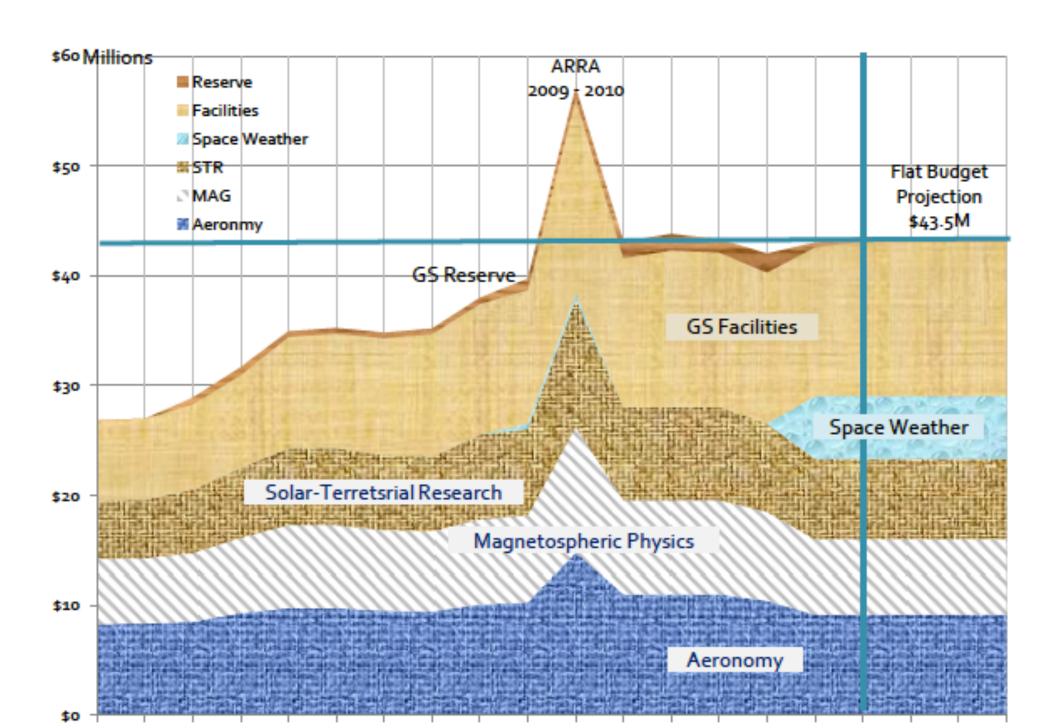
GEOSPACE

\$43 M

JANET KOZYRA ACTING SECTION HEAD

SOLAR-TERRESTRIAL

\$7.3 M


ILIA ROUSSEV

SPACE WEATHER \$5.7 M

THERESE MORETTO **JORGENSEN**

Geneciences Ora Chart

U.S. Bureau of Labor Statistics' Inflation (http://data.bls.gov/cgi-bin/cpicalc.p \$1.00 in 1999 equals to \$1.41 in 2015

- PR Committee membership (13 members; January 2015)
- Criteria and strategy (January-February 2015)
- PR Committee Charge and Formation (February 2015)
- PR Teleconferences (March 4, 16, and 31, 2015)
- Collect data and begin assessment (February March, 2015)
- First PR Committee in-person meeting at NSF (April 6-7, 2015)
- Seeking community input via emails and workshops (April June 2 see (http://www.nsf.gov/geo/ags/geospace-portfolio-review-20
- Visiting selected facility sites (tentative; April June, 2015)
- PR Committee drafts their report (June August 2015)
- Second PR Committee in-person meeting at NSF (August 2015)
- GS Portfolio Review Report to GEO/Advisory Committee (Sep 2015
- GEO/Advisory Committee reviews the GS/PR Report (October 2019
- GS programs response to the PR Committee Report (November 20

ASSESSITETT OF POLITOROUNEV

Funding in place to begin

- Purpose: Evaluate consistency of PR with decadal survey ecommendations taking into account actions already taken by expected budget evolution, scientific balance, alignment betwe acilities & community science needs, new technology levelopment, balance of investments across portfolio
- SPA Newsletter 9 Oct 2015: Request for suggested committ nembers (Deadline COB 20 Oct)
- 12 members, first meeting planned for ~Nov 2015
- Meet 3 times in 5 months starting with the publicly available.
 Portfolio Review (1st draft report to AC GEO Oct 2015)
- Pre-publication version of assessment in 10 months; final rein 12 months (~ Oct 2016)

Iransitions

Arrivals:

John Meriwether, Facilities Program Director

Section Head Search – nearing completion

Program Director searches in progress for:

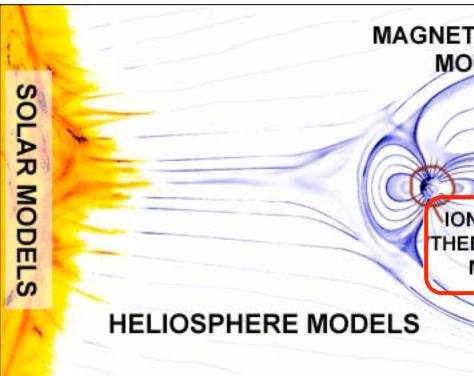
- Aeronomy PD
- Floating PD contributing to all programs

R FY 2015

Droposals (33 independent projects) submitted DAR proposal review panel, 13-15 Oct 2015 new awards (~20% proposals), ~\$1.0M at competition deadline is 18 July 2016

FY 2015

proposals (45 independent projects) in Oct 2014 nel review was 8-10 April 2015 roposals to be funded (16%), \$800K


kt competition deadline is 15 Oct 2015

E FY 2015

proposals (45 independent projects) 2014 competition irtual panels: 12-14 Nov and 17-19 Nov 2014 proposals funded (25%), \$1.2M for new awards

Supporting Education Initiatives

ent

et al.

Enhancing ITM Capabil

	PI	Institutions	Description	Da An
ls, ns &	Ja Soon Shim, et al.	CUA	Expanding ITM models, visualization and analysis tools, developing ensemble modeling, leading community-wide ATM model validation activities and adding data assimilation models.	9/2 9/2 \$20
	Masha Kuznetsova	NASA GSFC	Promote space environment awareness in core education, facilitate the establishment of SpW	9/2

university programs worldwide, provide

Geospace Facilities Program

- Program Director, John Meriwether
- •Six incoherent scatter radar sites (five awards:~\$12M)
- ◆LIDAR Consortium (six institutions: ~\$2M)
- Miscellaneous facility-related awards

RISR-North

PFISR

Sondrestrom

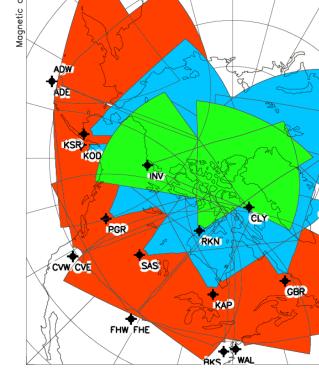
Construction complete (summer 2015) of the second (south-facing) Advanced Modular Incoherent Scatter Ra (AMISR) at Resolute Canada.

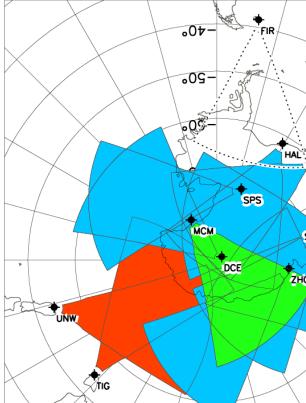
ew radar completes a its-kind pair looking in ite directions into both the olar cap and into the where the northern lights a borealis) form

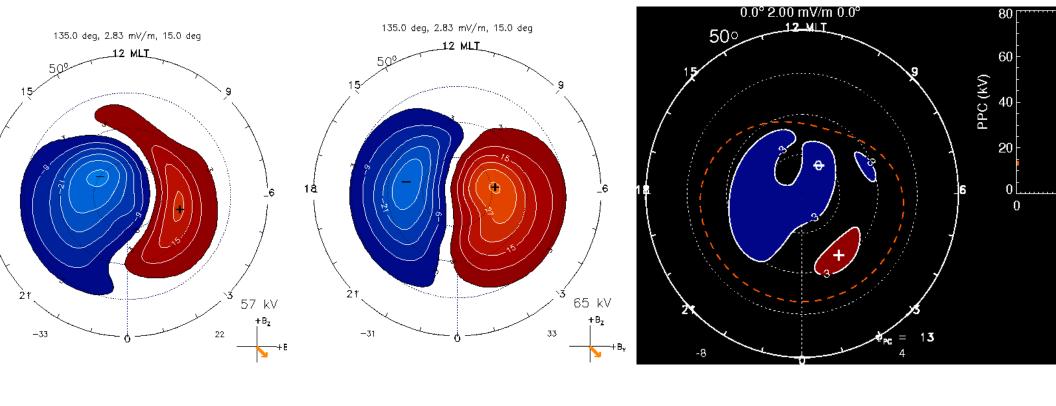
5 SRI International.

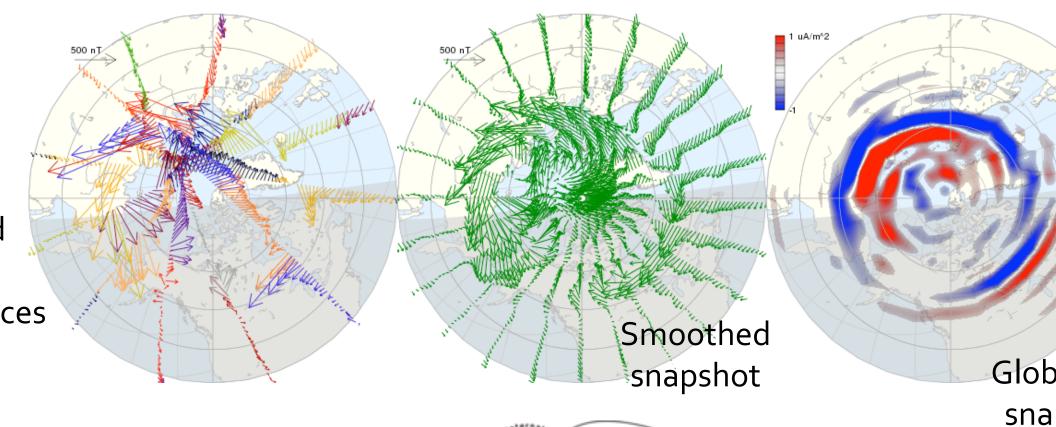
SuperDAKN:

- •All 11 U.S. Northern Hemisphere radars are now in one award:
 - Extended consortium: VT, JHU/APL, UAF, Dartmouth
 - Total award \$4.7M
 - Two NSF-funded radars are operational in the Antarctic:
 - South Pole and McMurdo
 - Total award \$1.2M


SuperDARN is a worldwide collaboration of 34 radars funded by 11 different countries!







- Climatological convection patterns derived from the Nort and Southern hemispheres
- SuperDARN data reveal interhemispheric asymmetries ar strong dipole tilt factor (left two panels)
- Results have been coded into a new dynamical convection model (right panel)
- Dominant modes of variability have been related to the I components through the Empirical Orthogonal Functions analysis

\$5.1M Award for continuation of AMPERE and installation on Iridium NEXT

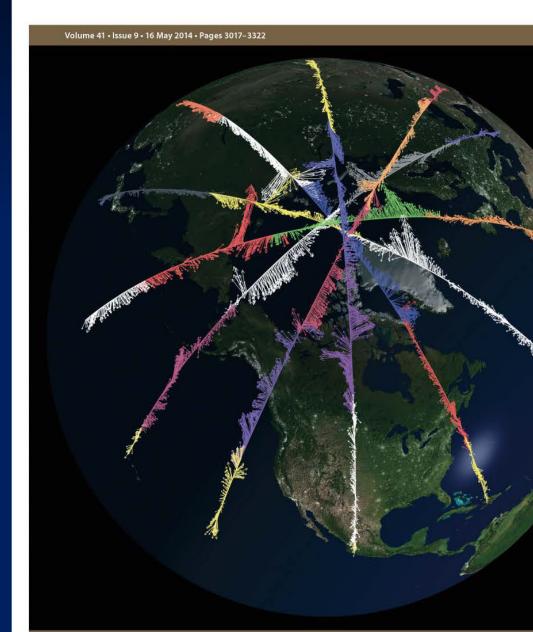
> Global Space Weather Research Facility (every ~10-min snapshots of both Polar Regions)

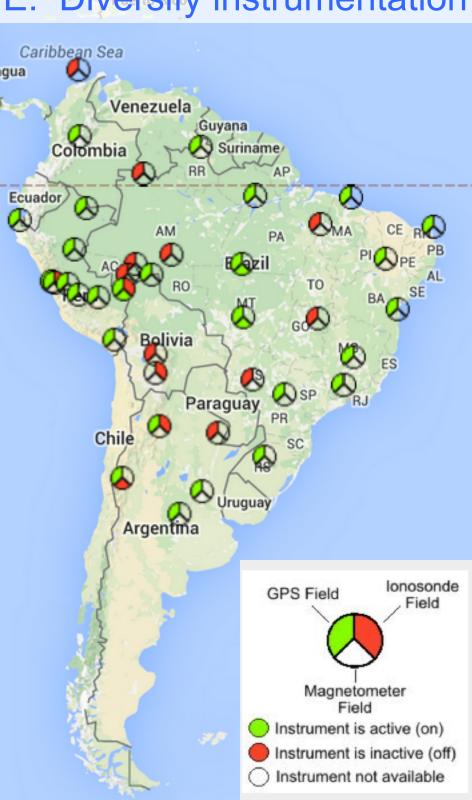
SuperMAG

\$450K award for continuation of SuperMAG service to

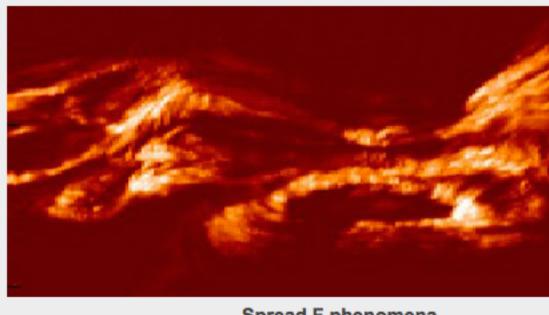
Te 1. Development of Global Currents

rst global measurements of rkeland currents that drive aurorand ionospheric electrodynamics.

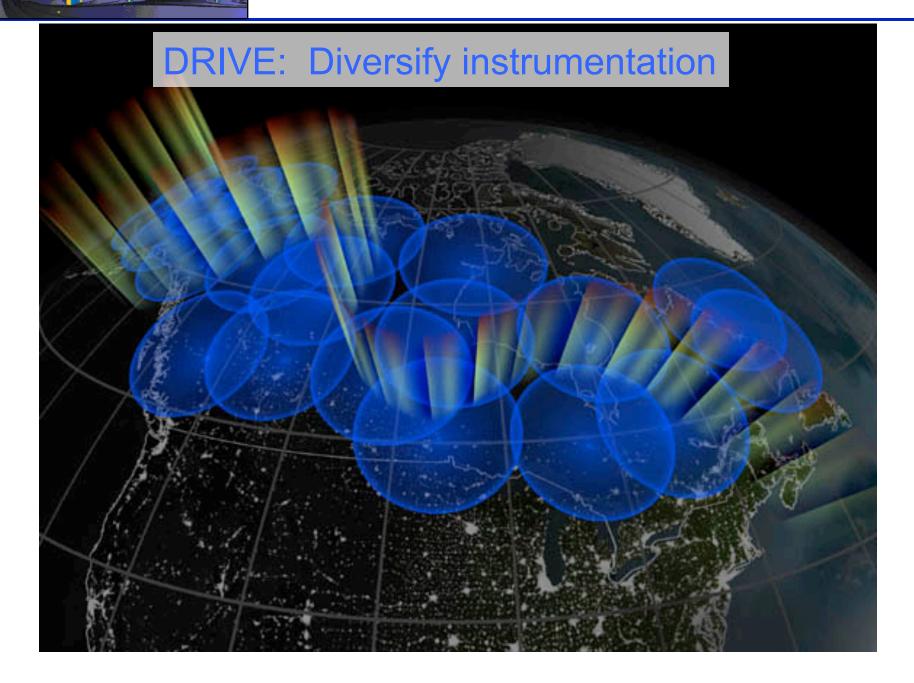

obal coverage, 9-min. cadence dium constellation: >70 satellites, orbit planes, ~11 satellites/plane.


arrents develop first on the ayside and only after onset near idnight does the global average attern develop.

ajor shift in understanding: Prior nception that the poleward irrents are 'driven' and the quatorward currents are a


achanca' ic wrang

Otalica With Will award in 20



Spread F phenomena

Next steps: Develop real-time assimilation to drivers (i.e., meridional winds, vertical drifts); vassimilations with Jicamarca radar & FPIs; developed to the step of the step

LISN workshop held 1-9 Aug 2015 at Jicamarc participants how to deploy instruments & analy participants from 7 South American countries.

No funding for operation, no funding for science original MRI. Will now compete in the individual programs for science funding.

g September 1, 2011 NSF agreed to fund operation of the Alaska/Greenlan or the next 5 years under the name:


d-based Imager and Magnetometer Network for Auroral STudies (GIMNAS⁻

loring New Observing Capabilities for Ra

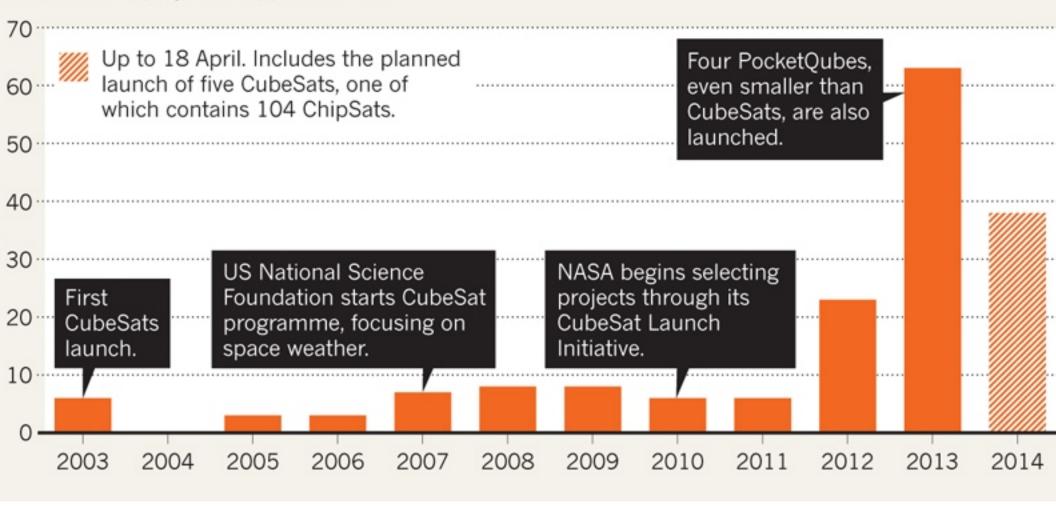
CORONAL MASS EJECTIONS

IE events are known to be ctrostatic waves.

ch waves would possibly nerate coherent radar echoes

e prospects of detecting in real

e a CME event would open the door to new exciting science enabling groun sed exploration of CMEs as they interact with the Earth's magnetic field.

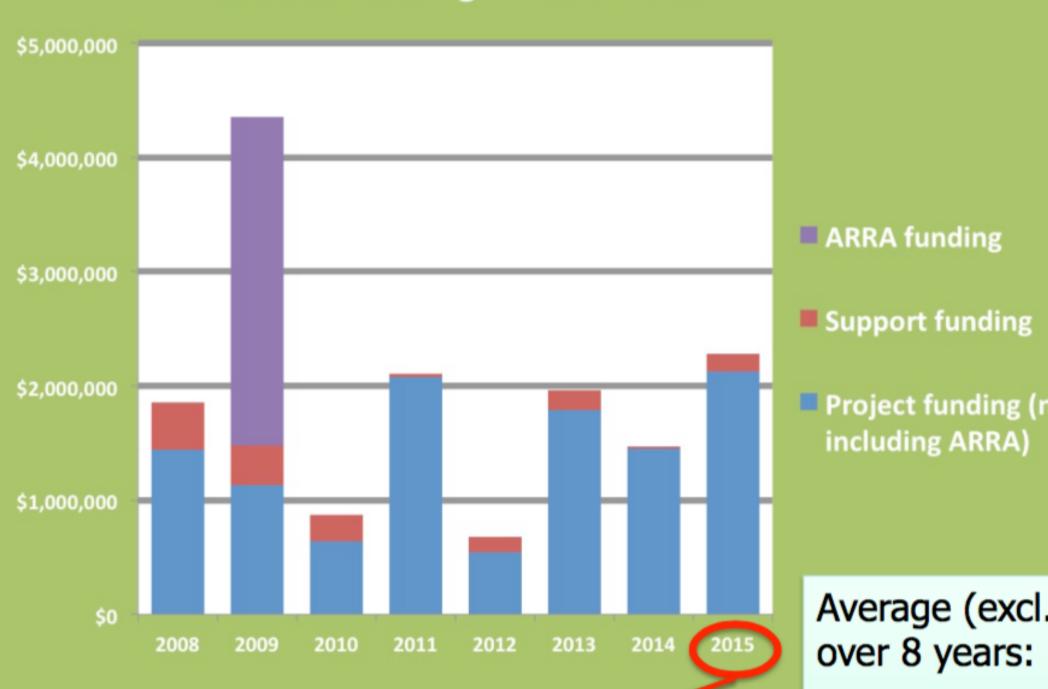

estigation of the *feasibility* of such a radar is underway within the ISR comre vision is for a new ISR facility located in the southwest where land is chear skies generally clear enabling simultaneous optical observations (OASIS).

mmunity Initiative led by Prof Dave Hysell (Cornell) to hold a Geospace-oric rkshop entitled, "Exploring the Geospace Frontier Quo Vadis". Tentative tir

NSF role in CubeSats

OOD THINGS IN SMALL PACKAGES

unches of mini satellites called CubeSats reached a high last year, thanks to low-cost, standardized parts d increased deployment opportunities.

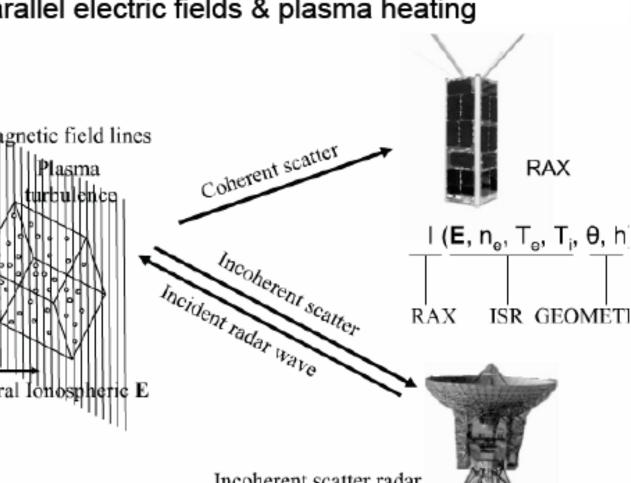


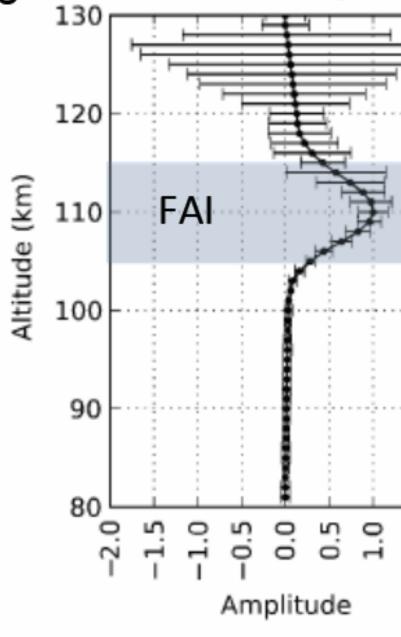
	2000	10/2011		
	2009	10/2011	ASTRA, Utah State	Stormtime E fields, p density
	2009	9/2012	UC Berkeley	Energetic particle inp
	2010	9/2012	U Colorado	Outer belt, solar ener
-11	2009	12/2013 & 1/2015	UNH, Montana State	Relativistic electron b
(2008	11/2013	Siena College, GSFC	Terrestrial gamma ra
	2011	Planned 2015	U Michigan	Thermospheric comp & dynamics
IBE	2011	1/2015	Scientific Sol's, U Wisc., Cal Poly, GSFC	Exospheric structure dynamics
	2013	Planned 2016	U Illinois, VT	Gravity waves – IT co
	2014	Planned 2015-16	U of Colorado (5 other institutions)	Participate in international QB50 – lower thermo

oposals in 2014, 3 awards in 2015. Tryad possible due t co-funding from EPSCOR

е	Start	Launch	Investigators	Science Target
	2015	TBD	Montana State, APL, SRI	1 st 2D images of O+ of the topside transition
	2015	TBD	Cal Poly, SRI	Ionospheric scintillation equatorial spread-F
	2015	TBD	U of Auburn, U of AL- Huntsville	Terrestrial gamma ray flashes, triangulation

CubeSat Funding FY 2008-2015

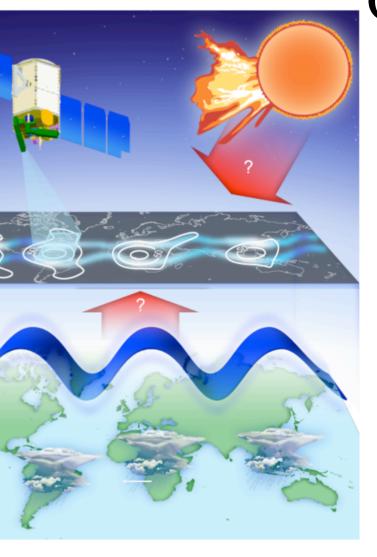



ADDA provido

ISR (Poker Flat, AK) and the Radio ora Explorer (RAX) CubeSat nderstand the features of meter-scale

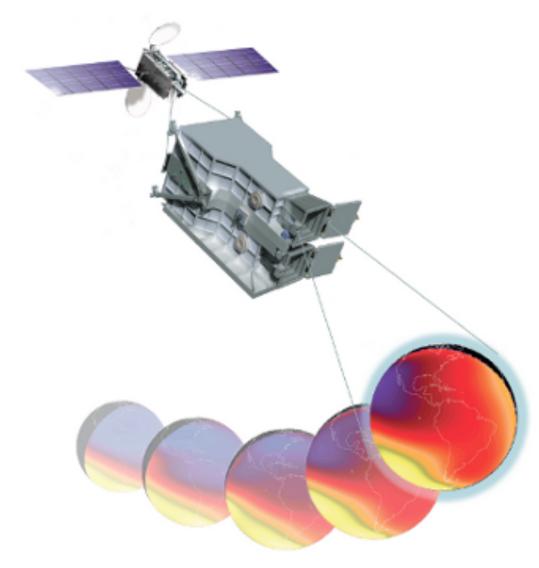
nospheric field-aligned irregularities AI) that disrupt communication and vigation systems in polar region ow field-aligned are they?

salignment results in wave-generated rallel electric fields & plasma heating



Intensity

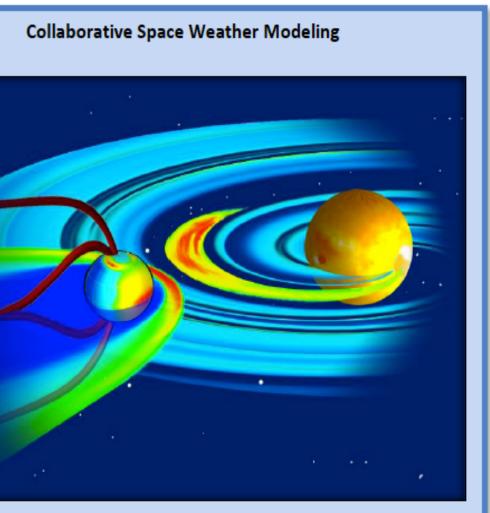
- Confined 106-112 km
- Intensity drops by almost 2 ord magnitude by 100 km
- 1st altitude-resolved estimates magnetic acreet concitivity wh


Exploring New NSF-NASA ICON/GULD

Collaboration

heric Connection Explorer

I). Simultaneous in-situ & e sensing of the IT system



Global-scale Observations of the Limb and Disk (GOLD)

deling (2013-2018) – Midterm Review (March 20

rapelle, collaboration, rist, ritter space ii

entinuing awards, 1.5M/y (NSF), 2.5M/y (NASA) for 5 y:

mmunity Coordinated Modeling Center (CCMC)

nership for Collaborative Space Weather Modeling supports ice weather modeling efforts that require collaborative amwork. This joint effort has been significantly enhanced by our the modeling and prediction of solar equations, particle

- Fisher; UC Berkeley, Stanford, Lock Coronal global evolutionary model
 Schunk; Utah State, JPL, U of Sout 1st principles-based data assimilation
- for the global ionosphere

 Bhattarcharjee, Princeton, GSFC, L

 UCSD; Kinetic Effects in Global
- Magnetosphere Models

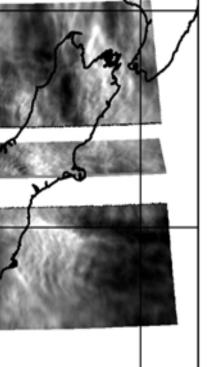
 Mansour, Real-time heliospheric
- Mansour, Real-time heliospheric sp weather modeling
- Odstrcil, UMD, GMU, UCB; Magnet emergence and transport
- Antiochus; UMich, NASA, NRL; Mo flares, coronal mass ejections (CME their interplanetary impacts
- Mannucci: IDI : IT storm fronts

i lasilia i flysics i uliulig ili Go

- LA BaPSF (Basic Plasma Physics Facility)
 Funded partially by GS (\$150K/yr, 5 year award). Baland
- from DOE and NSF MPS
- Renewal proposal in 2016
- New PI is Troy Carter. Previous PI was Walter Gekelma
- Site Visit (Joint with DOE) tentatively Dec 2015
- F/DOE Plasma Physics Partnership
- GS typically co-funds several new grants each year
- section plans to participate in Town Hall "NSF support of sma physics" at the APS-DPP meeting, 16 Nov 2015, vannah, Georgia

effects of gravity waves

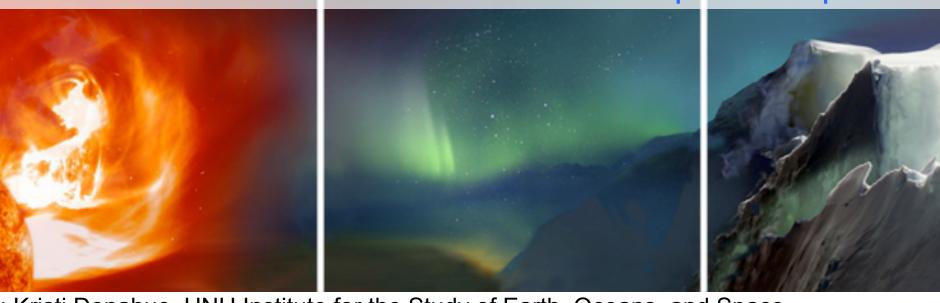
pivavo. Odarodo, propagation, momentam naxoo,


unded by NSF Aeronomy, Climate & Large-Scale Dynamics, Physical & Dy ology Programs

nts over mountain wave locations over wnwind of region near New Zealand

y at altitudes 9-13 km g GW structures 15-200 km oservations in May-July 2014

GATS
Utah State
Yale U.
NCAR
NRL
DLR



Some early surprises:

- Highly variable mountain wave (MW) energy fluxes
- Secondary GW generation in regions of strong MW breaking
- Observed MWs penetrating to high altitudes with very large amplitudes & momentum fluxes
- Generation of ship-wave patterns at small scales and large amplituded mesosphere/lower thermosphere due to small islands

IVE: Venture into science frontiers that span discipline areas

: Kristi Donahue, UNH Institute for the Study of Earth, Oceans, and Space

spikes in polar ice are thought by some to be associated with the process whereby highly energetics driven by solar events penetrate Earth's atmospheric layers and interact with chemical components, be deposited as nitrate. By confirming a link between extreme solar activity and the ice core returned to use deep ice cores to unlock historic information of extreme solar events and seed atmospheric transport, photochemistry, ozone destruction, and other Earth impacts.

esults: A state-of-the-art global climate model and a unique dataset of snow samples indicate rate signatures in ice are largely due to sources other than solar energetic particles. Cannot used as a means of reconstructing the sun's history.

SD award

n Spence (UNH)

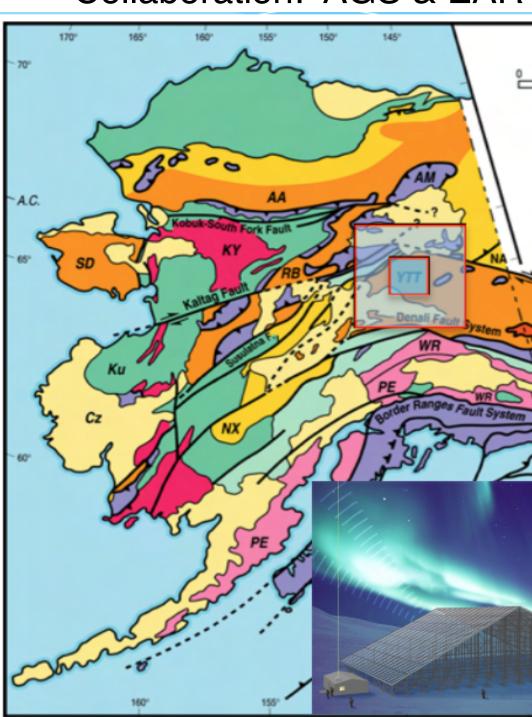
ons Involved: National Center for Atmospheric Research, the University of Colorado, NASA Godda

E: Venture into science frontiers that span discipline areas

nts: multispectral incoherent scatter radar all-sky cameras, Fabrey Perot neter, high resolution magnetotelluric array atric grids of 25 synchronous instruments bader field of Earthscope sensors

Poker Flat Research Range (near s, AK)

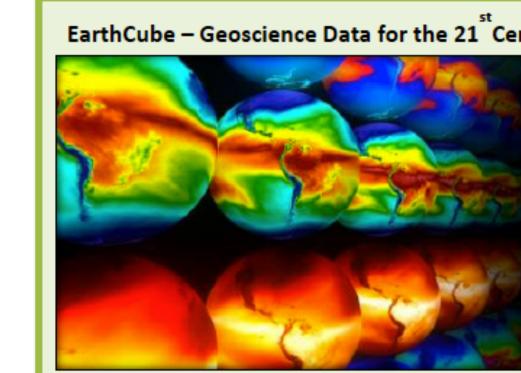
Outcomes:


rrent systems of auroral arcs including etosphere and ground coupling

w of conductivity structures in the here & upper mantle

ce input to empirical model of GIC (ground ed current) hazards

ration of possible EM earthquakersors


Collaboration: AGS & EAR

r-action s and	David Alex- ander, et al.	Rice	Understanding the role of magnetic fields, to ultimately provide information on the habitability of exoplanets	10/2015– 10/2020	AST, GS, Or disciplinary AOIIA \$1M total
Earth, , Exo-	Mendillo, Withers	BU	Create all-purpose ionospheric models for planets & exo-planets, and foster student training that removes discipline barriers.	9/2015 - 9/2019	AST, GS/AI Integrative A
i-Scale lasmas	Gabor Toth et al	U of Mich	Combining the kinetic & fluid type methods in an adaptive & dynamic fashion to improve the efficiency of present plasma simulation models by a factor of 1000 or more.	8/2015- 8/2020	Physics and Computation Programs, A INSPIRE \$1M total
maging or d Earth	Russell Cosgrove et. al.	SRI, Oregon State	Geospace currents coupled to Earth's surface producing GICs. Proposed to image the ground conductivity with magnetotelluric sensors (Earthscope) & ionosphere with PFISR, ASI, FPIs	10/2013– 10/2016	GS/AER, MA OIIA \$800K total
	Elizabeth McDonald	New Mexico Cons.	Exploring the aurora through human-centered computing, citizen science, & SpW research.	9/2013 — 9/2016	GS/SWR, H Advancing I STEM Learr
elop- e MAG, 	Ennio Sanchez	SRI, Stanford, PPPL	Controlled experiments with MeV class electron beams that open up a laboratory in-space in an entirely new energy regime.	9/2013 – 9/2016	AER, MAG, OMA \$750K total

SF Geospace Earth Cube

th**Cube** is a community-led erinfrastructure initiative for the sciences.

(ACI) and GEO

	PI	Institutions	Description	Start [Amou
d ice ory	Asti Bhatt, et. al.	SRI, VT	Unified toolkit of data & associated software contributed by separate geospace communities to enable study of whole Sun-Earth system	9/2013 8/2013 \$800K
	Jesper Gjerloev	JHU	New set of high-latitude, electrodynamic, MIA cyber-based	9/2013

space Science & ard SEES

plines to promote research advances new paradigms contribute to creating a ety resilient to hazards.

ect

8/2

ES = Science, Engineering, & Education for Sustainability

			"	[
				/
hazard	Thomas	U of IL	Develop improved models of	8
iction: From	Overbye		solar storm-driven geomagnetic	8
r wind to power			disturbances, currents induced	
ems impacts			by those geomagnetic disturb-	00

Institutions | Description

PREEVENTS = PREDICTION OF AND RESILIENCE AGAINST EXTREME EVENTS

eme events includes space weather.

released 9 Sept 2015. Subject to availability of funds, FY16 released I solicitation

I phase: Proposal only accepted through existing programs. So opriate for the existing core program. Workshop proposals uraged.

r phase: Anticipate emphasis on cross-disciplinary or resources and typical existing programs.

nderstand fundamental processes underlying natural extreme evalue of extreme evalue impacts

Thank you.

Questions?