

NESDIS Update on Space Weather

Dr. Elsayed Talaat

Director, Office of Projects, Planning, and Analysis (OPPA)

Agenda

- Bottom Line Up Front
- Vision and Direction
- Mission Updates
 - COSMIC-2
 - SWFO
 - SWO
- Summary

Bottom Line Up Front

- Space weather is a new strategic priority for NESDIS and a growing priority for NOAA.
- The PROSWIFT Act and National Space Weather Strategy are key drivers for NESDIS' space weather work.
- NESDIS plans continuous space weather observations from COSMIC-2, DSCOVR, GOES, POES, SWFO, new SWO Program.
- NESDIS' Space Weather Observations (SWO) Program is now in the formulation stage and includes near-term projects for L1, GEO, L5, and LEO observations.

Vision and Direction

- NESDIS Strategic Objective
- Federal Direction

NESDIS' Vision in Space Weather

NESDIS Space Weather Strategic Objective:

Advance space weather observational leadership in all applicable orbits to meet mission needs

Space Weather Sub-Objectives:

- Establish leadership and international collaboration in operational space weather observations
- Comprehensive understanding and implementation of future space weather observations

Federal Direction

Congressional Direction

- PROSWIFT Act (2020)
- Weather Research and Forecasting Innovation Act (2017; 2018)
- Other (DOC Secretary's Duties)

Administrative Direction

- National Space Policy
- National Space Weather Strategy and Action Plan
- National Plan for Civil Earth Observations

Agency Direction

- DOC Primary Mission Essential Functions
- Strategic Plans (DOC, NOAA, NESDIS, NWS)

Updates

- COSMIC-2
- SWFO
- SWO

COSMIC-2 Update

Mission Status:

Spacecraft: 6-Satellite constellation

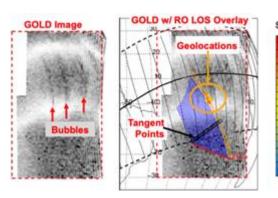
Launch: June 25, 2019 Mission Life: 5 years Achieved Mission Full Operational Capability on 9/29/2021

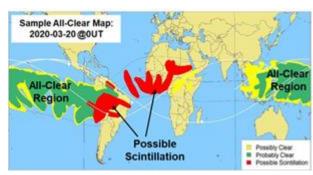
Orbit: 550-km altitude, 24º inclination

Primary Instrument: Tri-GNSS Radio Occultation System (TGRS)

Secondary Instruments: Ion Velocity Meter, RF Beacon

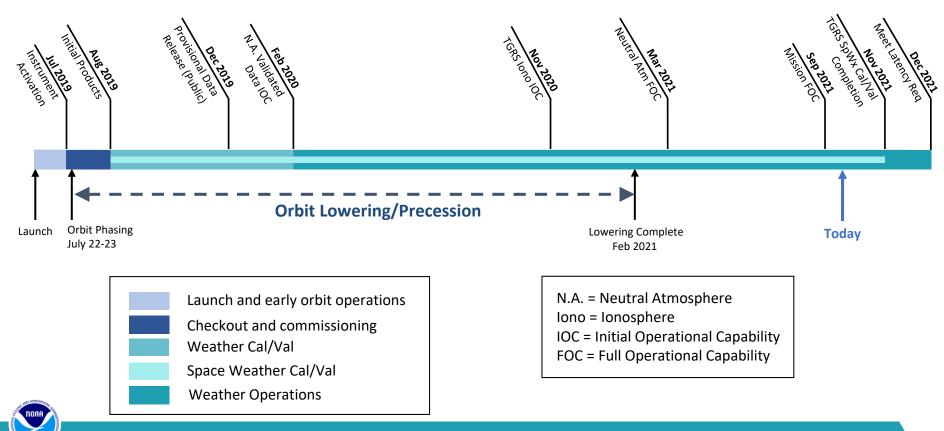
Space Weather Impacts:

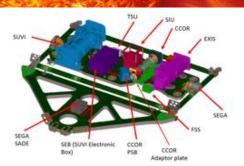

TGRS Products

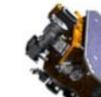

- Total Electron Content (TEC): 12000 profiles/day
 - o 30-minute median latency
- **Scintillation:** S4 (amplitude) / σ_{ϕ} (phase)
 - Region Geolocation Maps
 - All-Clear Map
- Electron Density Profiles

IVM Products

• Plasma In-situ: Density, Composition, Temperature, Drift


Scintillation Geolocation





COSMIC-2 Development Schedule

SWFO Program

CCOR on GOES-U Mission

Establish operational capability and continuity of space weather observational requirements with multiple platforms.

Primary operational objectives:

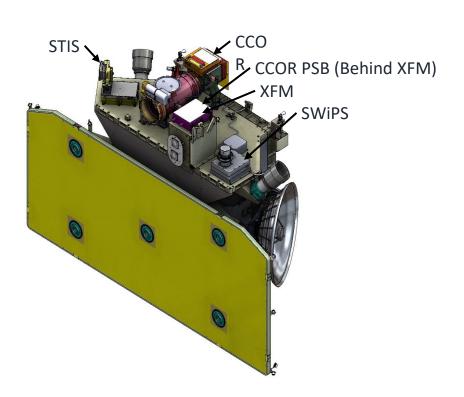
- Observe CME parameters, shape, density, velocity
- Produce CME characteristics for input into operational heliospheric propagation code
- Enable space weather watches, warnings, forecasting and predictions

SWFO-L1 Mission

Establish operational capability and continuity of space weather observational requirements.

Primary operational objectives:

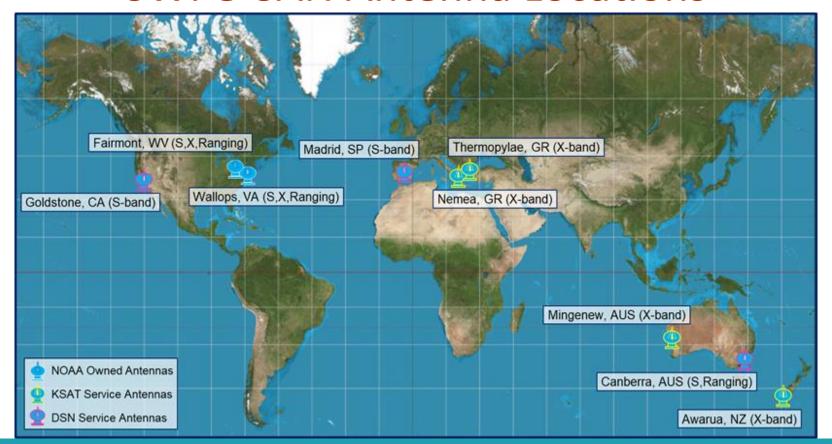
- Coronal White Light Images for detection Coronal Mass Ejections (CMEs)
- Observe CME parameters, shape, density, velocity
- Produce CME characteristics for input into operational heliospheric propagation code
- In situ solar wind measurements
- Measure solar wind magnetic field, thermal plasma, and energetic particles


SWFO Program Instruments

Compact Coronagraph (CCOR): Observes the solar corona and will fly on GOES-U (CCOR-1) & SWFO-L1 (CCOR-2).

Solar Wind Plasma Sensor (SWiPS): Measures properties of the solar wind plasma flowing past SWFO-L1, such as density, velocity, and temperature.

Suprathermal Ion Sensor (STIS): Collects fast ions in the solar wind.


Magnetometer (MAG): Measures the magnetic field carried by the solar wind.

Courtesy of Ball Aerospace

^{*}A sixth Instrument, the X-ray Flux Monitor (FXM), is planned to be contributed by the European Space Agency

SWFO SAN Antenna Locations

NESDIS is Planning for a Space Weather Observations (SWO) Program

Image credit: NOAA

Oversees all of NESDIS' space weather work.

Manages projects to deploy and sustain NESDIS' flight and ground-based equipment for space weather measurements.

Includes a new joint NOAA-NASA Program Office.

SWO Program Plans & Partnerships

SWO will implement:

- Continuity of current L1 & geostationary SpWx measurements
- Additional measurements as recommended by NSOSA

SWO will leverage partnerships including:

- NASA, DoD, EUMETSAT partnerships (LEO)
- European Space Agency (ESA) agreement (L5)
- Canadian Space Agency (CSA) (HEO)
- Space Weather (Follow-On) Antenna Network

Major Formulation Objectives

- Define preliminary program requirements and priorities
- Establish partnerships (interagency, international, commercial)
- Establish program reference architecture using an Analysis of Alternatives (AOA)
- Identify program risks (technical, cost, schedule)
- Develop risk mitigation plans
- Identify sufficient program resources
- Develop the program plan and establish program baseline

Summary

- Space weather is a new strategic priority for NESDIS and a growing priority for NOAA.
- The PROSWIFT Act and National Space Weather Strategy are key drivers for NESDIS' space weather work.
- NESDIS plans continuous space weather observations from COSMIC-2, DSCOVR, GOES, POES, SWFO, new SWO Program.
- NESDIS' Space Weather Observations (SWO) Program is now in the formulation stage and includes near-term projects for L1, GEO, L5, and LEO observations.

