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We Live in an Electrified World

Part of a Global Electric Circuit Part of a Planetary Electric Circuit
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What is ENLOTIS?

https://science.nasa.gov/science-news/NASA and ESA Exploring New Joint Satellite Mission Concepts
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1 EN-LoTIS Working Group explores agency cooperation on
future lower thermosphere-ionosphere (LTI) satellite mission
concepts, targeting in situ observations that advance
understanding of neutral-ion interactions from 100 - 200 km
altitude and the ionospheric E region.

1 Concept of low-flying LTI mission poses unique scientific &
technical challenges. Joint ESA/NASA collaboration
proposed to help address these challenges.

- Initial phase of WG provides information via science study
report to help agencies plan possible future joint mission
development.

] Report now available.
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Why ENLoTIS?

Inadequate knowledge of the transition from atmosphere to space ...

... prevents understanding of how Earth’s atmosphere
and space are linked
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... iImpedes efforts to understand the Sun-Earth system
as a whole

... inhibits accurate predictions of the behavior of humanity’s space-faring
and space-reliant systems
EN-LoTIS WG is studying the first systematic, comprehensive in situ exploration of a collision-
dominated, neutral-plasma space environment.




Science of Earth’s Lower-Thermosphere-lonosphere

LTI behavior consists of interactions
among commingled matter and fields:

Neutral gas (thermosphere)
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Frequent collisions between neutral and ~%
charged particles results in emergent
behavior* not present in simpler systems

SO

’x
P s

e
|
\
N\
i
=
o
-
o

Mesosphér)e
_ otatosphere  Troposphere

Global understanding of LTI behavior has —— ' Earth
been inhibited by lack of in-situ, multi-
property measurements

*Emergent behavior: Behavior that arises out of the interactions between parts of a system and
which cannot easily be predicted or extrapolated from the behavior of those individual parts. 6




The LTI: Where Newton and Maxwell meet

Electric currents close in the LTI,
coupling the Earth to magnetospheric
electrodynamics




The LTI: Where Newton and Maxwell meet
Electric currents close in the LTI, Temperature

coupling the Earth to magnetospheric
electrodynamics

- . The variability of the LTI can be
,onosjggzsfime&i'ﬁon . manyfold during active solar and

with TIE-GCM p geomagnetic conditions
(movie by E. Doornbos,

Daedalus PhO study,
2020)

Collisional interactions
between ions & neutrals, and
100-500 km altitude range electric currents, maximize in
vertically exaggerated the 100-200 km altitude range

Top pressure lovel
(~500+ km)

Heating
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Programmatic context

The past, present and future of LTI missions

Flown missions Proposed missions
200 km

%

GEC (2001 STDT)

. TIMED (1991)
‘,AS . )’ (descoped)
__/—4:\'\\"“.‘ 'Y
== I
AE-C & AE-E ®
(1973-1975) $ ¢

Handful of orbits, low

inclination, limited : '

instruments 100 km LOPEX, Dipper, MAX, ASTRE,
ASTRE2 (1993-2011)




LTI In-Situ Measurements of the Past
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Total observation time < 200 km:
~60 hours



Energetic
Particle

Precipitation /
(EPP) /

Field

Aligned / e |
Currents / 7' Field
Aurora_l N Aligned
Electrojet Currents
Pedersen
Currents

X Neutral
2 - - winds

“To understand how the transition from Earth’s
atmosphere to space is governed by the
fundamental plasma-neutral interactions that
are intrinsic to the lower thermosphere-

ionosphere (LTI) currents.”
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ENLOTIS Report: Scientific Goal & Objectives

Energetic
Particle
. Precipitation
Field (EPIE’)\
Aligned .

Currents ! Field
Aurorall * Aligned
Electrojet Currents
/I\
1
Pedersen
==~ Currents

. Neutral
- ~winds

SO1:
Collisional

Electrodynamics
N

Determine
how electric
currents flow

and close in the LTI,
and thereby couple to
the mag/spheric
electrodynamics

Understand

how the

various LTI
processes act to
determine the Hall &
Pedersen conductivity

@ Determine the
effect of the

neutral winds on the
LTI electrodynamics.

S02:
Collisional

Energetics
J- E

@ Determine
how Joule

(frictional) heating in
the LTI depends on
scale size, altitude and
neutral winds.

Determine
how energy

from energetic
precipitating particles
(EPP) directly heats
the LTI.

Determine how
plasma-neutral
collisions cause
chemical changes that

Collisional
Dynamics
JxB

Determine
how neutral

winds in the LTI are
accelerated by plasma
motions via ion-neutral
collisions

Discover how
the exchange
of momentum

across scales by
means of lower
atmospheric forcing
manifest in the LTI.

Determine

how collisional

processes
drive vertical transport

affect the energetics of & cause composition

the LTI.

changes
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Pictorial Form of SubObjectives

High Latitudes Mid and Low Latitudes
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Collisional Electrodynamics

Midnight
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Collisional Energetics

Energetics and Energy Flow in the LTI
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Collisional Dynamics
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Present spatial / temporal resolution LTI needs
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Focus Regions of LTI Phenomena
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ENLOTIS Report: Measurement Requirements

Co-temporal, co-
spatial
measurements of all
parameters involved
are needed, in the
regions of interest
(high and low
latitudes, altitudes
within 100-200 km)

- In situ
mission with
comprehensive
instrumentation

%

Abbreviation (Geophysical Observable

v; lon Drift velocity

o Ti lon Temperature

%_ Te Electron Temperature

§ I\ lon Number Density

2 Ne Electron Number Density
Nix lon Composition
u, Neutral Wind Velocity

g A Neutral Number Density

§- P Neutral Mass Density

g Qng Non-gravitational Acceler.

,-GC: Th Neutral Temperature
Nnx Neutral Composition

o B Magnetic Field

2 E Electric Field

S [Flr o i Pl il (ons, electrons)

Collisional Energetics

Derived product /
reference

Theoretical equation for
estimation

« Perpendicular current (via v,
Ue) (Richmond & Thayer 2013, eq. 10)

e Perpendicular, Pedersen, and

Hall currents (Richmond and
Thayer 2013, eq. 13)

« Field-aligned currents (Ampere’s
Law, e.g., Lihr et al., 2019, eq. 6.3)

* Convective plasma drift

L ]-)J_ = ENe(ﬁi,J__Ex E/BZ)

e JL =_jP +]-)H_' . .
= 0p(E + iy X B) + ayb % (E + U, X B)

o J=(xB)/uo:ji = (dBy/vscxdt)/ bo

. 5=EX§/BZ

* Pedersen conductivity (Schunk
and Nagy 2009, eq. 5.117)

¢ Hall conductivity (Schunk and
Nagy 2009, eq. 5.118)

« Parallel conductivity (Schunk and
Nagy 2009, eq. 5.125a)

Nie?  v,? Nee?  ven?

e Op=2; in
P Y mivin vin®+9;%  MeVen Ven®+0.”
2 2
o ou=—Y, Nie VinQ Nee Venlle
H — L . 2 2 2 2
MiVin Vin“+0Qi MeVen Ven ™ +{e
o Nge?
. =%
I e (Ventven)

* Poynting Flux (e.g., Richmond and
Thayer 2013, eq. 23)

¢ Joule heating (Strangeway 2012,
eq. 38)

« Ohmic heating (Lu et al. 1995, eq.
3)

e Frictional heating (Strangeway
2012, eq. 28)

« Energetic precipitating particle-
associated heating

- — —,2
e qp=0,|E+1u, xB|
* qf=mivinNe

*  qepp = Yins On(E)NpFgpp s(E)

« Magnetic forcing (Richmond and
Thayer 2013, eq. 20)

« Gravity Wave Forcing -
Momentum and Heat Flux

« Vertical Transport

« JxB

o Fy=%<uw™>

o Fu=l<w' T'>




		

		Abbreviation

		Geophysical Observable



		ionosphere

		

		Ion Drift velocity



		

		Ti

		Ion Temperature



		

		Te

		Electron Temperature



		

		Ni

		Ion Number Density



		

		Ne

		Electron Number Density



		

		nix

		Ion Composition



		thermosphere

		

		Neutral Wind Velocity



		

		Nn

		Neutral Number Density



		

		ρ

		Neutral Mass Density



		

		αng

		Non-gravitational Acceler.



		

		Tn

		Neutral Temperature



		

		nnx

		Neutral Composition



		fields

		

		Magnetic Field



		

		

		Electric Field



		EPP

		Fle, Fhe, Fli, Fle 

		Energetic Precipitating Particles (ions, electrons)








Skeleton Mission Concept

>1500] :
Wﬂ\ﬂ\

Perigee

Altitude (km)

An in situ mission performs a number of low perigee excursions
(“deep dips") when perigee latitude is at high latitudef

Median perigee altitude in survey mode
( (at mid and low latitudes)

Perigee Latitude

(degrees)
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Altitude / latitude Temperatures (K) Densities (cm™)
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Science Return as a Function of Altitude

Key LTI Phenomena
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Challenges

Likely Instrument Performance on Low Perigee Satellite
(Oribital Velocity ~8 km/s)

Geophysical Observable
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ENLoOTIS Report: Summary and Next Steps

) In situ measurements in the 100-200 km altitude range with a
comprehensive instrument suite will provide, for the first time, all
geophysical observables needed for the unambiguous
quantification of key processes in the LTI

1 These processes need to be quantified in-situ, with statistically
) ) L. L The Scientific Case for a Satellite Mission to the
representatlve Sampllng over the mission lifetime. Lower Thermosphere-TIonosphere Transition Region

Next steps:

1. Flow-down of the scientific needs expressed in this report into firm
mission requirements supported by analyses, tools and capabilities to
justify and verify these requirements;

2. Assessment of instrumental capabilities needed to meet measurement
requirements;

3. Study of orbits, propulsion, as well as mission and science operational
concepts capable of meeting sampling requirements;

4. Further study on mitigation approaches to the special environmental = e =
challenges listed above that affect the measurement techniques, data http:/doi.org/10.5270/ESA-NASA.LTI-SC.2024-07-v1.0
processing, spacecraft design choices and concepts of operations.
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Questions?

NASA POC: john.p.mccormack@nasa.qgov

ESA POC: Alex.Hoffmann@esa.int
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The WG enables ESA-NASA cooperation on future LTI satellite mission concepts by:

a) Reviewing and consolidating consensus science questions or goals, mission objectives, and
high-level mission requirements that would inform the eventual definition and design of (a) future
mission concept(s)

- Not starting from “blank slate” — leverage knowledge from past and current mission studies
- Input/feedback from research community throughout initial phase will be key

—>From Heliophysics perspective, initial phase of ENLoTIS WG would resemble an “SDT” or
Science Definition Team.

b) Identifying scientific and technical challenges and constraints associated with these high-level
requirements from (a) in view of facilitating trade-offs and identifying candidate measurements.

—> Balancing science and feasibility — how low should we go vs. how low can we go?

c) Coordinating with on-going and planned activities between NASA & ESA supporting (a) and (b)
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Programmatic context (ESA)

The Daedalus concept, an ESA Earth Observation Programme Earth Explorer 10 mission candidate (Phase 0)

« Targets a better understanding of the atmosphere-space I Y IR E
(thermosphere-ionosphere) eoupling, to shed light on key ion-
neutral interaction processes affecting structure, energetics,
composition and dynamics of the upper atmosphere, by

ition region (~120 to 200 km altitude) in

current closure,
magneWcing, Temperature Electron density Zonal neutral wind
ctional heating
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