

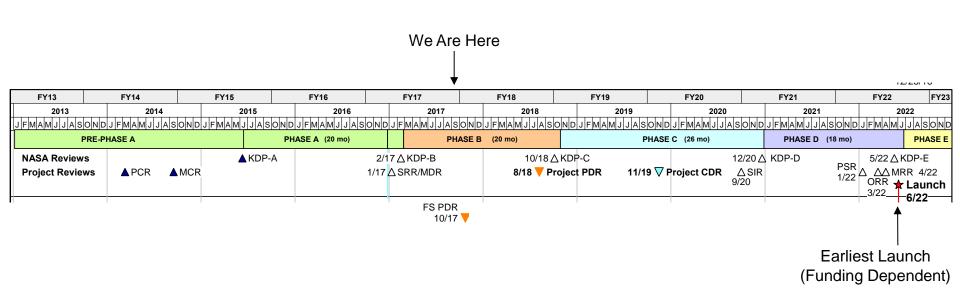

### **Europa Clipper: Update to CAPS**




#### **Bob Pappalardo and Dave Senske**

Jet Propulsion Laboratory, California Institute of Technology
Sept. 12, 2017




### **Overview**


- PSG #5 Recap
- Project-Level Schedule
- PDR Schedule
- Tour Update
- Instruments & Spacecraft
- Prototype Hardware
- Science Traceability and Alignment Framework

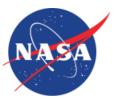




## **Project-Level Lifecycle Schedule**






## 'Tis the Season for Preliminary Design Reviews (PDRs)

- **Propulsion Subsystem** 6/27-29/17 (Goddard)
- Propulsion Module 7/24-27/17 (APL)
- Flight System 10/17-20/17 (JPL)
- Europa-UVS 11/16-17/17 (SWRI)
- **PIMS** 12/6-7/17 (APL)
- **REASON** 12/11-12/17 (JPL)
- **EIS** 1/9-11/18 (APL)
- **SUDA** 1/17-18/18 (Univ. Colorado)
- Solar Array 1/22-23/18 (APL)
- Power 1/24-25/18 (JPL)
- **E-THEMIS** 1/30-31/18 (ASU)
- **ICEMAG** 2/14-15/18 (JPL)
- Guidance, Navigation & Control 2/7-8/18 (JPL)
- Mechanical 2/12-15/18 (JPL)
- Thermal 2/15-16/18 (JPL)
- Radio Frequency Module / Telecom 3/14-15/18 (JPL)
- Radiation Monitors 4/18 (APL)

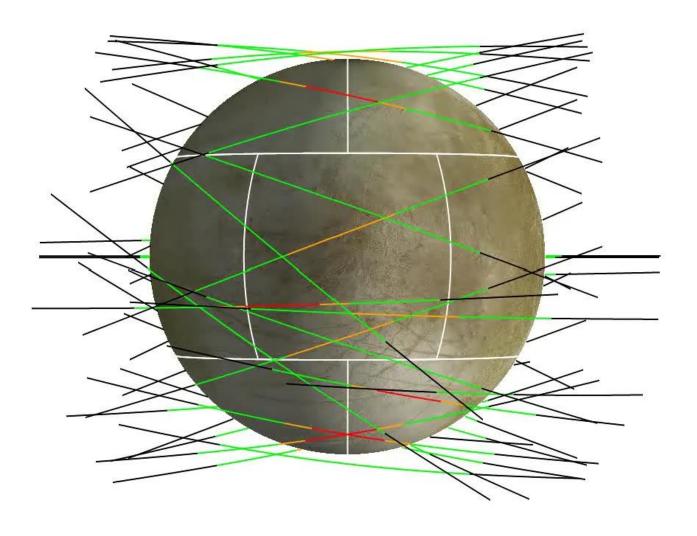


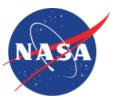
- Avionics 4/30-5/4/18 (JPL)
- MISE 4/25-26/18 (JPL)
- MASPEX 5/15-16/18 (SWRI)
- Fault Management 5/15/18 (JPL)
- Mission Design & Navigation 6/4-5/18 (JPL)
- Mission Operations System & Ground Data
   System 6/6-7/18 (JPL)
- Project PDR 8/20-24/18 (JPL)

Spacecraft Mission System
Payload Project



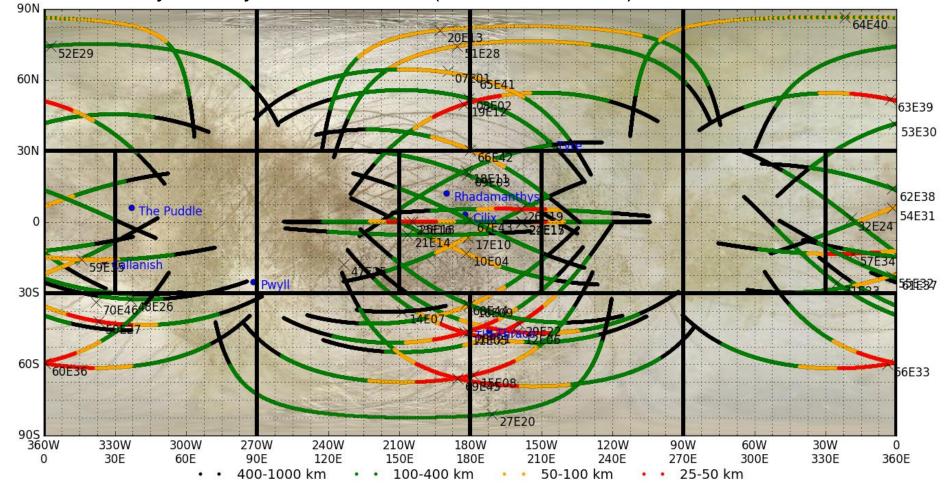
### **PSG Meeting #5 Recap**


May 17-19, 2017


- Discuss science actions from MDR-SRR
- Evaluate tour options for Preliminary Design Reviews
- Outline Potential Collaborative Data Products
  - Quick-look and higher-level data products
- Establish foundation for Mission System plans:
  - Science observation planning & analysis tools
  - Data processing, analysis, & archiving
  - Feed-forward & latency
- Begin to define an Integrated Plume Search strategy
  - Established a new Plumes Focus Group
  - Co-Chairs: Matt Hedman & Carly Howett
- Confer on Rules of the Road development
- Discuss Project communications and remote collaborations
- Review Science Traceability and Alignment Framework for traceability from Level 1 science requirements to science observation types
- Nominate TWG Co-Chairs for rotation
  - Britney Schmidt (Habitability), Julie Rathbun (Geology),
     James Roberts (Interior), Murthy Gudipati (Composition)

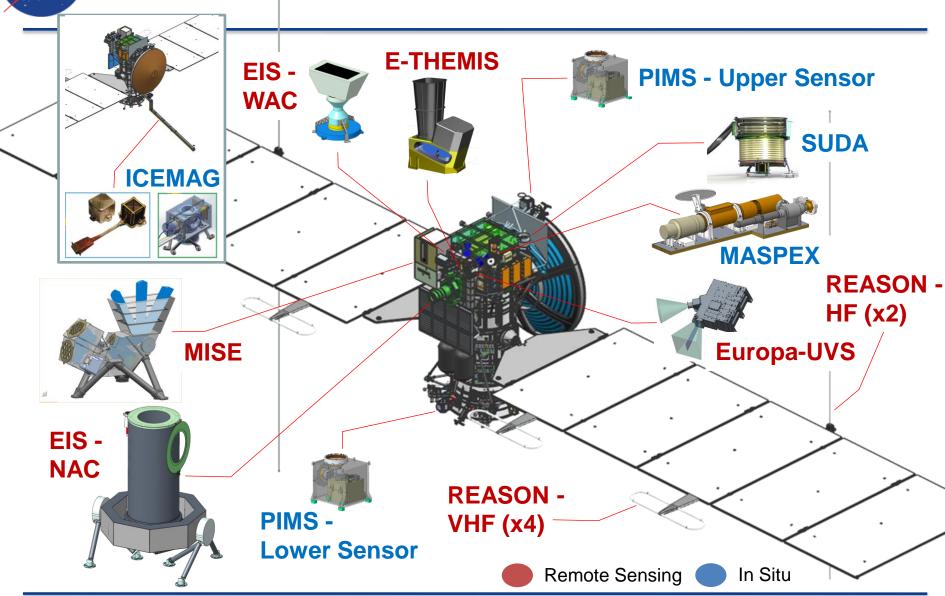





## 17F12\_V2 Trajectory



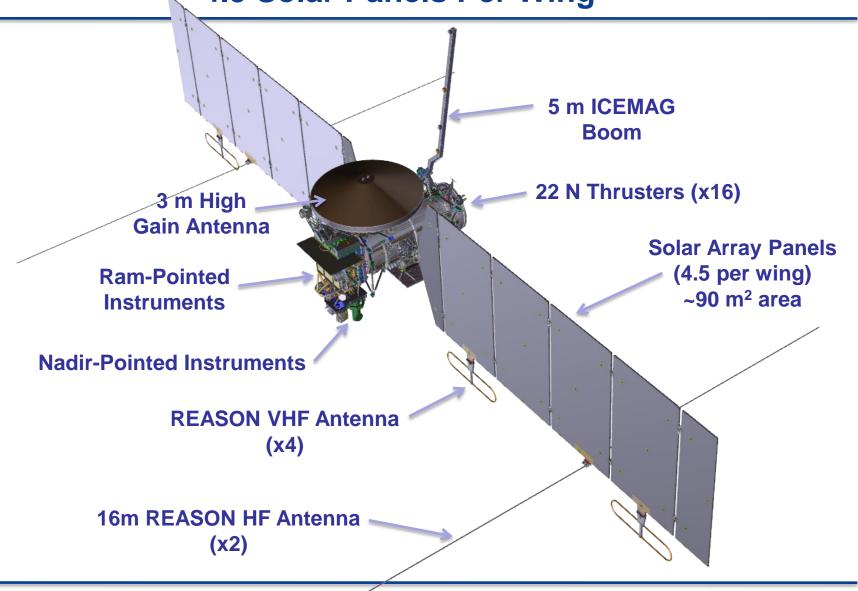



# Tour Update 17F12\_v2

- Tweaked to include lower flybys in leading hemisphere
- Now fly directly over Callanish (<100 km altitude)!</li>



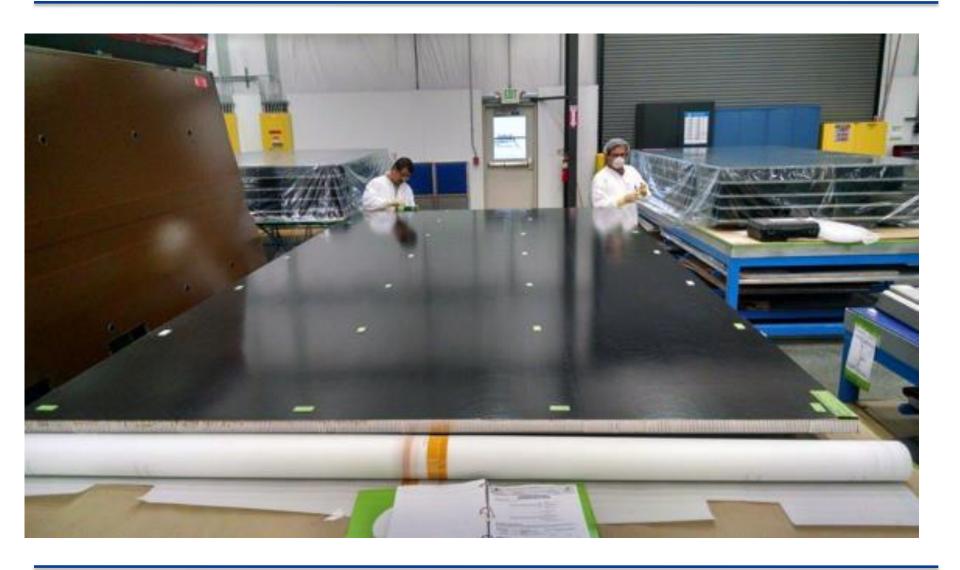
# NASA


### **Europa Clipper Science Instruments**





### **Spacecraft Configuration Update:**


4.5 Solar Panels Per Wing





## **Prototype Hardware**

#### **Solar Array Panel Demonstrator**





## **Prototype Hardware**

#### **High Gain Antenna**



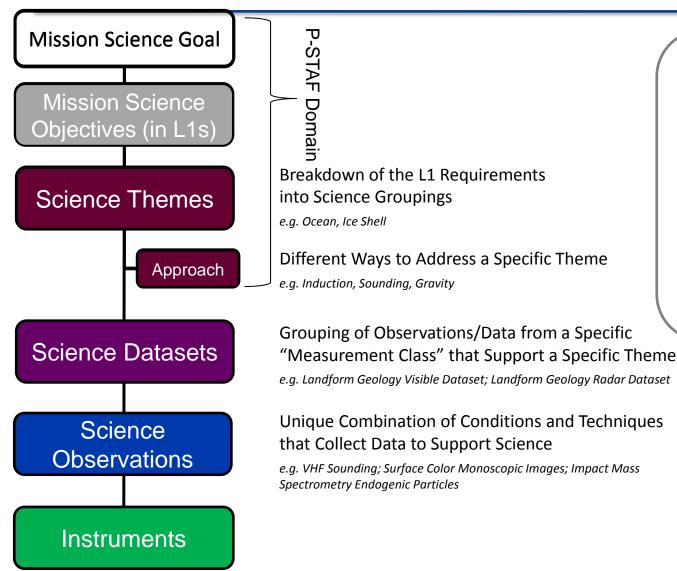




## **Prototype Hardware**

#### **REASON VHF Antenna**



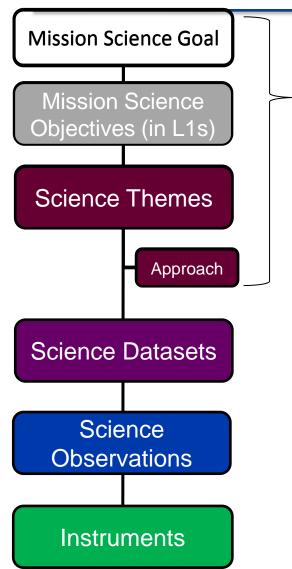



# Project Science Traceability and Alignment Framework (P-STAF): Introduction

- The Project-Science Traceability and Alignment Framework (P-STAF) is a tool for codifying how the Europa Clipper science is planned to be achieved
  - Traces flow from the Level-1 Science Requirements to instrument measurements
  - Permits evaluation of instrument capability synergies and areas of overlap
- This P-STAF approach permits assessment of instrument contributions and robustness in achieving Level-1 Science Requirements, relevant to:
  - Deriving a decision framework to assess science impacts, when performing cost trades as part of instrument and mission development
  - Understanding implications of possible changes in instrument science scope
  - Evaluating implications of faults that might disrupt instrument observations during the science campaigns



# Project Science Traceability and Alignment Framework (P-STAF): Taxonomy




- STAF framework offers:
  - Traceability
  - Completeness
  - Consistency across instruments
- STAF provides efficiency:
  - Prioritization
  - Tour analysis
  - Mission robustness analysis



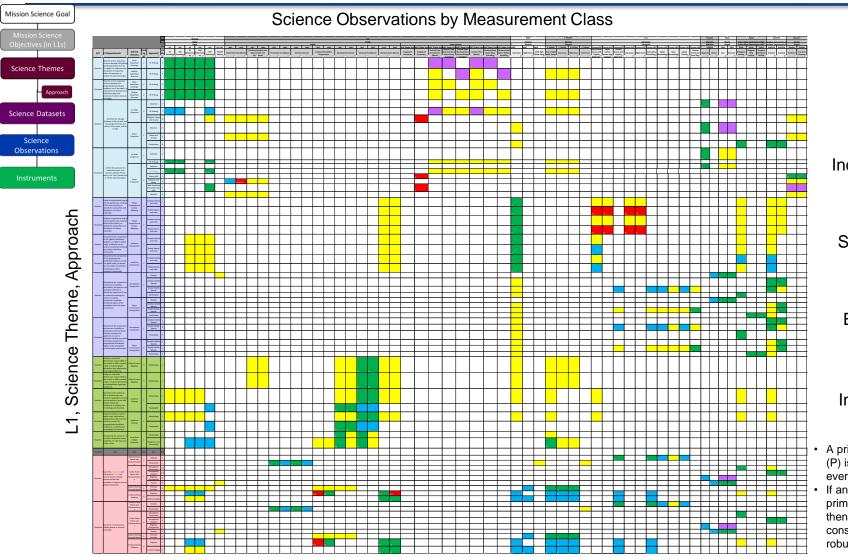

# Project Science Traceability and Alignment Framework (P-STAF)

P-STAF Domain



| Goal                                           | Baseline L1 Req.                                 | Science Themes                            | Baseline Approaches                                                     |  |  |  |  |  |  |
|------------------------------------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|--|
| Explore Europa to Investigate its Habitability | Subsurface<br>structure of                       | Deep Subsurface<br>Exchange               | Sounding                                                                |  |  |  |  |  |  |
|                                                | landforms (≥50)                                  | Shallow Subsurface<br>Structure           | Sounding                                                                |  |  |  |  |  |  |
|                                                | Ice thickness;<br>ocean salinity                 | Ice Shell Properties                      | Induction, Sounding, Shape and Gravity                                  |  |  |  |  |  |  |
|                                                | (±50%)                                           | Ocean Properties                          | Induction, Shape and Gravity                                            |  |  |  |  |  |  |
|                                                | Global comp. map<br>(≥70%)                       | Global Compositional<br>Surface Mapping   | Complex Species and Units, Simple Species and Units                     |  |  |  |  |  |  |
|                                                | Landform comp.<br>(≥50%, ≤300 m)                 | Landform<br>Composition                   | Complex Species and Units, Simple Species and Units                     |  |  |  |  |  |  |
|                                                | Gas, dust, & plasma                              | Atmospheric<br>Composition                | Plasma, Complex Volatile Species, Simple Volatile Species, Particulates |  |  |  |  |  |  |
|                                                | composition                                      | Space Environment<br>Composition          | Plasma, Complex Volatile Species, Simple Volatile Species, Particulates |  |  |  |  |  |  |
|                                                | Global imaging<br>map (≥80%)                     | Global Surface<br>Mapping                 | Morphology                                                              |  |  |  |  |  |  |
|                                                | High-res (≤25 m)<br>landforms (≥50)              | Landform Geology                          | Morphology, Topography                                                  |  |  |  |  |  |  |
|                                                | Local surface<br>(~1m, ≥40 sites)                | Local-Scale Surface<br>Properties         | Morphology, Roughness and Permittivity                                  |  |  |  |  |  |  |
|                                                | Search for and characterize any current activity | Remote Plume Search and Characterization  | Volatiles, Particulates                                                 |  |  |  |  |  |  |
|                                                |                                                  | In Situ Plume Search and Characterization | Atmospheric Particulates, Atmospheric Volatiles, Plasma                 |  |  |  |  |  |  |
|                                                |                                                  | Surface Thermal<br>Anomaly Search         | Thermal Emission                                                        |  |  |  |  |  |  |
|                                                |                                                  | Surface Activity<br>Evidence              | Deposits, Surface Changes                                               |  |  |  |  |  |  |




### Science Synergy & Redundancy

#### High Level Roll-Up to Baseline Level-1 Science Requirements

| Baseline L1 Req.                              | Science Themes                       | Radar  |     | Visible |        |          |         | 107    | 14       | Disamo | IDAG  |     |          |
|-----------------------------------------------|--------------------------------------|--------|-----|---------|--------|----------|---------|--------|----------|--------|-------|-----|----------|
| baseiiile Li Req.                             |                                      | HF     | VHF | NAC     | WAC    | Infrared | Thermal | UV     | Magnetic | Plasma | IMS   | NMS | Gravity  |
| Subsurface<br>structure of<br>landforms (≥50) | Deep Subsurface                      |        |     |         |        |          |         |        |          |        |       |     |          |
|                                               | Exchange                             |        |     |         |        | ())      | 33      | 0      | 10       | (1)    | ())   | 1)  | (        |
|                                               | Shallow Subsurface<br>Structure      |        |     |         |        | ())      |         | 33     | 10       | 0      | ()    | 3)  |          |
| Ice thickness;<br>ocean salinity<br>(±50%)    | Ice Shell Properties                 |        |     |         |        | ()       |         | 3)     |          |        | ()    | Ĩ.) |          |
|                                               | Ocean Properties                     | (1)    | 11  |         |        |          | 11      | 31     |          |        |       |     |          |
| (≥70%)                                        | Global Compositional                 |        |     |         |        |          |         |        |          |        |       |     |          |
|                                               | Surface Mapping                      | ()     | 1)  |         |        |          | ()      |        | 1))      | (1)    |       |     | (        |
| •                                             | Landform                             |        |     |         |        |          |         |        |          |        |       |     |          |
| (≥50%, ≤300 m)                                | Composition                          |        |     |         |        |          | - 11    |        | 1.0      | 1)     |       |     |          |
| Gas, dust, &                                  | Atmospheric<br>Composition           |        |     | 71      | 7.0    |          | **      |        |          |        |       |     |          |
| piasifia                                      | Space Environment                    |        |     | 4.7     | 9.5    |          | 4.5     |        |          |        |       |     |          |
| composition                                   | Composition                          | (1)    |     | 0,0     | 10     |          | 10      |        |          |        |       |     |          |
| Global imaging                                | Global Surface                       |        |     |         |        |          |         |        |          |        |       |     |          |
| map (≥80%)                                    | Mapping                              | ())    | (1) |         |        |          |         | ()     | 3.0      | 0      | ())   | 0   | (        |
| High-res (≤25 m)<br>landforms (≥50)           | Landform Geology                     |        |     |         |        |          |         |        | ()       | ()     |       |     | Ŷ        |
| Local surface                                 | Local-Scale Surface                  |        |     |         |        |          |         |        |          |        |       |     |          |
| (~1m, ≥40 sites)                              | Properties                           |        |     |         |        | 0)       |         | ()     | 1)       | 10     | 00    | 1)  | (        |
|                                               | Remote Plume Search                  |        |     |         |        |          |         |        |          |        |       |     |          |
|                                               | and Characterization                 | (1)    | 1)  |         |        |          |         |        | 10       | 0      | 1.0   | 1)  |          |
| Search for and                                | In-Situ Plume Search                 |        |     |         |        |          |         |        |          |        |       |     |          |
| characterize any                              | and Characterization Surface Thermal |        |     | ***     | 33     | (1)      | 111     | 11     |          |        |       |     | 1        |
| current activity                              | Anomaly Search                       |        |     |         |        |          |         | XI     | X ()     | 11)    | 0.0   | 71  |          |
|                                               | Surface Activity                     |        |     |         |        |          |         |        |          |        |       |     | <u> </u> |
|                                               | Evidence                             |        |     |         |        |          |         |        | ()       | 1)     |       |     |          |
|                                               | <b>P</b> P                           | rimary | 1   | Indep   | endent | s        | Suppo   | orting | E        | Enha   | ncing |     |          |



## **Full P-STAF Matrix (In Progress)**



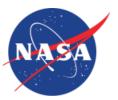
**Primary** 



Independent



Supporting




Enhancing



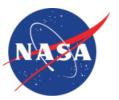
In Progress

- A primary instrument (P) is not required in every row.
- If an approach has no primary instrument, then that approach is considered less robust.



## P-STAF Analysis (Still To Come)


Once the inputs are reconciled and vetted, the P-STAF can be used to determine:


"Simple" queries to the network include:

- In how many independent ways can each Level 1 be met?
- Which Level 1s have single points of failure?
- If an instrument or observation fails, which Level 1s are not achievable?
- How many paths does an instrument or observation affect?

"Complex" queries to the network include:

- How resilient is each Level 1 to failures?
- What is the impact of a given observation or instrument?
- What is the minimum set (of instruments or observations) necessary to meet a Level 1 or a group of Level 1s?
- Which Level 1s require the most resources to meet?





# How the P-STAF Can Inform Decisions that Affect Science

- P-STAF approach provides a standard format from which Level-1 Science requirements can be traced, via science themes, to instrument measurements
- Permits assessment of the contribution (Primary, Independent, Supportive, and Enhancing) of individual instrument measurements to each Science Theme, and thus each Level-1 Science requirement
- Provides a decision-tree structure that can aid assessment of the science impact when considering modifications to the instrument capabilities or complement
- In making capability trades as may be necessary for cost control, P-STAF provides a simple and concrete means to evaluate the potential impact to achieving Level-1 Science Requirements