Restructuring Planetary Science's Research & Analysis Program

Jonathan A. R. Rall March 2014

Guiding Principles in the Restructuring

- To make the structure of the R&A program explainable to those outside of NASA.
- To make it easy for those outside of NASA to compute the amount of money spent on grants.
- To reduce the time between proposal submission and award announcement.
- To encourage interdisciplinary research.
- To enable PSD strategic decision making.
- To be more flexible in responding to changing research priorities.
- To reduce overlaps between program elements.

- To provide bridge funding, where appropriate, to cover funding gaps resulting from this restructuring
- Ensure program restructuring will be revenue neutral; removing overlap will not decrease the R&A budget

Reorganization at a glance

- ROSES13 has 20 calls; ROSES14 will have 19 calls with 7 that remain the same
- All calls address division science goals supporting NASA's strategic plan
- Strategic programs are more narrow in scope and address certain strategic needs
- Focused programs are narrow in scope and limited in time. They may be called for only one year or several, but not indefinitely. This provides flexibility the previous program did not have.

Core Research	Strategic	Focused
Emerging Worlds	PDART (data archiving, tools)	ETIPS (emerging topics)
Solar System Workings	PSTAR (analogues)	LDAP (lunar data analysis)
Habitable Worlds	Exoplanets (joint with Astro)	CDAPS
Exobiology	DDAP	DFRAP
Solar System Observations	LARS	N.
Core Technology	MDAP	New program Not solicited in ROSES 2014
MatISSE	Planetary Protection	Unchanged
PICASSO	NAI (not solicited in ROSES)	
Planetary Major Equipment	SSERVI (not solicited in ROSES)	

Calls from previous ROSES Years New Programs for ROSES 2014 Origins of Solar Systems (May) Emerging Worlds (May 30 2014) Cosmochemistry (May) Planetary Geology & Geophysics (June) Solar System Workings (July 25, 2014) Planetary Atmospheres (June) Habitable Worlds (January 23, 2015) Lunar Adv. Sci & Exp Research (Feb) **Outer Planets Research (Nov)** Exobiology (June 13, 2014) Mars Fundamental Research (July) **Exobiology & Evolutionary Biology (June)** Planetary Astronomy (June) Solar System Observations (June 6, 2014) Near-Earth Object Observations (June)

DRAFT ROSES 2014 Table of Contents

V4 TOC FOR APPENDIX C. PLANETARY SCIENCE RESEARCH PROGRAM

C.1	Planetary Science Research Program Overview	C.1-1
C.2	Emerging Worlds	C.2-1
C.3	Solar System Workings	C.3-1
C.4	Habitable Worlds	C.4-1
C.5	Exobiology	C.5-1
C.6	Solar System Observations	C.6-1
C.7	Planetary Data Archiving, Restoration, and Tools	C.7-1
C.8	Lunar Data Analysis	C.8-1
C.9	Mars Data Analysis	C.9-1
C.10	Cassini Data Analysis and Participating Scientists	C.10-1
C.11	Discovery Data Analysis	C.11-1
C.12	Planetary Instrument Concepts for the Advancement of Solar	C.12-1
	System Observations	
C.13	Maturation of Instruments for Solar System Exploration	C.13-1
C.14	Planetary Science and Technology from Analog Research	C.14-1
C.15	Planetary Protection Research	C.15-1
C.16	Fellowships for Early Career Researchers	C.16-1
C.17	Planetary Major Equipment	C.17-1
C.18	Laboratory Analysis of Returned Samples	C.18-1
	Focused Research Opportunities	
C.19	Hayabusa2 Participating Scientist program	C.19-1
C.20	Dawn Focused Research & Analysis program	C.20-1
	Cross Divisional Activities	
E.3	Exoplanets	E.3-1

ROSES 2014 Planetary Due Dates

ProgramŒlement	Step-1 Proposal Due Date	Step-21Proposal Due Date
Exoplanets	March 281, 22014	May@3,@014
Emerging Worlds	March 281, 22014	May 302014
PPR	April 7,2014	June 1 6,122014
Solar System Observations	April17,12014	June 3 6, 2 2014
Exobiology	April114,12014	June 1 13,122014
MatISSE	April型1,型014	June 2 20,22014
LARS	April28,22014	June 2 27,22014
Hayabusa®®SP	May 219, 22014	July🗓 8,🗓 014
Solar System Workings	May227,22014	July型5型014
PSTAR	June 2 3, 2 2014	August®2,®014
PDART	July14,12014	September 22, 22014
DDAP	July 21,2014	September 19, 12014
CDAP	July28,2014	September 226, 22014
MDAP	August 2,2014	October3,22014
LDAP	August 1,2014	October 20, 22014
DFRAP	August 218, 22014	October 17, 12014
PICASSO	September 15, 12014	November 14, 12014
Habitable Worlds	November 24, 22014	January®3,®015

NASA's Intent for SSERVI

SSERVI was created to further the goals of science and exploration by addressing fundamental and applied science questions and human spaceflight concerns, i.e., to bring science to bear on issues related to potential targets for human exploration.

- Science which enables human exploration
- Science enabled by human exploration

SSERVI is funded jointly by SMD/PSD and HEOMD/AES through the Joint Robotic Precursor Activity (JRPA)

Important opportunity to advance joint goals

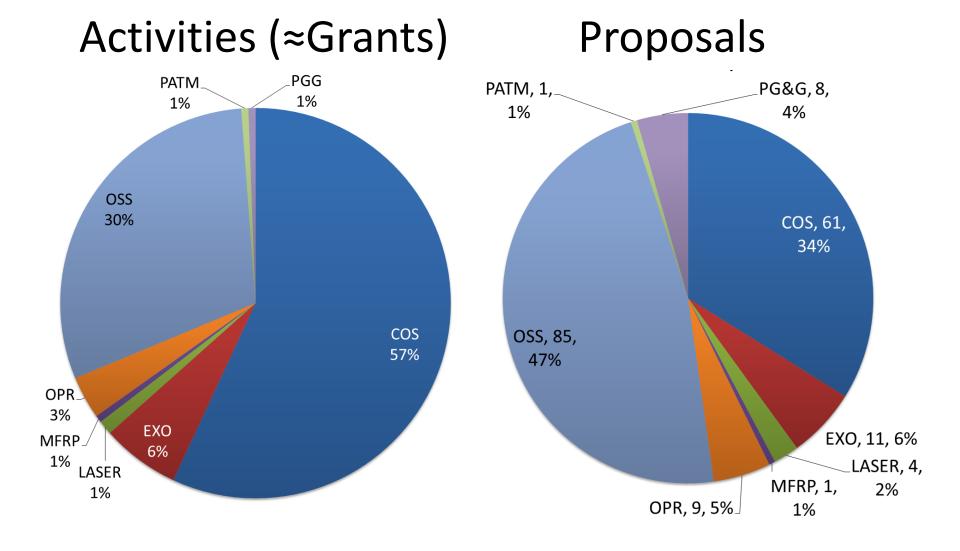
The NASA virtual institute structure is uniquely suited to create and foster inter-team, as well as interdisciplinary, collaborations (e.g. heliophysics and geology) that previously would not have existed. Therefore, expansion of the NASA Lunar Science Institute's scope to include all potential near-term human destinations (Moon, NEAs, Phobos/Deimos) is the most effective method of integrating science (SMD) and exploration (HEOMD) research goals.

SERVI

SSERVI Selected Teams

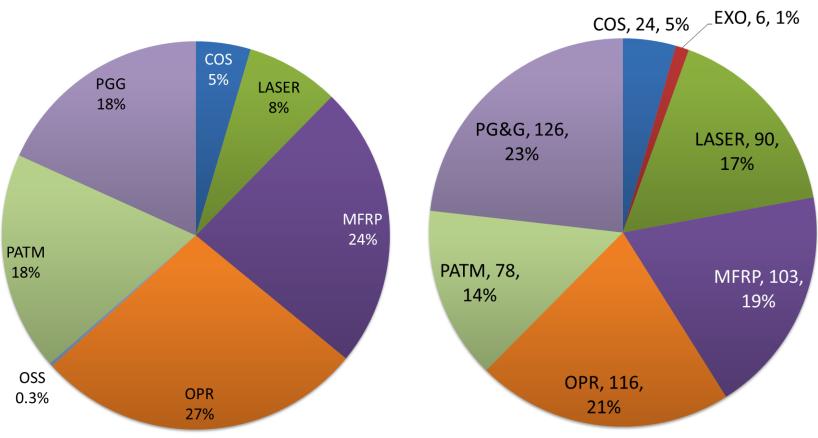
- •Bill Bottke, Southwest Research Institute. "Institute for the Science of Exploration Targets: Origin, Evolution and Discovery"
- •Dan Britt, University of Central Florida. "Center for Lunar and Asteroid Surface Science"
- •Ben Bussey, Applied Physics Lab, Johns Hopkins University. "Volatiles, Regolith and Thermal Investigations Consortium For Exploration and Science (VORTICES)"
- •Bill Farrell, Goddard Space Flight Center. "Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2)"
- •**Tim Glotch**, Stony Brook University. "Remote, In Situ and Synchrotron Studies for Science and Exploration"
- •Jennifer Heldmann, Ames Research Center, "Field Investigations to Enable Solar System Science & Exploration"
- •Mihaly Horanyi, University of Colorado. "Institute for Modeling Plasma, Atmospheres and Cosmic Dust (IMPACT)"
- •David Kring, Lunar and Planetary Institute. "Inner Solar System Impact Processes"
- •Carle Pieters, Brown University. "Evolution and Environment of Exploration Destinations: Science and Engineering Synergism (SEEED)"

Recommended Institute - Programmatic Balance

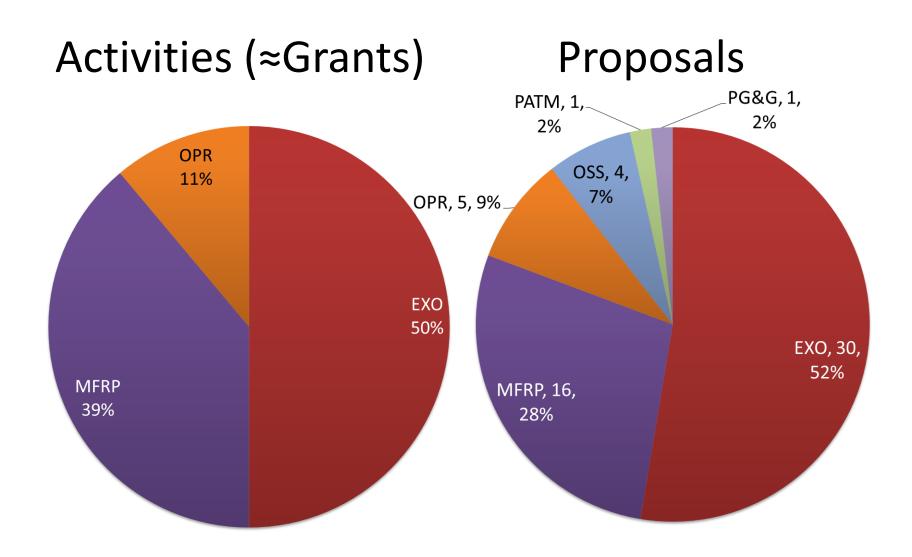


	Role of Target Body(s) in revealing the origin and evolution of the inner Solar System	Horanyi	Kring	Bottke	Pieters				
	Target Body structure and composition	Glotch	Kring	Bottke	Bussey	Pieters	Britt	Heldmann	
Scion	Innovative observations that will advance our understanding of the fundamental physical laws, composition, and origins of the Universe	Horanyi	Farrell						
co emi		Glotch	Kring	Bottke	Bussey	Pieters	Heldmann		
nhacis	Dust and plasma interactions on Target Body(s)	Horanyi	Farrell	Britt					
	Near-Earth asteroid characterization (including NEAs that are potential human destinations)	Glotch	Horanyi	Kring	Bottke	Bussey	Pieters	Farrell	Britt
	Geotechnical properties (Moon, NEAs, Mars)	Glotch	Horanyi	Kring	Bussey	Pieters	Britt	Heldmann	
	Regolith of Target Bodies	Glotch	Horanyi	Kring	Bussey	Pieters	Farrell	Britt	Heldmann
	Radiation	Glotch	Horanyi	Farrell					
	Volatiles (in its broad sense) and other potential resources on Target Body(s)	Glotch	Bussey	Pieters	Farrell	Heldmann			
	In-Situ Resource Utilization (ISRU)/ Prospecting (Moon, NEAs, Mars)	Glotch	Bussey	Heldmann					
	Propulsion-induced ejecta (Moon, NEAs, Mars)	Britt							
	Operations/Operability (all destinations, including transit)	Glotch	Kring	Heldmann					
	Human health and performance (all destinations, including transit)	Glotch							

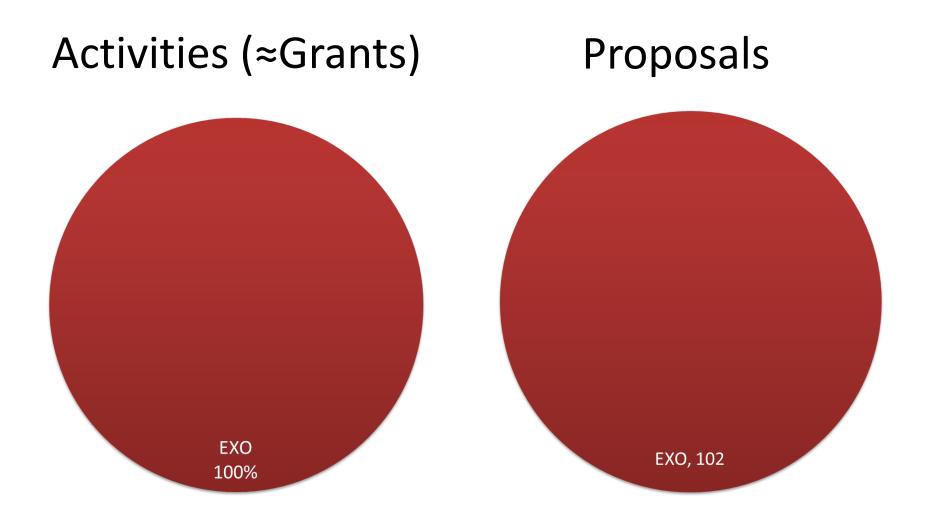
Back Up


If FY13 activities and ROSES-11 proposals were mapped into the reorganized structure, what might have been the relative sizes and makeup of the core research programs last year?

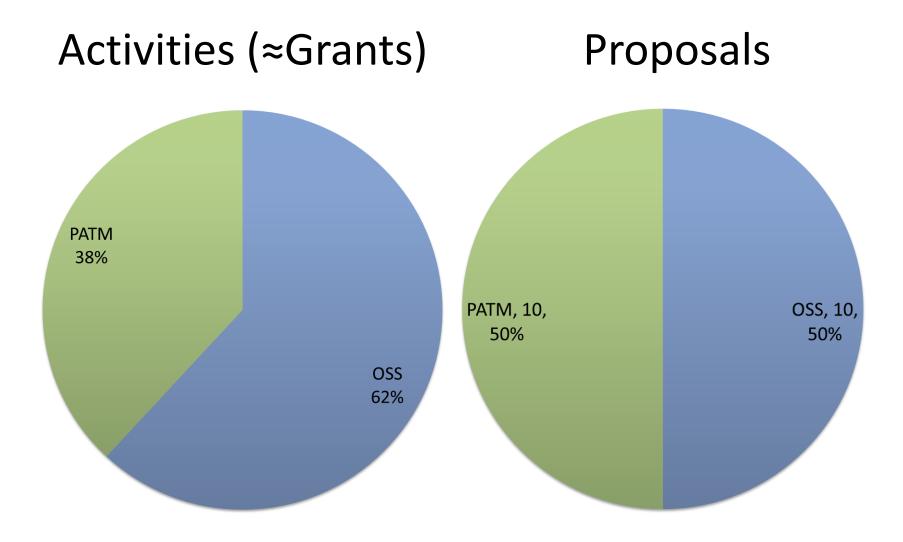
WHAT GOES INTO EMERGING WORLDS?



WHAT GOES INTO SOLAR SYSTEM WORKINGS?


Activities (≈Grants) Proposals

WHAT GOES INTO HABITABLE WORLDS?


WHAT GOES INTO EXOBIOLOGY?

WHAT GOES INTO SOLAR SYSTEM OBSERVATIONS?

Activities (≈Grants) **Proposals PAST** NEOO, 27, 43% 37% **NEOO** PAST, 46, 57% 63%

WHAT GOES INTO EXOPLANETS?

