NASA Mars Exploration Program Update to the Committee on Astrobiology and Planetary Science

Jim Watzin Director MEP March 29, 2016

The state-of-the-MEP today

Our operational assets remain healthy and productive:

- ✓ MAVEN has successfully completed its prime science mission and is now continuing investigations in an extended mission
- ✓ Odyssey, our oldest Mars asset, continues to be healthy and contribute thermal imagery and data relay services
- ✓ MRO continues to provide invaluable reconnaissance imaging and mineralogical mapping, supporting science investigations, rover operations, and exploring potential human landing sites
- Opportunity continues to provide important ground truth data, recently scaling 30 deg slopes of Knudsen Ridge atop the southern flank of Marathon Valley, to investigate red zones
- Curiosity continues exploring Gale Crater, generating important insights into Martian chemistry
- Mars Express continues operating our collaborative deep radar sounder (MARSIS)

M2020 development on-track and proceeding well:

- ✓ PDR successfully completed Feb 2016
- ✓ Heritage H/W fabrication underway; some delivered
- ✓ Sampling system development labs up and running

We are meeting our foreign commitments:

- ✓ Our two Electra payloads on the TGO are ready for flight
- ✓ MOMA is proceeding in development for the ExoMars Lander

Financially, the program is doing well:

- ✓ This fiscal year all our planned activities are funded
- ✓ Earlier this month the President's FY17 budget was released and Mars fared well again, supporting our development, operational, and future mission activities

Overall, the state-of-the-MEP is good

M2020 Mission Overview

LAUNCH

- MSL Class/Capability LV
- · Period: Jul/Aug 2020

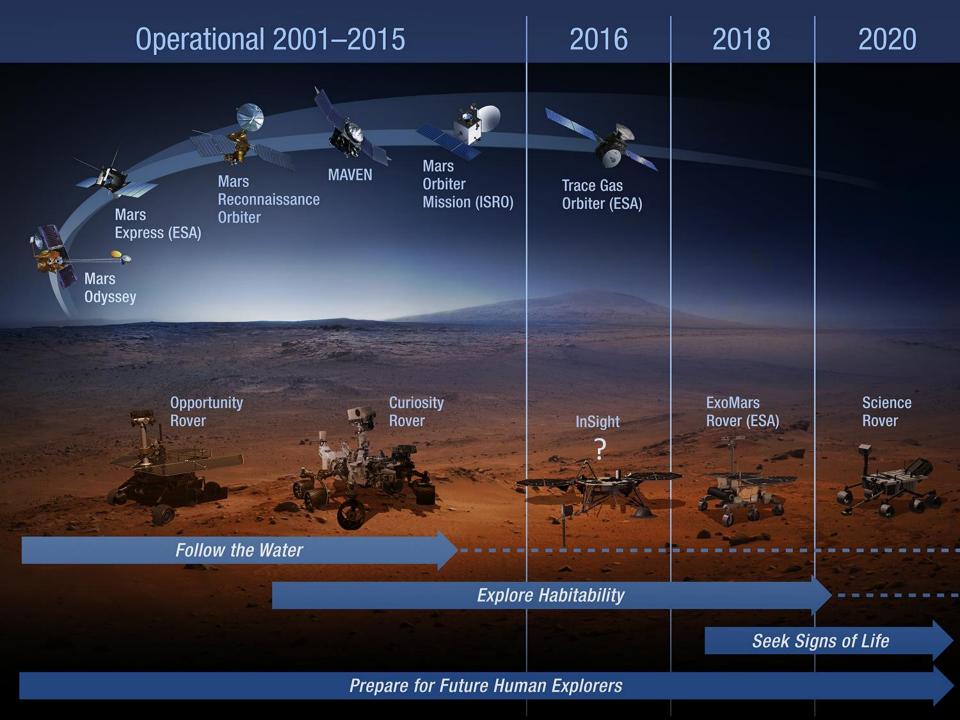
CRUISE/APPROACH

- 7.5 month cruise
- Arrive Feb 2021

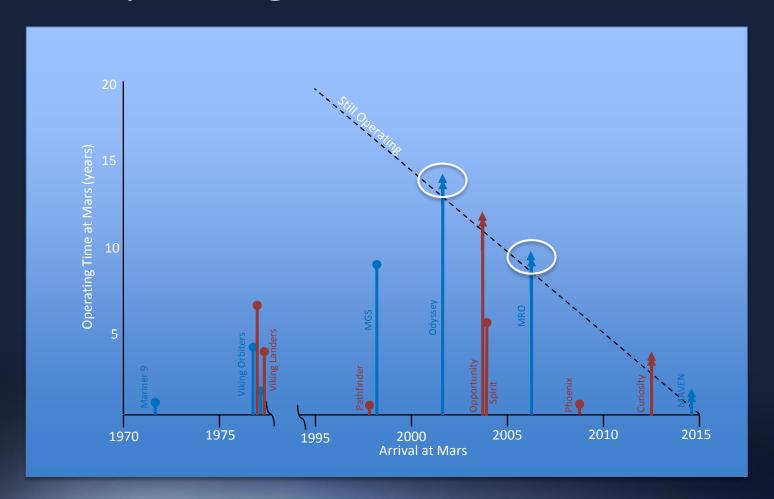
ENTRY, DESCENT & LANDING

- MSL EDL system (Range Trigger and TRN baselined): guided entry and powered descent/Sky Crane
- 16 x 14 km landing ellipse (range trigger baselined)
- Access to landing sites ±30° latitude,
 ≤ -0.5 km elevation
- · Curiosity-class Rover

SURFACEMISSION


- · 20 km traverse distance capability
- Enhanced surface productivity
- Qualified to 1.5 Martian year liefetime
- · Seeking signs of past life
- · Returnable cache of samples
- Prepare for human exploration of Mars

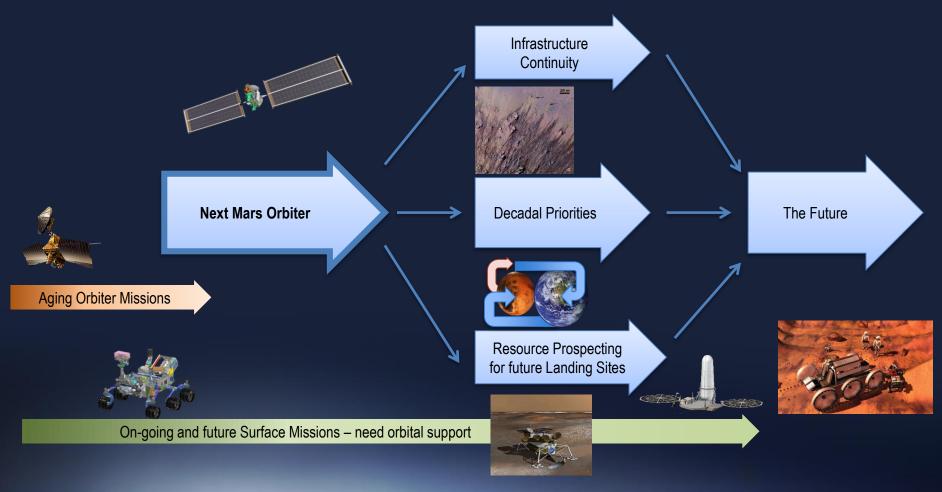
M2020 mission elements


M2020 Project Status Summary

- The Mars 2020 Project has conducted successfully the lower level instrument, subsystem, and Office level PDR's necessary to provide confidence in a full understanding of the requirements, design response, and associated cost estimates
- Cost estimates for new developments, particularly the instrument payload and SCS, include acceptable financial and schedule margins to support a 2020 launch
- The Mars 2020 Project has conducted successfully the mission system PDR
- Cost performance on heritage HW continues to perform under plan
- Project is progressing on-schedule within cost target

Operating At and Around Mars

MEP has operated successfully and with longevity, but our infrastructure is aging, placing the decade of the 2020s at risk


Strategic View Forward

- US National Research Council (NRC) Planetary Science Decadal Survey (2012) gave the highest priority to "elements of the Mars Sample Return Campaign"
- The Mars 2020 mission and its payload begin this process with the characterization of a site and the careful selection and documentation of a suite of samples acquired and encapsulated for return
- The President's NASA Budget Request for FY2017 provides \$10M to begin early work on a future Mars orbiter missions beyond 2020 – with an emphasis on emplacing the infrastructure for the next decade

MEP planning strives to integrate these realities into a viable plan for the future

Next Orbiter Can Provide Capabilities that enable Many Future Pathways

Timely Renewal and Enhancement of Infrastructure is needed to Support Future Missions

Desired Orbiter Capabilities

Renew and Update Aging Communications Infrastructure

 Essential to the future of Mars exploration; Laying the foundation for missions to come, while supporting ongoing missions in the early 2020's

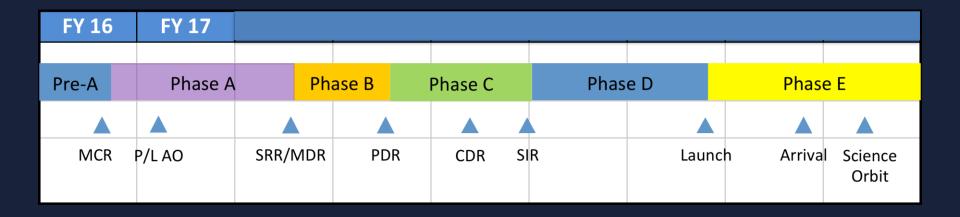
Provide Continuity of High Resolution Imaging

Scientific Investigations for Landing Site Certification

Essential Orbital Support for Sample Return

Potential Resource Prospecting for future Landing Sites and Exploration planning

Continuity of Relevant Remote Sensing


Building from a Modest (Discovery-Class) Core Vehicle

- Many examples exist of architecturally flexible and adaptable spacecraft capable of supporting this mission
 - Provide Core Technical Functionality
 - Capable of Operating in Deep Space
 - Long Lifetime
 - Autonomous Operations
 - 3-axis pointing for imaging and communications
 - Adaptable to Solar Electric Propulsion, providing mission flexibility
 - Lowest cost launch vehicle
 - Increased mass delivery capability
 - Return to Earth capability

Notional Orbiter Project Lifecycle Planning Timeline

Phase A start in 2017 is essential, given that an orbiter arriving at Mars at the earliest opportunity would join Odyssey in its 22nd year of service and MRO in its 18th

Next Steps – Path to Orbiter Phase A

Establish Partnerships

Prepare for MCR

Concept Refinement

- Communication with iMEWG and MEPAG communities
- Explore potential International & Commercial Partnerships

by May 2016

- Establish baseline project architecture
- Establish key partnerships
- Refine technical trades
- Conduct ORDT, identify opportunities to openly compete selected instrumentation
- Detailed spacecraft studies, assess available aerospace capabilities
- Proceed with Phase A implementation

Fall 2016+

ORDT (Objectives & Requirements Definition Team)

View from our Journey to the Foothills of Mount Sharp * WOW! *

"compliments of Curiosity rover - Sept 2015"