

Summary of Key Findings

Planning Considerations Related to the Organic Contamination of Martian Samples and Implications for the Mars 2020 Rover

David Beaty on behalf of the Mars 2020 Organic Contamination Panel

Presented to NRC-CAPS Sept. 4, 2014

The presentation summarizes this white paper:

Mars 2020 Organic Contamination Panel (2014), Committee members: Summons, R.E. and A.L. Sessions (cochairs); A.C. Allwood, H. A. Barton, D.W. Beaty, B. Blakkolb, J. Canham, B. C. Clark, J. P. Dworkin, Y. Lin, R. Mathies, S. M. Milkovich, and A. Steele (2014): Planning Considerations Related to the Organic Contamination of Martian Samples and Implications for the Mars 2020 Rover, 118 pp., posted September, 2014, by the Mars Exploration Program Analysis Group (MEPAG) at http://mepag.jpl.nasa.gov/reports.cfm?expand=smd.

Charge to the OCP

The "Organic Contamination Panel" has been chartered with 4 primary technical tasks.

- Based on current knowledge and capabilities, construct a list of measurements (and associated instruments/methods) anticipated to be made on the returned samples in support of objectives related to Martian organic geochemistry.
- 2. Determine the types and quantities of Earth-sourced organic contaminants of greatest concern, if they were on the samples. Also, specify a total organic carbon constraint.
- 3. Assess possible implementation approaches for recognizing and distinguishing Mars-sourced organic molecules in the samples from Earth-sourced organic molecular contamination.
- 4. Evaluate draft Mars 2020 mission sample organic contamination requirements and draft verification methodologies (to be provided by the Mars 2020 project).

OCP Team Roster

Primary Team

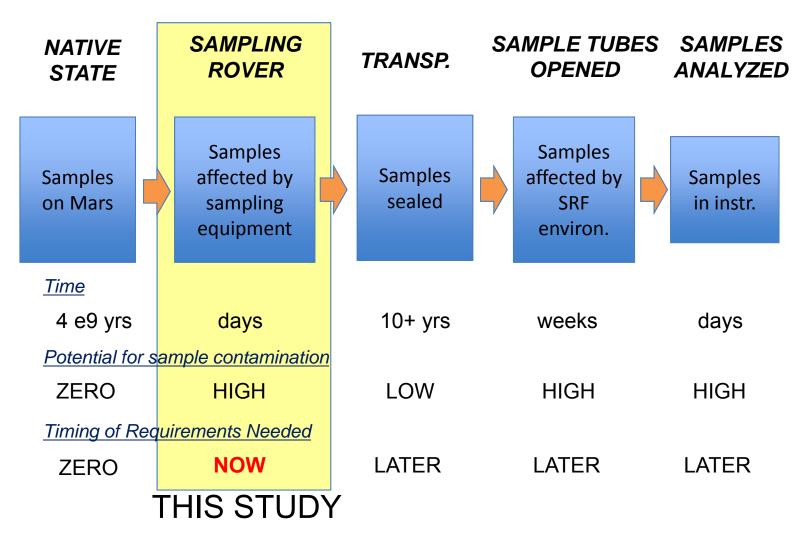
Professional						
Name	Affiliation	Interest/Experience				
<u>Chair</u>						
Summons, Roger	MIT	organic geochemistry, exobiology				
Sessions, Alex	Caltech	organic geochemistry, stable isotopes of organic molecules, instrument development				
Technical Membe	ers					
Allwood, Abby	JPL/Caltech	astrobiology, ancient microbial biosignatures, fieldwork to laboratory				
Barton, Hazel	Univ of Akron	geomicrobiology, ancient ecosystems in caves, organic geochemistry, PP; PHX and MSL				
Blakkolb, Brian	JPL/Caltech	Contamination Control Engineer for M2020				
Canham, John	АТК	contamination control, measurement, and effects; analytical chemistry; verification and validation; PP; surface science, analytical methods development; SAM (MSL); MOMA (ExoMars)				
Clark, Benton	SSI	geochemistry, sampling strategies for contamination issues, PP; Viking and MER, OSIRIS-REX sampling system				
Dworkin, Jason	GSFC	origins of life; CC for OSIRIS-REX; organics in meteorites				
Lin, Ying	JPL/Caltech	chemical engineering, organic chemistry, in-situ organic molecule detection, PP, contamination control; ExoMars				
Mathies, Richard	UC Berkeley	physical chemistry, laser spectroscopy, biomolecular tracers, contextual experiments for contamination				
Steele, Andrew	Carnegie Inst., Wash	microbiology, meteorites, organic geochemistry; SAM (MSL), PP, 2020SDT				
<u>Facilitation</u>						
Beaty, Dave	JPL/Caltech	Chief Cat-Herder; Mars Chief Scientist at JPL				
Milkovich, Sarah	JPL/Caltech	Documentarian and Assistant Cat-Herder; M2020 science systems engineering				

Expert Reviewers

Calaway, Mike	JSCCuration	JSC curation	
		Led astrobiology	
Des Marais, Dave	NASA Ames	roadmap	
	Arizona State	recognizing past life	
Farmer, Jack	Univ.	in rocks	
		PI, MSL SAM	
Mahaffy, Paul	NASA GSFC	Instrument	
Oehler, Dorothy	JSCResearch	organics in Earth's	
Octilici, Dorottiy	000-103carch	geology	
	Imperial	Organics in	
Sephton, Mark	College, London	meteorites	
Sherwood Lollar,	University of	President,	
Barbara	Toronto	Geochemical Society	

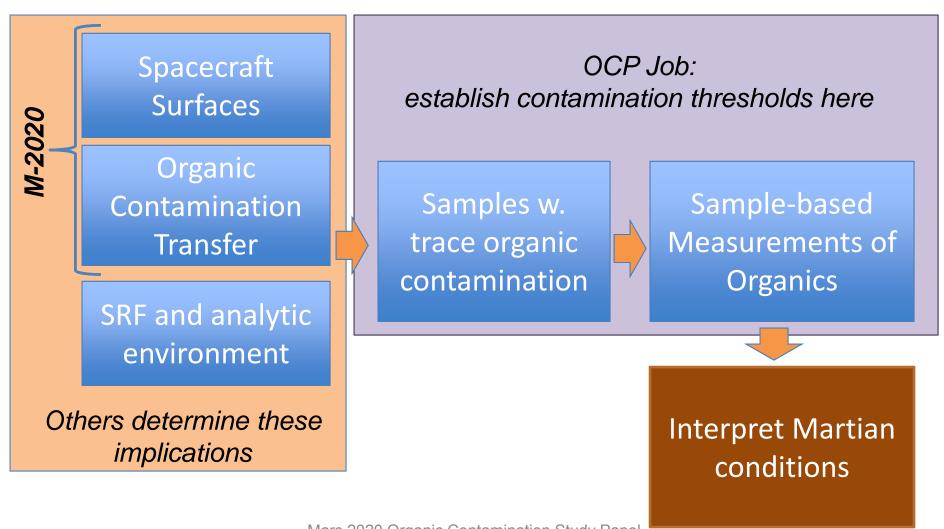
Ex Officio

Conley, Cassie	NASA HQ	NASA PPO
Farley, Ken	Caltech/JPL	Proj. Scientist, M2020
May, Lisa	NASA HQ	Mars Lead PE; MSR Program Exec
Meyer, Michael	NASA HQ	Mars Lead Scientist; MSR Prog. Scientist
Pugel, Betsy	NASA HQ	NASA HQ Planetary Protection
Wallace, Matt	JPL/Caltech	Deputy PM, M2020


Logical Flow of This Study

M2020 Organic Contamination Control Plan Needs to Flow From the Science Objectives State-of-Art **Organic-Related** instrument Objectives to be Instruments Analytes of performance: Achieved by required to interest detection limits, **Returning Samples** measure these accuracy, sample from Mars consumption Charter Task 1 ORGANIC CONTAM. CONTROL PLAN Laboratory Strategies for Sensitivities to strategies for SRF contam. M-2020 blanks, witness Organic regs. (in contam. distinguishing plates, Contaminants containment) contamination reas. standards in samples Charter Task 4 Charter Task 3 Charter Task 2

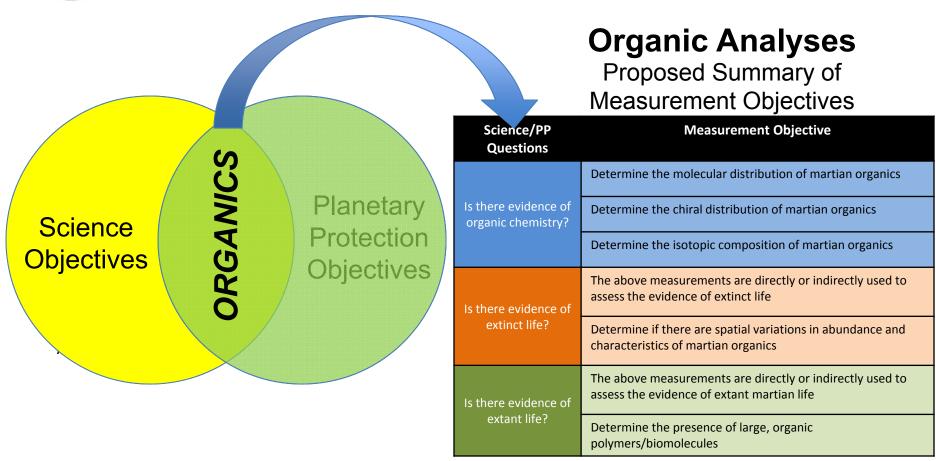
The OCP was asked to provide a quantitative answer to a qualitative question



OCP Focused on M2020

OCP Focus is on Samples not Spacecraft

Organic Contamination

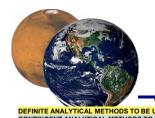

as applied to the purposes of this committee

Any substance that significantly interferes with our ability to detect the presence of martian organic compounds or prevents our confidently determining that an organic compound is of martian and not terrestrial origin

i.e., in addition to analytes of concern, we also consider organic and inorganic compounds that may interfere with measurements of organics.

Science and PP Objectives Both Drive the Need for Organic Analyses

Finding #5: A key subset of objectives of both science and planetary protection can be met by a common set of organic geochemical measurements of returned samples.


Table 1: Potential Measurements for Returned Samples

This schematic table illustrates the structure and organization of Table 1, which is available as a separate file.

Survey Analytical Method

Targeted Analytical Method

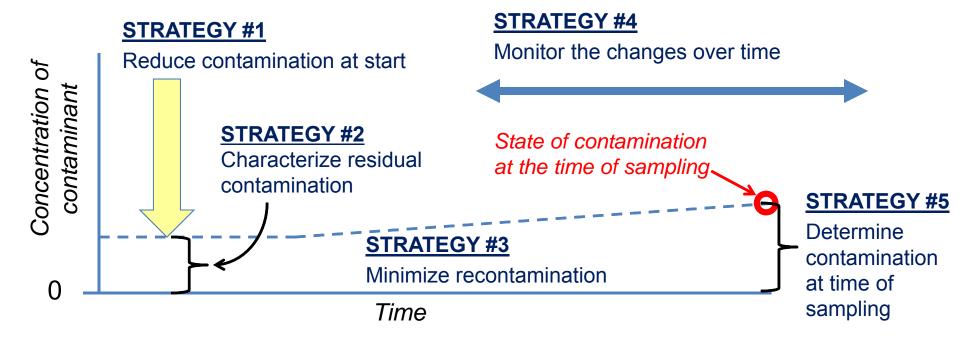
Category 1: Non-Destructive, Sample Surface-Based Technique									
Analytical Method	Objectives Addressed	Sample Requirements and Degradation	Performance Characteristics and Example Detection Limits	Method Notes (Dependencies, Limitations, Assumptions,etc.)	Representative Contaminants (stuff we don't want in there)	References			
	Category 2: Slightly Destructive to Sample Surface								
Analytical Method	Objectives Addressed	Sample Requirements and Degradation	Performance Characteristics and Example Detection Limits	Method Notes (Dependencies, Limitations, Assumptions,etc.)	Representative Contaminants	References			
		Category	3: Destruct	ive of Sample					
Analytical Method	Objectives Addressed	Sample Requirements and Degradation	Performance Characteristics and Example Detection Limits	Method Notes (Dependencies, Limitations, Assumptions,etc.)	Representative Contaminants	References			

Instruments and Techniques

Analytical	Objectives Addressed		Performance Characteristics and	Method Notes (Dependencies, Limitations, Assumptions,etc.)	References
GC-ICPMS		destructive	20 pmol S as dimethylsulfide, at 0.3‰ precision;	LE	Amrani A., Sessions A. L. and Adkins J. F. (2009) Compound-Specific δ34S Analysis of Volatile Organics by Coupled GC/Multicollector-ICPMS. Analytical Chemistry 81, 9027–9034.

Finding: A huge diversity of techniques for organic analysis already exists. More will be invented. We can not predict which techniques will be used. Not all potential measurements will be possible on returned Mars samples given limited sample mass, nor will all be needed.

<u>Finding:</u> Because of the sensitivity of modern analytical instruments, we must accept that we will not be able to reduce all organic contaminants to non-detectable levels by all analytical techniques.


of fluorescently tagged compounds

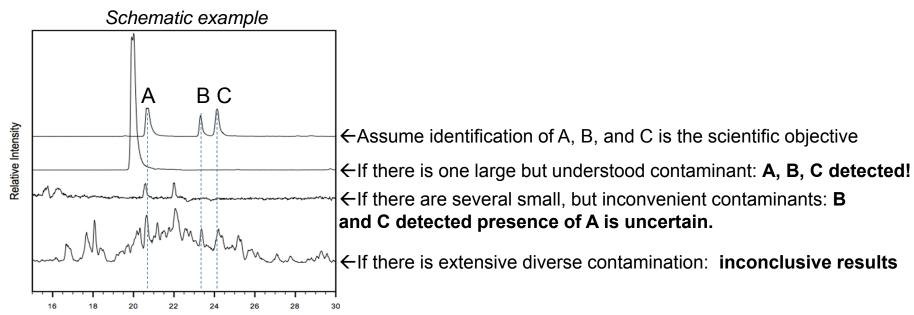
Elements of a Viable Contamination Management Strategy

• Contamination Reduction (#1 Below), Contamination Characterization (#2), and Avoidance of Recontamination (#3-4), are essential elements in the overall effort to achieve minimum acceptable sample quality.

Finding #4: Our ability to interpret data from partially contaminated samples correctly depends on: 1). Minimizing contamination at the start, 2). Characterizing residual contamination, and 3). Minimizing recontamination.

Organic Molecules of Interest

The history of the Mars surface environment is sufficiently obscure that essentially all organic molecules are of potential interest to us. Even those molecules of undoubted terrestrial origin have the potential to interfere with detection of other analytes.


Finding: We need to be concerned at some level with essentially all organic molecules as potential contaminants.

Not All Contaminants are Equal

- Certain contaminants are worse than others, if they directly interfere
 with analytes of interest. But this depends both on what is in
 samples, and what instruments/methods are used.
- Complex contaminant profiles are, in general, much worse than a few well-characterized contaminants.

<u>Finding:</u> Reducing specific contaminants that interfere with compounds of scientific interest is as important as reducing the total contamination burden.

Which Contaminants Matter?

- Modern organic geochemistry:
 - Has evolved to a focus on the significance of specific molecules
- Certain molecules have a clear potential to be more problematic as contaminants than others:
 - Molecules known to exist on Mars and/or in meteorites
 - Molecules that make up life as we know it
- We adopt a two-tiered strategy for ranking contaminants:
 - <u>Tier I</u>. Contaminants of highest concern, that would directly interfere with our ability to assess the presence of extant or extinct life on Mars. Highest level of contaminant control and characterization.
 - <u>Tier I</u>I. All other organic molecules. Lower level of contaminant control.
- Total Organic Carbon:
 - Is less valuable as a measurement for scientific interpretation, but is useful as a summary for implementation purposes (blanket insurance policy)

Tier-I Compounds: Initial List

Contaminant Class	Examples	Potential Measurement Methodology	Measurement Capability	Comments/Justification	References
Nucleic acid	DNA	Fluorescence, Mass spectrometry	1 fmole	DNA is the universal signature for terrestrial life and, therefore, terrestrial contamination	Liu et al., 2013
Spores	dipicolinic acid	Fluorescence	1 pg	Bacterial spores are the most recalcitrant form of terrestrial biota	L. Krásny et al. 2013
Bacterial and fungal cell walls	N- acetylglucosamine	LCMS			Schleifer and Kandler, 1972; Bartnicki-Garcia, 1968
Amino acids	glycine	LCMS	1 pg	Glycine is the most abundant amino acid in nature; abundant in fingerprints	
	alanine	LCMS	1 pg	Alanine is chiral and abundant	
T	palmitic acid	GCMS	1 pg	Most common fatty acid in bacteria and eukarya	
Lipids	squalene	GCMS	1 pg	Lipid common to all life; abundant in fingerprints	
Hydrocarbon biomarkers	pristane	GCMS	1 pg	Common component of petroleum and, therefore, petroleum-derived aerosols	
Martian organics	chlorobenzene	GCMS	<1 pg	Need at least one likely Mars-derived organic compound. Chlorobenzene is a reaction product of aromatic carboxylic acids (e.g., benzoic, phthalic) with perchlorate.	Benner et al, 2000; Biemann et al. 1977; Navarro-Gonzalez et al 2010
, and the second	dichloromethane	GCMS	<1 pg	Identified by both Viking and MSL. May be terrestrial and/or Martian	Biemann, et al, 1977; Navarro- Gonzalez, et al, 2010.
PAHs	naphthalene	GCMS	1 pg	Most abundant and readily detectable PAH. PAHs have been detected in ALH 84001 and DaG 476 and appear to be part of the aromatic inventory of martian igneous and possible biogenic processes. Should be monitored to avoid false positive measurements anic Contamination Study Panel	J. Clemett, et al, 1998

Tier-I Compounds: Final List

Contaminant Class	Examples	Potential Measurement Methodology	Measurement Capability	Comments/Justification	References
Nucleic acid	DNA	Fluorescence, Mass spectrometry	1 fmole	DNA is the universal signature for terrestrial life and, therefore, terrestrial contamination	Liu et al., 2013
Spores	dipicolinic acid	Fluorescence	1 pg	Bacterial spores are the most recalcitrant form of terrestrial biota	L. Krásny et al. 2013
Bacterial and fungal cell walls	N- acetylglucosamine	LCMS	1 pg	Bacterial and fungal cell wall components may be detectable after the cell is destroyed.	Schleifer and Kandler, 1972; Bartnicki-Garcia, 1968
Amino acids	glycine	LCMS	1 pg	Glycine is the most abundant amino acid in nature; abundant in fingerprints	Salazar et al, 2012
	alanine	LCMS	1 pg	Alanine is chiral and abundant	Salazar et al, 2012
T ' ' 1	palmitic acid	GCMS	1 pg	Most common fatty acid in bacteria and eukarya	
Lipids	squalene	GCMS	1 pg	Lipid common to all life; abundant in fingerprints	
Hydrocarbon	priotono	CCMS	1 ng	Common component of petroleum and, therefore, petroleum-derived	
	dicl				197 '; Navarro-
				Most abundant and readily detectable PAH. PAHs have been detected	, 197 ; Navarro- , 20 0.
PAHs	naphthalene	GCMS	1 pg	Most abundant and readily detectable PAH. PAHs have been detected in ALH 84001 and DaG 476 and appear to be part of the aromatic inventory of martian igneous and possible biogenic processes. Should	
PAHs		GCMS	1 pg	in ALH 84001 and DaG 476 and appear to be part of the aromatic	J. Clemett, et al, 19 8
PAHs Nitrogenous compound		GCMS LCMS	1 pg	in ALH 84001 and DaG 476 and appear to be part of the aromatic inventory of martian igneous and possible biogenic processes. Should	J. Clemett, et al, 19 8
Nitrogenous	naphthalene		1 pg	in ALH 84001 and DaG 476 and appear to be part of the aromatic inventory of martian igneous and possible biogenic processes. Should be monitored to avoid false positive measurements	J. Clemett, et al, 19-8 Steele et al 2012
Nitrogenous compound Short-chain	naphthalene	LCMS	1 pg	in ALH 84001 and DaG 476 and appear to be part of the aromatic inventory of martian igneous and possible biogenic processes. Should be monitored to avoid false positive measurements	J. Clemett, et al, 19-8 Steele et al 2012
Nitrogenous compound Short-chain carboxylic acid Polyhydroxy	naphthalene urea Acetic acid	LCMS GCMS	1 pg	in ALH 84001 and DaG 476 and appear to be part of the aromatic inventory of martian igneous and possible biogenic processes. Should be monitored to avoid false positive measurements	J. Clemett, et al, 19-8 Steele et al 2012

Allowable Levels of Contamination

Three possible approaches to deducing limits:

What analyte concentrations do we expect?

Acceptable levels a function of signal/background ratio

What concentrations can we measure?

Cleaning below this limit cannot easily be verified

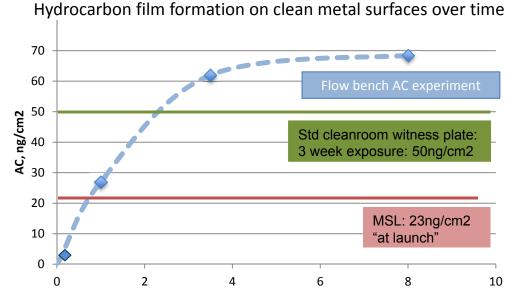
What level of cleanliness can we achieve?

Cleaning below this level may not be possible or practical

Compare to find optimal levels

What analyte concentrations do we expect?

- Martian meteorites
 - Amino acids detected at levels of few ppb (Callahan et al., 2013)
 - Organic carbon in inclusions in igneous minerals has been measured in multiple martian meteorites at levels of 10 to 20 ppm TOC.
- In situ analysis (rovers, landers)
 - Viking GCMS: less than 1 to 10 ppb of any individual complex organic compound present in soils
 - Lab experiments with perchlorate are consistent with up to 6.5 ppm organics in soil at Viking sites (this is disputed by the GCMS P.I. and collaborator)
 - MSL: ~150-300 (ppb) CBZ identified in Cumberland GCMS analyses.
 Only trace CBZ levels detected in Rocknest and blanks (< 10 ppb).
 Reported by Freissinet et al. (2014)
- Conclusion: highly uncertain, but most likely in low ppb range for most kinds of molecules, and TOC in the ppm range.



What level of cleanliness can we achieve?

How clean can a metal surface be?

- It is possible to reduce the quantity of organic molecules on metal surfaces to near-zero, for example, by oxidative heating
- However, clean metal surfaces exposed to air quickly (within minutes/hours) acquire a layer of adventitious carbon (AC), typically ~20 to 100 ng/cm². The phenomenon is well documented in the literature (e.g., Ref. 1-5)
- Rate and amount of formation is highly variable, and depending on precursor concentrations, substrate, configurations, and environmental conditions

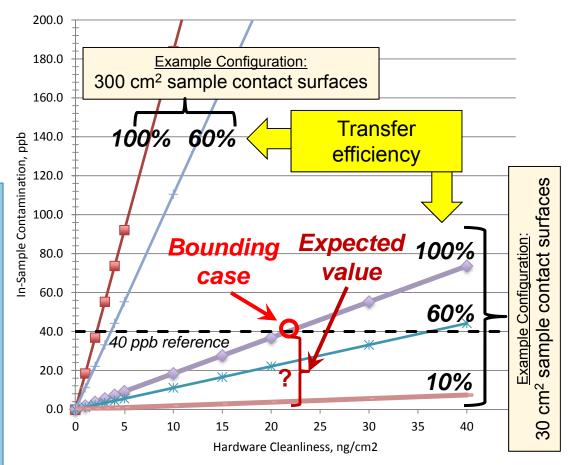
JPL test data suggests an asymptotic time dependence for the formation of AC.

^{1.} Siegbahn K, et al. Nova Acta Regiae Soc. Sci. Ups 1967; IV: 20.

^{3.} T.L. Barr, S. Seal, J. Vac. Sci. Technol. A 13(3) (1995) 1239.

^{4.} P. Swift, Surf. Interface Anal. 4 (1992) 47.

^{5.} H. Piao, N.S. McIntyre, Surf. Interface Anal. 33 (2002) 591.


Translating Cleanliness Levels From Metal Surface Values to Rock/Soil Values

 $ppb = \frac{h/w \ cleanliness \ level(ng/cm^2) \times surface \ area \ of \ the \ sample \ that \ contacts \ h/w(cm^2) \times transfer \ efficiency}{Mass \ of \ sample \ core(g)}$

- Assume sample mass = 16 g
- Contaminant contact transfer efficiency (%) is dependent on sample-hardware configuration.
 - A range of 10% to 100% is presented to illustrate the proportional dependence of in-sample contamination to this parameter.

Finding: In the case of a system with sample contact surfaces of 30 cm², and contaminated with with 20 ng/cm² organic carbon, collected samples would have a theoretical maximum of 40 ppb organic contaminants, and an expected concentration of an unknown amount less than 40 ppb, depending on transfer efficiency.

Generic contaminant transfer models

Proposed Contamination Thresholds: Summary of Key Technical Inputs

What Do We Expect?

Highly variable by compound

Could be ≥ low ppb levels for certain important compounds, lower for trace compounds

TOC > 10-20 ppm, variable by sample

What Can We Measure?

1 ppb general, <0.1 ppb for some targeted methods, ppt levels for some specific analytes

Sensitivity controlled mainly by blanks, not by instrument detection limits

Reasonable lower limit ~1 ppb

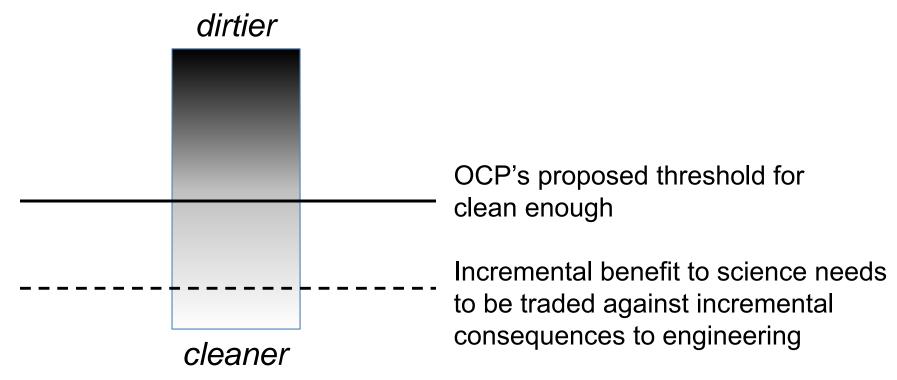
How Clean Can We Achieve?

Variable, depending on compound abundance

ppt levels possible for specific compounds

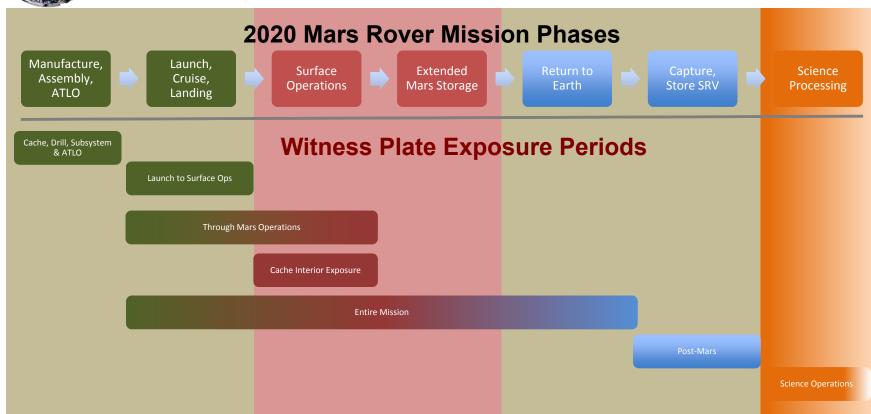
~40 ppb limit from adventitious carbon

Unless aggressive measures to prevent recontamination


OCP's Definition of "How Clean is Clean Enough"?

A 3-tiered definition is proposed:

- 1. For highest-priority organic molecules (Tier 1), set a standard that is most stringent: 1 ppb. In some cases individual molecules may be chosen to represent a compound class. We have the highest confidence that these molecules would be important to interpreting martian geochemistry if they were returned.
- 2. For lower-priority organic molecules (Tier 2), set a more relaxed standard: 10 ppb
- 3. Establish a limit for Total Organic Carbon (TOC) to monitor the sum of all organic molecules: **40 ppb**. This will help to recognize "surprises" in the form of contaminants not being specifically tracked.


Cleaner is Better!

Finding: Since we don't know the concentration of the organic molecules of interest in the martian samples that might be returned by MSR, there is an unquantifiable scientific reward relating to detectability above background that would progressively be increased the cleaner the samples are. The scientific rewards must be balanced against the technical risks.

The Importance of Witness Plate Planning

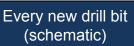
EXAMPLE

Finding: In order to track the introduction of contaminants, the witness plate strategy would need active control over witness plate exposure during discrete mission phases. An example is shown here. The exposure timing is left to the M2020 science team.

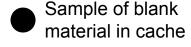
Blanks

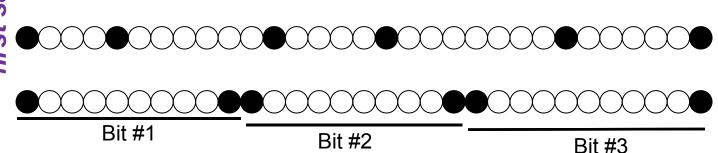
Strategies For **Blanks**

Sequence of sample acquisition


Beginning & End of Sampling

Every 10 Samples


sample



Every new region of interest (schematic)

Rock sample in cache

There are several sampling strategies that affect the minimum number of blank samples needed for mission success, and the both the number of cores collected and the sampling architecture are important factors. More discussion is needed by future committees and the M2020 science team.

Finding: The return of *in situ* drilled procedural blanks are a critical part of the science of this mission.

Last sampl

Archive Facilities Needed

- A <u>systematic approach</u>, and <u>necessary supporting facilities</u>, should be established to preserve and curate inorganic, organic, and Planetary Protection-related samples
 - These archived materials are necessary to compare against compounds that may be found in the samples
- The samples will arise from spacecraft assembly, contamination control, and verification processes prior to flight
- Analyses of these samples may occur during the M-2020 mission, and afterwards as reference samples during post-flight analyses

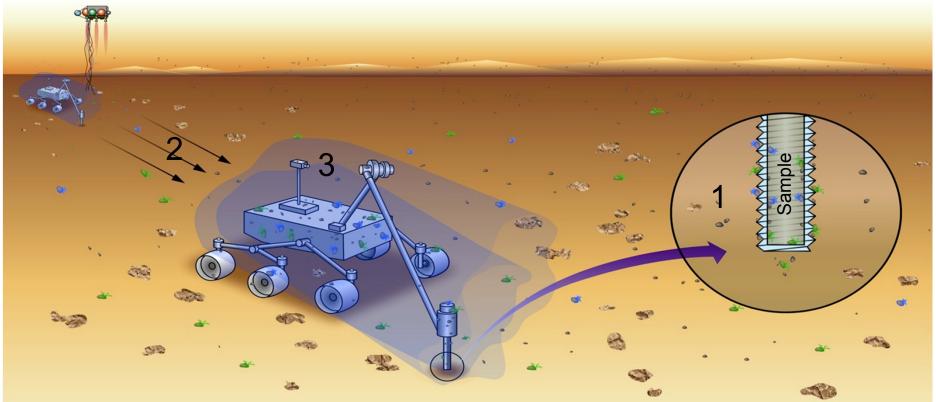
JSC Curation Complex

JPL Planetary Protection Archive

Conclusions

- We expect that returned Mars samples would have detectable amounts of Earth-sourced contaminants. These must be characterized. This characterization is the first step of the science to be performed on returned samples, and should be done to the same quality.
- Organic analysis of samples contaminated to varying degrees is a standard practice. It is possible to measure molecules of interest in the presence of contamination. These strategies may be applied to returned martian samples.
- 3. OCP has proposed an estimate of the minimum acceptable amount/character of organic contamination on returned martian samples. However, cleaner would be better!
- 4. M-2020 should carry out systematic planning in the areas of witness plates, archive facilities, and blanks/standards.

BACKUP

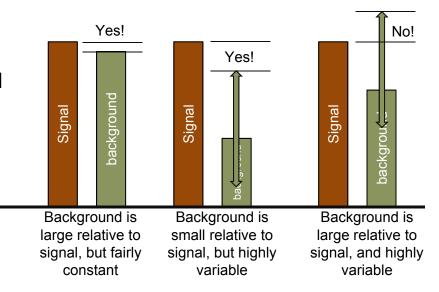


Instruments and Techniques

		USED in LIGHT YELLOW DIE USED in LIGHT BLUE			
Category 1: Non-Destruction					
Analytical Method	Objectives Addressed	Sample Requirements and Degradation	Performance Characteristics and Detection Limits	Method Notes (Dependencies, Limitations, Assumptions, etc.)	References ⁻
Deep UV Raman/Fluorescence	1A, 2C	Non-destructive. No surface preperation	Raman:	Performance can be enhanced with longer integration times.	[1] Beegle, et. al., Lunar and Planetary Institute Science Conference Abstracts 45:
Spectroscopy		required.	Aromatics <10-4 w/w (<100 ppm) Aliphatics <10-4 w/w (<100 ppm)	Sensitivities depend on organic species and are matrix dependent.	2835.[2] Ghosh, et. al, Applied Spectroscopy 66 (9): 1013–21. [3] Tuschel, David D, Aleksandr V Mikhonin, Brian E Lemoff, and Sanford A Asher. 2010. "Deep Ultraviolet
			50 um/spot at 1 to 10s per spot Fluorescence:	Surface roughness can be handled based on optical system with hit against sensitivites or integration times.	Resonance Raman Excitation Enables Explosives Detection." Applied Spectroscopy 64 (4), 425–32.[4] Bhartia, et.al., International Society for Optics and Photonics: 83581A–
			Aromatics <10-6 w/w (<ppm)< td=""><td></td><td>83581A-9.[5] Johnson, et.al, Astrobiology 11 (2): 151-56. [6] Bhartia et, al,Applied</td></ppm)<>		83581A-9.[5] Johnson, et.al, Astrobiology 11 (2): 151-56. [6] Bhartia et, al,Applied
			Single cell sensitivity (~2 pg carbon) [6] 50 um/spot at 1s per spot	Quantification is difficult	and Environmental Microbiology, 2010, 76(21), p 7231-7237)
Confocal Raman Spectroscopy at up to 360nm micron spatial	1A, 2C	Non-destructive. Benefits from thin section, polished surface prep. Or can be fresh	Lower limit from ~0.1 to 1 wt. % per spot analysis (30s) [1] with absolute detection limit correlated to number of analyzed spots.	Detection limits strongly dependent on laser wavelength, target species. 532 nm excitation provides non-quantitative detection of hematite, beta-carotene. Raman spectra are subject to organic and mineral background fluorescence, which	[1] Wang, et. al.Journal of Geophysical Research, 108(E1), 5005 [2] Ref TBD
resolution		fracture surface with contour following	<50 ppm graphic carbon [1]	can be mitigated by time-gating.	
		confocal optics.	Single cell detection sensitivity. [2]	Careful consideration for laser wavelength and power to avoid sample damage. Quantification is difficult	
FT-IR Spectroscopy	1A, 2C	Non-destructive. Benefits from thin section and polished surface prep, but can be used	Lower limit ~5 ppm for specific targets 10 um/spot >200 min per spot [1]	Not sensitive to graphitic carbon. Samples are ideally crushed and made into KBR windows [2]	[1] Ref TBD [2] General approach for FTIR in literature. [2a] Bhaskar, Nature and Science, 2009;7(5), 45-51 (Dergoan H5 Chondrite) [2b] Matrajt, et. al., Astronomy &
		on unprepared surfaces. Ideally KBR pellets	s	Quantification is difficult	Astrophysics, 416(3), 2003, 983-990 (Tagish Lake Meteroirte) [3] Anderson, et. al.,
IR Reflectance Spectroscopy	1A, 2C	are made of samples. Non-destructive.	Lower limit typically ~0.5-1 wt. % per spot analysis, with absolute detection limit	Sensitive to only specific organic species. Ideal for rapid mineral context.	Review of Scientific Instruments, 76, 034101 (2005) [1] Not used actively for organics detection
,	,		correlated to number of analyzed spots.	Quantification is difficult	(-)
Category 2: Slightly Des					
Analytical Method	Objectives Addressed	Sample Requirements and Degradation	Performance Characteristics and Detection Limits	Method Notes (Dependencies, Limitations, Assumptions, etc.)	References
Laser desorption-MS	1A, 2A, 2C	Vacuum exposure, polished thin section or fresh fracture surface, laser beam damage	Semi-quantitative, wide range of sensitivies including sub-fmol.	Specific to PAH or other large conjugated systems. No chromatography, so no distinction of isomers or enantiomers.	
Time-of-Flight Secondary Ion	1A, 2A, 2B, 2C	Vacuum exposure, polished thin section or	Non quantitative, low ppb sensitivity. Very sensitive to surface contamination. Maps	Provides context of isotopes. C, N, S, D/H	
Mass Spectroscopy (ToF-SIMS)		fresh fracture surface, ionization damage	organic and inorganic species. For isotopes: ppt sensitivity, 50nm spatial resolution 1 5 per mil isotopic resolution dependent on instrument and isotope.	•	
LAL Assay	2F	Wipe, swap, extraction. Sample exposed to		Gram-negative microbes only. Insensitive to gram-positive microbes.	
ATP luminometry	2F	water/solvent, wipe/swab detritus. Wipe, swap, extraction. Sample exposed to	Proportional to microbial metabolic activity	Insensitive to spores	
Microbial plating assay	DE.	water/solvent, wipe/swab detritus.	~0.01% maximum sensitivity to abundance of microbial flora		
	21	water/solvent, wipe/swab detritus.	0.01% maximum sensitivity to abundance of microbial nota		
Category 3: Destructive Analytical Method	of Whole Sample	Sample Requirements and Degradation	Performance Characteristics and Detection Limits	Method Notes (Dependencies, Limitations, Assumptions, etc.)	References
	Objectives Addressed				Relations
Total inorganic carbon and total organic carbon	1B, weight % abundance of organic carbon	Both non acid and acid digestion used to separate inorganic from organic	~1-10 ppb in 1 ml of gas or about 1E-11 to 1E-12 g of CO2.	Splitting to NPD detectors, nitrogen may be accessible.	
Total inorganic carbon and total organic carbon	1B, weight % abundance of organic carbon	Both non acid and acid digestion used to separate inorganic from organic	~1-10 ppb in 1 ml of gas or about 1E-11 to 1E-12 g of CO2 (??)	Probably similar detection limit to above (methanizer w/ flame ionization), depending upon MS capability. Back calculating the sensitivity dependent upon the background, detector noise, ikin of lough to say in general. Evolved compounds othe than CO2 can be detected. Nitrogen can be done at the same time. Need nitrogen perhaps even D/H.	
Microfluidic Capillary	2A, 2D, 2F		1 to 10 ppb following extraction, derivatization	Process blanks?	
GC/MS FAME using	2A, 2E, 2F		Detection down to below ~ 1 ng per compound	Detection limits are potentially lower if GC does not have significant non-specific absorption, or other issues. Lower detection	
cyanopropyl stationary phase GC/MS using high temperature				limits possible by radio GC or LC using radiolabeled derivatizing agent. Probably similar detection limit to above (methanizer w/ flame ionization), depending upon MS capability. Back calculating	
GC column, and ammonia chemical ionization				the sensitivity dependent upon the background, detector noise, kind of tough to say in general. Evolved compounds other than CO2	
Tunable Laser Spectroscopy	2B	Destructive via pyrolysis. Typical amount of			
Pyrolysis-MS, Pyrolysis-GC-MS		sample required per analysis: x mg Destructive via pyrolysis. Typical amount of		Does not indicate compounds present, only their fragments.	
Liquid extraction and	2A, 2D, 2E, 2F	sample required per analysis: x mg Extraction, destructive	Dataction limits are compound enecific, but as low as ~1 pmol; more like 100pmol for	Can use library mass spectra to suggest compound class. QqQ-MS can target specific compounds, ultrahigh resolution MS	
derivatization followed by GC- MS		,	many hydrocarbons. Nominal mass accuracy in typical system.	can deduce molecular formulae. Can target chirality (e.g. amino acids, amines, etc). Requires authentic standard for	
LC-MS	2A, 2D, 2E, 2F	Sample crushing followed by destructive solvent extraction, possibly hydrolysis, desalting, and more	Detection limits are compound-specific, but typically ~1 fmol 5 ppm to sub ppm mass accuracy possible	Sign. Scan target specific compounds, ultrahigh resolution MS (e.g. ToT-MS), ET-MS) can deduce molecular formation MS (e.g. ToT-MS). The deduce molecular formation modes (ESI, APC), APC) Lean target different functional MS. ToT-MS (e.g. amino acids), nano-LC can improve sensitivity 10-100 fold. Can couple mass and optional (fluorsecence, absorbance) stelections. Requires authentic standard for definitive identification. Cannot use library spectra.	
high resolution MS (infusion or DART)		Sample crushing followed by destructive solvent extraction, possibly hydrolysis. Minimal other workup regired	Semi-quantitative, wide range of sensitivies including sub-fmol, sub ppm mass accuracy possible	Ultrahigh resolution MS (e.g. ToF-MS, FT-MS) can deduce molecular formulae. Different ionization modes (ESI, APcI, APPI can target different functionalities. Targets M+1 parent ion. DART required minimal preparation and has -1 mm spot size. No chromatography, so no distinction of isomers or enantiomers.	
liquid ICPMS		destructive; sample oxidized to sulfate	5 nmol dissolved sulfate at 0.15‰ precision;	targets any sulfur in solution as sulfate; can be used for organic compound-class analysis	Paris G., Sessions A. L., Subhas A. V. and Adkins J. F. (2013) MC-ICP-MS measurement of δ34S and Δ33S in small amounts of dissolved sulfate. Chemical
combustion EA-IRMS		destructive	25 nmol N, 41 nmol C, both at ±1.0‰precision;	relatively low sensitivity but high precision (0.1 permil)	Geology 345, 1–12. Polissar P. J., Fulton J. M., Junium C. K., Turich C. C. and Freeman K. H. (2009) Measurement of 13C and 15N Isotopic Composition on Nanomolar Quantities of C and
pyrolysis EA-IRMS		destructive	1 ug organic H or O	precision of 2-4 permil for H; O??	N. Analytical Chemistry 81, 755–763.
Tunable Laser Spectroscopy	2B	Destructive via pyrolysis. Typical amount of	ray argumentor o	production 2 is position (1), OTT	
GC-combustion-IRMS	2B	sample required per analysis: x mg Extraction, destructive	130 pmol CH4 at 0.1%-precision;	Requires excellent separation of compounds and prior identification of structure.	Merritt D., Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of
					atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry. Journal of Geophysical Research 100, 1317–1326.
GC-pyrolysis-IRMS	2B	Extraction, destructive	25 nmol H as heptadecanoic acid at 2.7% precision	compound must be GC-amenable	; Hilkert A., Douthitt C., Schluter H. and Brand W. A. (1999) Isotope ratio monitoring GCMS of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 13, 1226–1230.
GC-ICPMS	2B	Extraction, destructive	20 pmol S as dimethylsulfide, at 0.3‰ precision;	compound must be GC-amenable	Amrani A., Sessions A. L. and Adkins J. F. (2009) Compound-Specific 534S Analysis of Volatile Organics by Coupled GC/Multicollector-ICPMS. Analytical Chemistry 81,
PCR	2F				9027–9034.
PCR FISH Fluorescence imaging of fluorescently tagged	2F			only useful in very specific conditions for terrestrial contaminants	
compounds ELISA	2F			only useful in very specific conditions for terrestrial contaminants	
			r tellitilitary results for platifili	only useful in very specific conditions for terrestrial contaminants	

Contamination Transport

There are at least three pathways by which contaminants can be transported into samples:


- 1. Direct contact microbial and molecular contaminants are transferred from the hardware surfaces to samples by direct contact.
- 2. Particle transport Microbes and molecular contaminant-containing particles are dislodged from spacecraft hardware surfaces by wind or by mechanical forces and are then carried by wind to the sampling ground or into the sample tube.
- 3. VOC transport outgassed volatile organic compounds from nonmetallic parts will diffuse or be carried by wind to condense on the sampling ground, sample contacting hardware, and samples.

Levels of Signal and Background for a Successful Measurement

- A measurement involves subtracting the "background" signal from the total measurement. Two significant factors:
 - Average size of background versus signal
 - Uncertainty or variability in the background around this mean
 - Could be high either because it was not measured well, or because it is inherently variable
- If the background signal is large but exceptionally stable, then we can confidently resolve signals that are orders of magnitude smaller.

Can We Confidently Detect A Signal Above Background Contamination?

- If a background is highly variable, then it needs to be much smaller than the analyte concentration.
- Contamination levels are likely to be somewhat predictable
 - e.g., if the sample tubes are prepared together in the same way, they are likely to have similar levels of the same contaminants

Finding #12: In addition to knowing the identity and concentration of organic contaminants, it is important to know their variability as a function of multiple measurements (from sample to sample or blank to blank) as well.