

NAS Boards on Physics & Astronomy and Space Studies Joint Committee on Astronomy & Astrophysics November 4-5, 2013

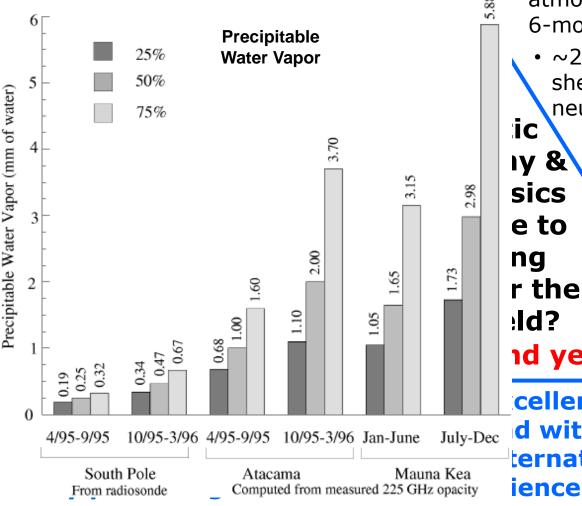
NSF Antarctic Astronomy and Astrophysics

Current Projects and Recent Results

Vladimir Papitashvili, Program Director Antarctic Astrophysics & Geospace Sciences NSF/GEO/Division of Polar Programs http://www.usap.gov

Why we take Astronomy & **Astrophysics to Antarctica?**

> Can **Antarctic** Astronomy & **Astrophysics** contribute to advancing science for the entire field? Yes, yes, and yes!


Recent results from Antarctic Astronomy & Astrophysics research are excellent and very promising

Excellent partnership within NSF and with other U.S. agencies; and international collaboration via science and the Antarctic Treaty

Antarctic Astronomy & Astrophysics Antarette Program

South Pole & East Antarctic Plateau:

- High elevation, very dry and cold atmosphere with almost no winds over 6-mo long austral winter
 - ~2.5-km thick and transparent ice sheet suitable for a cubic-km neutrino detector

ic U.S. Antarctic Program 1y & infrastructure & logistics sics are readily available e to

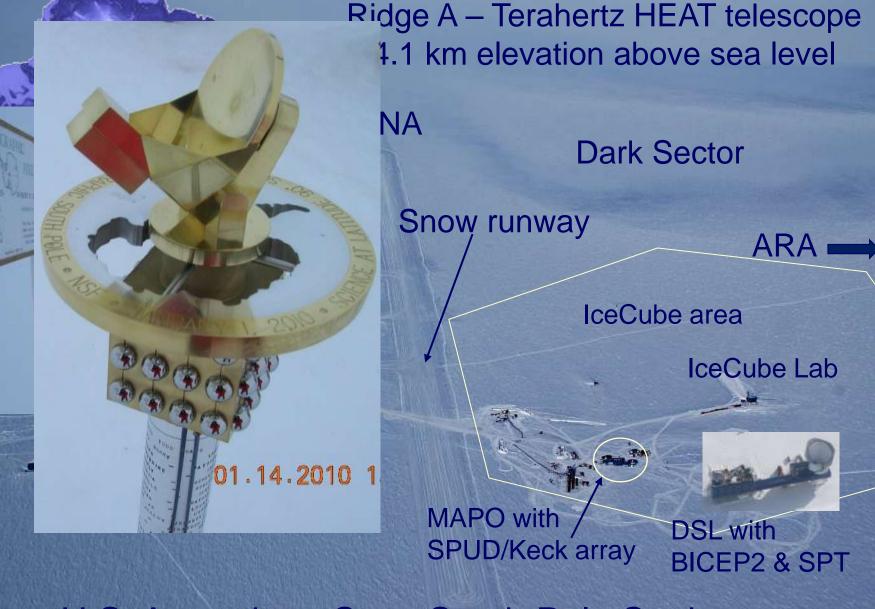
:ld? id yes!

cellent partnership within NSF d with other U.S. agencies; and ternational collaboration via ience and the Antarctic Treaty

Astronomy at South Pole

Historical Perspective

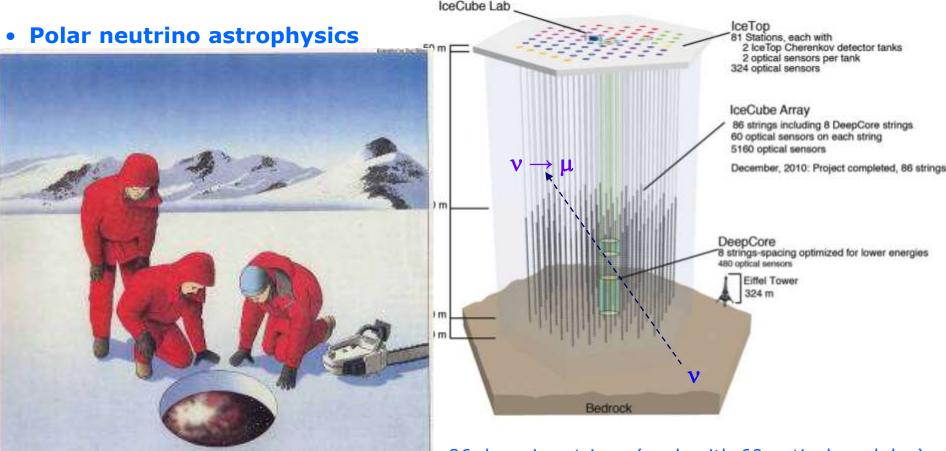
- Paul Siple Astronomy Hut, 1956-1957
- Martin Pomerantz deployed cosmic ray neutron monitor, 1964
- ... tried 5" optical telescope with Arny Wyller in 1968-1969
- ... 1st astronomy project funded: 6" optical telescope, 1978
- ... deployed Polar Solar Observatory with Eric Fossat, 1980
- ... studied helioseismology at "Pomerantz Land", 1981-1984
- ... with Mark Dragovan, Tony Stark, and Bob Pernic in 1987: Debut of Polar Cosmology: 1-m parabolic telescope, looking vertically upward, with two bolometers at 0.3 K
- Center for Astrophysical Research in Antarctica (1990-2001)


 More that a dozen astronomy & astrophysics projects were
 deployed and tried at South Pole with variable success
- Post-CARA: Mostly CMB-focused research, neutrino astrophysics

1916 - 2008

Martin was a scientist who opened South Pole to astronomers... here is what he wrote in his memoir "Astronomy on Ice" (2004):

"My efforts over many years, from 1970 to 1987 to get the ball rolling throughout the astronomical community had finally succeeded."



U.S. Amundsen-Scott South Pole Station 2.9 km elevation above sea level

IceCube Neutrino Observatory

jointly supported by NSF's GEO/POLAR and MPS/PHYSICS

New window on the Universe is now open!

86 deep-ice strings (each with 60 optical modules) detecting Cherenkov's emission from muons produced by neutrino interactions

IceTop array (4 optical modules over 80 strings)
 vetoes IceCube muons produced in cosmic ray air
 showers
 http://icecube.wisc.edu

ternational weekly journal of science

Home News & Comment Research Careers & Jobs Current Issue Archive Audio & V

Volume 484 Archive

Issue 7394

Letters

ARTICLE PREVIEW

view full access options >

NATURE | LETTER

previous article next

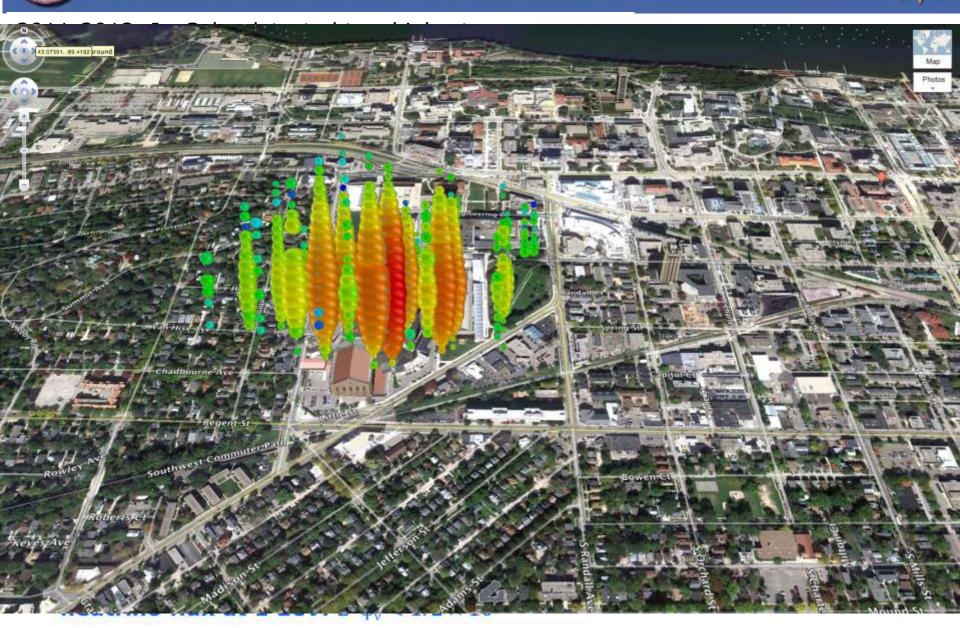
An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts

IceCube Collaboration

Affiliations | Contributions | Corresponding authors

Nature 484, 351-354 (19 April 2012) | doi:10.1038/nature11068 Received 06 January 2012 | Accepted 08 March 2012 | Published online 18 April 2012

Very energetic astrophysical events are required to accelerate cosmic rays to above 1018 electronvolts. GRBs (v-ray bursts) have been proposed as possible candidate sources 1, 2, 3. In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and yrays4. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux5, 6, 7. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions^{4, 8, 9, 10}. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 1018 electronvolts or that the efficiency of


It was found that an upper limit on the flux of energetic neutrinos associated with Gamma-Ray Bursts is at least a factor of 3.7 below the model predictions

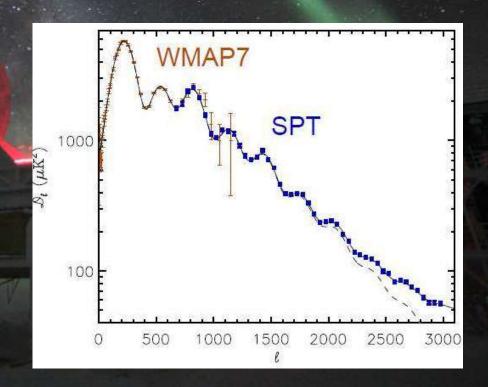
South Pole Telescope (10-m submm) Arteretic Program Foundation

(jointly supported by NSF's POLAR, PHYSICS, and ASTRONOMY)

2001 Astrophysics Decadal Survey:

SPT as a moderate initiative <\$50M

NSF Funded: August 2002


First light: Feb 17, 2007

Right on the budget (~\$25M) and schedule!

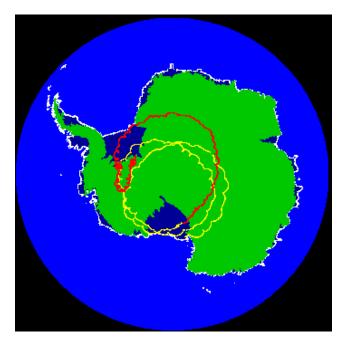
SPT discovered over 500 distant galaxy clusters via Sunayev-Zeldovich Effect and reached multipoles up to 3,000

NSF Press Release (May 2012):

South Pole Telescope Provides New Insights Into Dark Energy and Neutrinos

South Pole Telescope: http://pole.uchicago.edu Selected for a Viewpoint in Physics Detection of B-Mode Polarization in the Cosmic Microwave Background **SPTpol** survey detected with Data from the South Pole Telescope D. Hanson, S. Hoover, A. Crites, A. P. A. R. Ade, K. A. Aird, J. E. Austermann, J. A. Beall, A. N. Bender, J. A. D. Bender, D. Hanson, D. A. D. Bender, J. A. D. Bender, D. A. D. Bender, D. Bender **B**-mode signal from B. A. Benson, 2.3 L. E. Bleem, 2.9 J. J. Bock, 30,11 J. E. Carlstrom, 23,49,12 C. L. Chang, 12,2,3 H. C. Chiang, 2,13 H-M. Cho, 6,7 A. Conley, T. M. Crawford, J. G. Haan, M. A. Dobbs, W. Everett, J. Gallicchio, J. Gao, E. M. George, M. Conley, T. M. Crawford, J. Gao, E. M. George, M. Conley, J. Gallicchio, J. Gao, E. M. George, M. G. Conley, J. Gallicchio, J. Gao, E. M. George, M. G. Conley, J. Gallicchio, J. Gao, M. G. George, M. G. Conley, J. Gallicchio, J. Gallichio, J. Gallicchio, J. Gallichio, J. Gallicchio, J. Gal N. W. Halverson, 7.15 N. Harrington, 14 J. W. Henning, 7 G. C. Hilton, 8 G. P. Holder, W. L. Holzapfel, 14 J. D. Hrubes, 8 gravitational lensing! N. Huang, 14 J. Hubmayr, K.D. Irwin, R. Keisler, 29 L. Knox, 16 A.T. Lee, 14,17 E. Leitch, 24 D. Li, R. C. Liang, 24 D. Luong-Van,² G. Marsden, ³⁸ J. J. McMahon, ¹⁹ J. Mehl, ^{2,12} S. S. Meyer, ^{2,9,3,4} L. Mocanu, ^{2,4} T. E. Montroy, ²⁰ T. Natoli, ^{2,9} J. P. Nibarger, N. Novosad, S. Padin, O. C. Pryke, C. L. Reichardt, J. E. Ruhl, B. R. Saliwanchik, J. J. T. Sayre, M. K. K. Schaffer, 2.23 B. Schulz, 10.24 G. Smecher, A. A. Stark, 25 K. T. Story, 2.9 C. Tucker, 5 K. Vanderlinde, 1.20.27 J. D. Vieira, 10 M. P. Viero, 10 G. Wang, 12 V. Yefremenko, 12.21 O. Zahn, 28 and M. Zemcov 10.11 (SPTpol Collaboration)

Since 2008, SPT team has published: 39 peer-reviewed scientific papers (including two in *Nature* & one public data release), 6"project overviews" and 22 technical papers


Long-Duration Ballooning

from McMurdo, Antarctica

- 1988 NASA/NSF MoA: one LDB launch every other year beginning in 1990
 - 22 payloads flown in 1990 2002; ~1.7/year
- 2003 New NASA/NSF MoA: two LDB launches per year in 2003 2009
 - 12 payloads flown in 2003 − 2008; **~2.0/year**
- 2009 Third NASA/NSF MoA: up to three LDB launches per year in 2009 2013
 - 15 payloads flown so far; ~3.0/year

Because of the Government's shutdown no science payloads will be flown from McMurdo during austral summer 2013-2014

Super Pressure Balloon (SPB) flight tracks in 2009/10

Total 49 LDB/SPB payloads over 23 years

Why we take Astronomy & **Astrophysics to Antarctica?**

> Can **Antarctic** Astronomy & **Astrophysics** contribute to advancing science for the entire field?

Yes, yes, and yes!

We have excellent partnerships & international collaboration!

Upon learning on our projects, welcome to join us in Antarctica!

Recent results from Antarctic Astronomy & Astrophysics research are excellent and very promising

Excellent partnership within NSF and with other U.S. agencies; and international collaboration via science and the Antarctic Treaty

