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Many Mysteries about the Universe

A faint afterglow of the sky tell that came into being 13.8 billon years ago. But got the story of the Big Bang nailed yet|

It IS |nV|S|bIe yet mot|ons of gaIaX|es suggests |ts eX|stenoe We “found” ark matter from Iook|ng at the sky '
| ’ W|II we understand |t by Iook|ng at the sky’? o

! How wiII it aII end?"

Galaxres and supernova in combination with the faint afterglow of the sky told a story of en|gmat|o Dark Energy
| ~— aforce that will determine Universe'sfate. |

1E Earth a speoial plaoe? Is our solar system normal?;

{ Will we find other “earths” that make our own not so special? Is our particular solar system special? |

h t ae lsu e ssivIoIes

There isn t enough t|me for these very masswe bIaokhoIes to form |f they form through normaI ohannels how d|d they come about?




Many Mysteries about the Universe

What is Dark Matter?]

It IS |nV|S|bIe yet mot|ons of gaIaxres suggests |ts eX|stenoe We “found” dark matter from Iooklng at the sky
| W|II we understand |t by Iooklng at the sky’? o

1 How wiII it aII end?"

Galaxres and supernova Ig oomblnatlon wrth the falnt afterglow of the sky toId a story of enlgmatlo Dark Energy
| . —a foroe that WI|| determlne Unlverses fate ]

We will concentrate today on the above three questions
(though what | propose here will potentially work for the other questions as well)



Here Is what we usually do right now
Disti.bution matteri the Unrse PR |Compressed summary statistics
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Why COMPress att the observed Uh|verse INto 40 humbers’?
ts there more |htormat|0h that we can gteam'? ,j
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Why COMPress att the observed Uh|verse INto 40 humbers?
ts there more |htormat|0h that we can gteam'? ;

Yes, there iIs more information!

IF we can compare the observed Universe against Theory
at the field level
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Theory (Simulated Universe) VS Observed Universe

Credit: SDSS Collaboration

Dark Matter Gas Temperature
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redshift : 0.99 stellar mass : 47.9 billion solar masses

Time since the Big Bang: 6.1 billion years
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Simulation based inference: Hard...

 Universe is big. And the range of scales to model is vast.
 We want to simulate many Universes in a large parameter space
 And we like to compare many theoretical universes against the Observed one

e And we need to do It fast.
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Deep Learning to rescue?
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Mastering the Game of Go without
Human Knowledge
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Five human joseki (common corner sequences)
discovered by AlphaZero during training.
Silver, Schrittwieser, Simonyan Nature 2016



Deep learning and Protein Folding

The ability to predict a protein’s shape is useful to
scientists because it is fundamental to understanding its
role within the body, as well as diagnosing and treating
diseases believed to be caused by misfolded proteins,
such as , ,and

The problem is as follows: people are given sequences of
amino acid, and they are to predict the shape of the
protein that were not published before.

Out of 43 proteins, the second best competitor got 3 right;
while the best team from Google Deepmind uses deep
learning got 25 out of 43 right.

CASP13, 2019

An animation of the gradient descent method
predicting a structure for CASP13 target T1008

o



https://www.ncbi.nlm.nih.gov/pubmed/25230234
https://www.nature.com/news/misfolded-protein-transmits-parkinson-s-from-cell-to-cell-1.11838
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5137970/

Credit : Anima Anandkumar (Caltech) q\ ::NLé? : TRL(J) PE




Machine learning In iImage recognition
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ResNet's object detection result on Common Object in Context

knife : 0.997

Kaimin He (Facebook Research, now Microsoft Research Asia) et al. 2016



Deep Learning Accelerated Simulation Based Inference: Attack Plans

1/Create large scale theory predictions of the Universe
with state of the art multi-scale physical models and deep learning

2/ Create full scale predictions of the Universe with observational and hardware-
dependent systematics.

3/ Compare large scale predictions of the Universe and observations with high
fidelity
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Deep Learning Accelerated Simulation Based Inference: Attack Plans (1)

' Create large scale theory predictions of the Universe
' with state of the art multi-scale physical models and deep learning



Deep Learning Accelerated Simulation Based Inference: Attack Plans (1)

. Create large scale theory predictions of the Universe
' with state of the art multi-scale physical models and deep learning

* Can deep learning help build a fast N-body simulator?

* Can deep learning help build a fast hydrodynamic simulator of galaxies?
o Galaxy number density
o Stellar masses of each galaxies
* HI content of the Universe

o Star formation rate of each galaxies



Deep Learning Accelerated Simulation Based Inference: Attack Plans (1)

' Create large scale theory predictions of the Universe
~ with state of the art multi-scale physical models and deep learning

 Can deep learning help build a fast N-body simulator?



Deep Learning to simulate the Universe:
SO what are we going to do first”

Dark Matter Gas Temperature

redshift - 0.99 stellar mass - 47.9 billion solar masses
Time since the Big Bang: 6.1 billion years




Using Machine Learning to simulate the Universe:
The Setup of the Experiment

Inputs Machine Learning model Outputs

Analytical approximation of the
non-linear evolution of the Universe

CAA Fall Meeting 2021



Using Machine Learning to simulate the Universe:
The Setup of the Experiment

Inputs Machine Learning model Outputs

Positions and velocities of all particles,
evolved under gravity after X years

CAA Fall Meeting 2021



Using Machine Learning to simulate the Universe:
The Setup of the Experiment

Inputs Machine Learning model Outputs

Instead of using numerical simulations of newton’s laws for all the particles,
with smart algorithms to run really fast.
We will attempt to use machine learning to
“learn”/ interpolate from a large number of pre-run simulations.

CAA Fall Meeting 2021



From Analytical approximated fields
to numerically simulated fields

Inputs Machine Learning model Qutputs

g g g g

?:;% % x 9
s 3 3 g 3 38 = 0
10

20

Analytical

approximation 60 Predictions

0 20 40 60

0 20 40

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos,
Proceedings of National Academy of Sciences 2019

Shirley Ho CAA Fall Meeting 2021



From Analytical approximated fields
to numerically simulated fields: Training

Training

Analytical Approximat

Numerical Sim
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Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos, PNAS 2019



From Analytical approximated fields

[0

numerically simulated fields: Model

Machine learning Model
Slight variant to Residual NN

Analytical Approximation

Numerical Sim
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Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos, PNAS 2019



From Analytical approximated fields
to numerically simulated tields: Final setup

Machine learning Model
Inpu’[ Slight variant to Residual NN Prediction

Analytical

Predictions
0 20 40 60

approximation

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos, PNAS 2019



Using Machine learning to simulate the Universe;:
How well do we do 7

Error

5.00

4.29

We will show the errors in displacement field, predicted by
Our benchmark model (2LPT), and our ML model

Displacement field is the difference

between current position to the initial position of the particles

3.57

2.86

2.14

1.43

I0.714
0.00

Mpc/h

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos, PNAS 2019
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Benchmark (2LPT)
prediction errors

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos, PNAS 2019

Using Machine learning to simulate the Universe
How well do we do 7

Ersrgr
4.29
3.57
2.86
2.14
1.43
0.714
0.00

Mpc/h

Shirley Ho
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Using Machine learning to simulate the Universe: How well do we do?

10% 5
Checking the following: ‘
1) the average power-spectrum of 1000
SimS, aﬂd 10° -
2) ratios to the true power-spectrum S ) 1 [dO. .
(T(K)), and | s = - [ Esams00
3) The cross-correlation coefficient 102 -
1000 simulations predicted in 30 sec.
1 training simulation takes 1.8 millionsec | ———— ' -
50.75- =
Pred(k) = =
T(k) =2 0.50
( ) Ptl*ue(k)
101
Ppredxtl’tle(k) . ~
T(k’) - RS ~
Porod (k) Pirye (K — 10-3 J -
V Borea (k) Prue k) 10 Large scales Small scales

IR RS % o A

ST k(hMpc) & S

Results from the density field
Distance (1 Mpc/h = 4.5 X 108 light years) (@ Results from the density fi

Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos, PNAS 2019



Using Machine learning to simulate the Universe: How well do we do?

10 5
Checking the following: :
1) the average power-spectrum of 1000

sims, and 103 5
2) ratios to the true power-spectrum < C
(T(k)), ana

3) The cross-correlation coefficients. 102{ —— Bench mark model

] —— Prediction with Machine Learning
1000 simulations predicted in 30 sec. | — Truth/FastPM sims

1 training simulation takes 1.8 million sec
~60 million times faster
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(a) Results from the density field

Shirley Ho Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos, PNAS 2019



Making simulations that are different from our training set:
—xtrapolating instead of interpolating”

Prediction
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Analytical approximate

maps of Different cosmology
Dark matter density parameter = [0.1 - 0.5]

Shirley Ho Siyu He, Yin Li, Yu Fe Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos, PNAS 2019



Making simulations that are different from our training set:
—xtrapolating instead of interpolating”?

INnput Prediction
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Analytical approximate

maps of Different cosmology
Dark matter density parameter = [0.1 - 0.5]

Shirley Ho Siyu He, Yin Li, Yu Fe Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos, PNAS 2019



Making simulations that are different from our training set:
—xtrapolating instead of interpolating”

density

l()‘-5
Checking the following: |
1)  the average power-spectrum of 1000 10
sims, and = |
2) ratios to the true power-spectrum (T(k)), 102 prB(k) — 1 / S 54(k)o5 (k)
and g V 4
3) The cross-correlation coefficients. o]
1.00 -
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Solid Line: Simulation /Truth . & = - =
Long Dashed line: Prediction using ML T o7 7 k(h/Mpc) ) R

Short Dashed Line: Analytical approximation (2LPT)
(b)Two point analysis for density field

Siyu He, Yin Li, Yu Fe Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos, PNAS 2019



Making simulations that are different from our training set:
—xtrapolating instead of interpolating? YES!

density

10 5

Checking the following:

1)  the average power-spectrum of 1000 sims,
and

2)  ratios to the true power-spectrum (T(k)),
and

3) The cross-correlation coefficients.

107 5
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Short Dashed Line: Benchmark Model (2LPT)
(b)Two point analysis for density field

Shirley Ho Siyu He, Yin Li, Yu Fe Siyu He, Yin Li, Yu Feng, S.H., Siamak Ravanbaksh, Barnabas Poczos, PNAS 2019



What happened?

The model generalized significantly outside the training set!
We did not explicitly use any transter learning or meta-learning
Maybe there is overlap in information somewhere between these universes?

Maybe the Universe is tairly simple, so that the generalization and extrapolation by
the network is ‘easy’”

Can we explain/interpret this generalization”

CAA Fall meeting 2021



My possible climb to fame?
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My possible climb to fame?

* Understanding Machine Learning?
 Compressing the learned model into physical laws

» See work led by Miles Cranmer (Princeton), NeurlPS 2020
* Discover laws of nature?

* See work led by Pablo Lemos (UCL/Sussex) & Miles
Cranmer (Princeton), submitted to PNAS 2021
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