

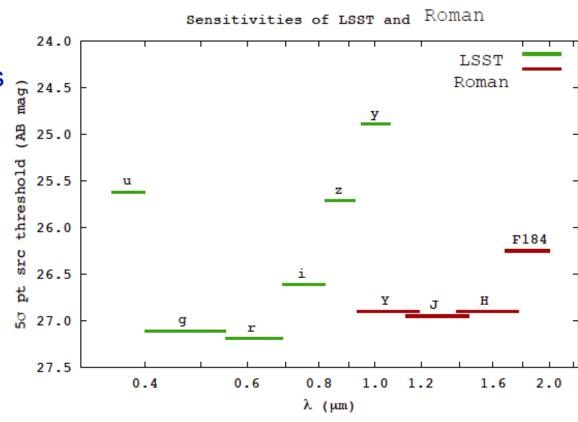
Science Requirements vs observing time trades

ROMAN

SPACE TELESCOPE

Core Community Surveys – Observing time trades

- Relationship between science requirements and observation time for each survey is complex because there are multiple ways to adjust observation time for each survey
- In what follows, we'll list the survey parameters that affect observing time, and describe the impact of changing them


High Latitude Wide Area Survey - Imaging

Reduction in Survey Area

- Reduces statistical power of survey
- Reduces sensitivity to largest angular scales
- Reduces margin in budget that could be available to devote to other terms

Reduction in Survey Depth

- Reduces statistical power of survey by reducing the number of galaxies
 - Loss is preferentially at higher redshifts
- Reduced sensitivity on small angular scales
- Reduced precision of PSF characterization affects entire sample
- Several planned internal calibrations may be degraded

High Latitude Wide Area Survey - Imaging

Reduce number of dithers

- Reduced sampling PSF (Roman pixels are undersampled at 0.11 arcsec)
 - Because chip gaps cause parts of survey to have fewer exposures than the rest, these areas are already at the minimum number of samples
- Increases effects of chip gaps on survey depth
 - Already have significant variation in cumulative exposure time over survey area

Reduce number of filters

- Would impact ability to determine photo-z over significant redshift ranges
- Reduces ability to detect subtle wavelength-dependent PSF errors
- Would reduce ability to use cross-power spectrum tests of shear bias
 - Shear maps in 3 filters provides internal consistency checks and test for multiplicative bias

High Latitude Time Domain Survey

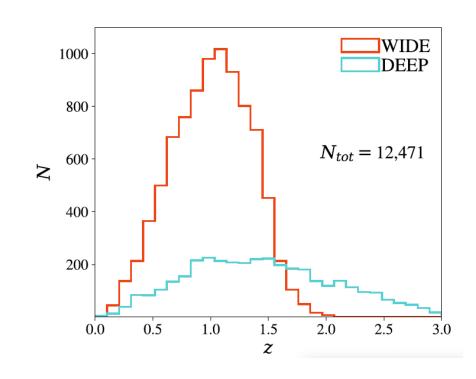
Reduce Survey Area

- Number of transients
- Loss is greater than linear as smaller tiling pattern is less efficient: lose increasing fractions of light curve as tiling pattern rotates on the sky

Increased Cadence

- Ability to characterize SNIa
- Coarse sampling of light curve reduces accuracy of light curve fits at low redshift end of sample

Reduced Imaging Exposure time


- Number of transients as a function of redshift
- Ability to characterize transients
- Reduces accuracy of SNIa luminosity distance determination

Reduced Prism Exposure times

Redshifts, classification, standardization, systematics and evolution control

Reduced Number of filters

- Broad wavelength range to measure colors and build templates
- Greatly reduced SNIa redshift coverage in each tier

Galactic Bulge Time Domain

Reducing time allocation to this program does not affect:

- Survey Area
- Cadence
- Imaging Exposure time
- Number of filters
- Because the survey revisits the same fields over and over at a particular cadence
- Conversely: don't save time by changing any of the above

Reducing duration of seasons:

- Reduces number of planets,
- more than linearly because light curves are interrupted, especially for gaps in the middle of a season

Reducing Number of Seasons

Reduces number of planets

Trade Space for High Latitude Survey

- Current HLWA survey will enable galaxy shape measurements in multiple colors and two roll angle
 - Provides exquisite control of systematics
- To reach the weak lensing FoM requirement in minimum time, could survey part of the Rubin footprint with a single wide-band filter (Euclidlike)
 - Good statistical constraining power for weak lensing
 - -BUT
 - Won't provide internal checks on shear systematics for the region with a single NIR filter
 - No color information in near IR, degraded photo-z at z>1
 - Meets the letter, but not the spirit of objective 1 (wide field IR survey to AB 26.5 mag)
 - -Greatly impacts astrophysics science return

Backup

Survey Capability Requirements Summary

Weak Lensing (HLIS 2.0.x)

- 1: FoM_{WL}>327400
- 2: N_{eff}>27/arcmin²
- 3: Additive shear error <2.7 10⁻⁴
- 4: Multiplicative shear bias <3.2 10⁻⁴
- 5: deep field

Galaxy Redshift

(HLSS 2.0.x)

- 1: FoM_{BAO}>7533
- 2: FoM_{RSD}>4047
- 3: Slitless spectra
- 4: Completeness > 0.6
- 5: redshift accuracy, outlier fraction

Supernova Cosmology (SN 2.0.x)

,

- 1: FoM_{SN}>325
- 2: $\mu(z)$, $0.2 \le z \le 1.7$ $\sigma \mu \le 0.02$ per $\Delta z = 0.1$
- 3: >100 SNIa per Δz =0.1
- 4: $\sigma_z / (1 + z)$ bias

Exoplanet Microlensing(EML 2.0.x)

,

- 1: Mass function for 1M_{Earth}< m <30M_{jupiter} to <15%
- 2: Mass function for
- $0.1M_{\text{Earth}}$ < m < $0.3M_{\text{Earth}}$ to < 25%
- 3: masses, distances to 40% host stars
- 4: free-floating planet frequency
- 5: estimate η_{Earth}

Key Wide Field Science Performance Requirements

Representative values shown; full details in SRD.		Expansion, Structure, NIR Survey		Expansion	Exoplanet
		Weak Lensing	Galaxy Redshift Survey	Supernovae	Microlensing
Surveys & Data	Area/Survey Speed	0.20 deg²/hr (1,700 deg²)	0.34 deg²/hr (1,700 deg²)	14, 5 deg ² >100 SNe/Δz=0.1	586 deg ² -day Over 6+ seasons
	Redshift	0≤z≤3	1.1 < z < 1.9 (2.9 w/OIII)	0.2≤z≤1.7	
	Sensitivity	S/N≥18 @ 24.4/24.3/23.7 (AB J/H/F184) r _{eff} =0.18"	S/N≥6.5 for 1.0x10 ⁻¹⁶ erg/cm²/s	S/N≥13 (brightest filters at peak)	S/N>100 for H _{AB} =21.4 star
	Cadence			~ 5 days	15 min
	Data Vol.	≥3 reads/exp	≥3 reads/exp	≥3 reads/exp	≥3 reads/exp
PSF	Quality	EE50 ≤ 0.12" (J) EE50 ≤ 0.17" (IFC)	EE50≤0.21"@1.5 μm	EE50 ≤ 0.12" (J) EE50 ≤ 0.14" (IFC)	EE50 ≤ 0.15" (wide)
	Stability	1 nm RMS Δ WFE in 180s			
	Knowledge	2 nd moment ≤7.2x10 ⁻⁴ Ellipticity ≤5.7x10 ⁻⁴		0.2%	
Flux Calibration Relative Over	Time	0.5% /observing program	<2% rel spect-photometry	<0.5% / 2 wk	<0.1%/season
	Wavelength	<2% abs/0.5% photo zeropt	<2% rel over bandpass	<2% abs/ 0.5% photo zeropt	<3% abs <1.4% photo zeropt
	Dynamic Range			<0.3% 15 <ab<26< th=""><th><0.1% over 2 mag</th></ab<26<>	<0.1% over 2 mag
	Area	<10 mmag	<2% rel over survey area		
Color	Filters	4 NIR bands for photo-z, 3 reddest for shapes	Overlap with HLIS for 3 filter imaging	6 filters 0.5-2.0μm	Wide filter, & 1 short, 1 longward of 1μm
	Dispersion		10-12 Å/pix	70 < R < 150	