

ASTROPHYSICS

Organizational Chart

ADMINISTRATIVE SUPPORT
Kelly Johnson, Jennifer Baker (C), Pamela King-Williams (C)

DIVISION LIAISONS

Resource Management

t Policy

Erik Edwardson (Lead) Danielle Gervallis Peter Meister (Lead) Enida Santiago-Arce

Jennifer Holt

Communications Alise Fisher (Lead) Program Support Specialist

Sara Schwartzman

CROSS CUTTING

Technologist

Mario Perez (Chief) Omid Noroozian (Deputy)

APD Communications

Hashima Hasan (Lead)
Doris Daou (Deputy)
Liz Landau (C - OCOMM Liaison)
Natasha Pinol (C - Public Engagement Liaison)

Inclusion, Diversity, Equity, and Accessibility
Kartik Sheth (Lead)
Antonino Cucchiara (Deputy)

GOMAP Program

Julie Crooke (Executive) Shawn Domagal-Goldman (Scientist)

> APD Information Manager Rhiannon Roberts (C)

FLIGHT PROGRAMS

Associate Director Joseph Smith

PROGRAM EXECUTIVES

Rachele Cocks Lucien Cox Shahid Habib Janet Letchworth Mark Sistilli

RESEARCH & ANALYSIS

Associate Director Eric Smith

> R&A Lead Stefan Immler

PROGRAM SCIENTISTS

Patricia Knezek

Roopesh Ojha

Joshua Pepper

Mario Perez

Kartik Sheth

Linda Sparke

Sanaz Vahidinia

Eric Smith

Sangeeta Malhortra

Bill Latter

Dominic Benford
Valerie Connaughton
Antonino Cucchiara (C)
Doris Daou
Michael Garcia
Thomas Hams (C)
Hashima Hasan
Doug Hudgins
Stefan Immler
Hannah Jang-Condell

Manuel Bautista

PROGRAM SUPPORT SPECIALIST Ingrid Farrell (C)

ASTROPHYSICS STRATEGIC MISSIONS

Program Director Sandra Cauffman

Program Manager (Acting) Garth Henning

PROGRAM EXECUTIVES

Ed Griego Lucas Paganini Miles Skow

PROGRAM SUPPORT

Tony Combenate (C), Andre Davis (C)

Legend C - Contractor

RESEARCH

~400 U.S. Science Pls Funded ~128 Individual Institutions Selected ~\$135M Awarded Annually

TECHNOLOGY DEVELOPMENT

~\$220M Invested Annually

REFEREED PUBLICATIONS

20,122 Total Publications **4,857** Hubble Publications (2017-2021)**101** JWST Publications (First 6 months)

MISSIONS

11 Missions Operating **11** Missions in Development

SMALLSATS/

2 Science Missions Launched

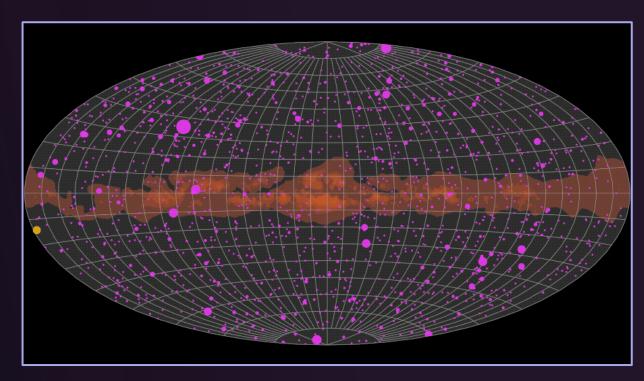
CUBESATS

- **8** Science Missions in Development
- 1 ISS-attached Science Mission

SOUNDING **ROCKETS**

- **14** Science Missions Launched (Suborbital)
- 4 In Development

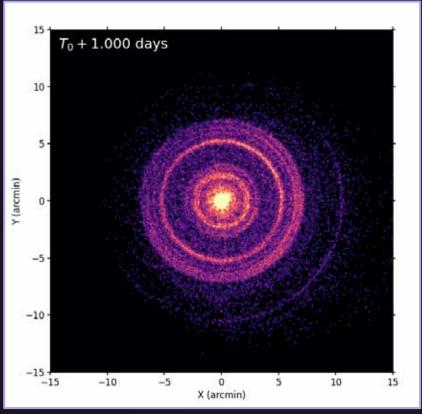
Astrophysics by the **NUMBERS**


BALLOONS

14 Suborbital Balloons Launched 20 Missions in Development

NASA's Fermi Captures Dynamic Gamma-Ray Sky

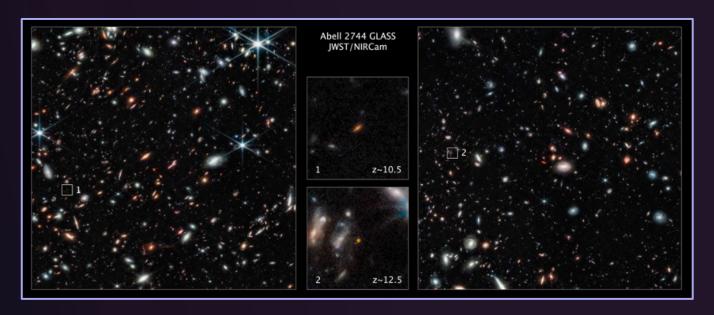
- This animation shows a year of observations from February 2022 to February 2023 taken with the Large Area Telescope (LAT) aboard NASA's Fermi Gamma-ray Space Telescope
- The pulsing circles represent just a subset of more than 1,500 light curves that were collected by the LAT over nearly 15 years in space.
- Over 90% of the sources in the dataset are blazars, central regions of galaxies hosting active supermassive black holes that produce powerful particle jets pointed almost directly at Earth.
- This database could lead to new multimessenger insights into past events.

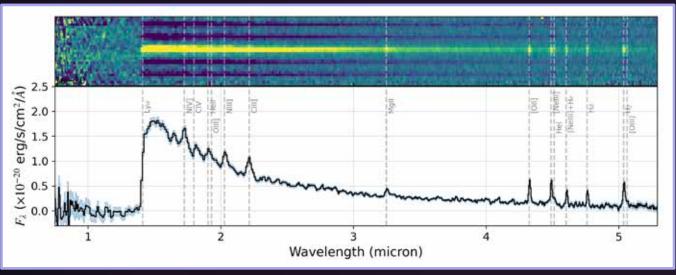


Credits: NASA's Marshall Space Flight Center/Daniel Kocevski

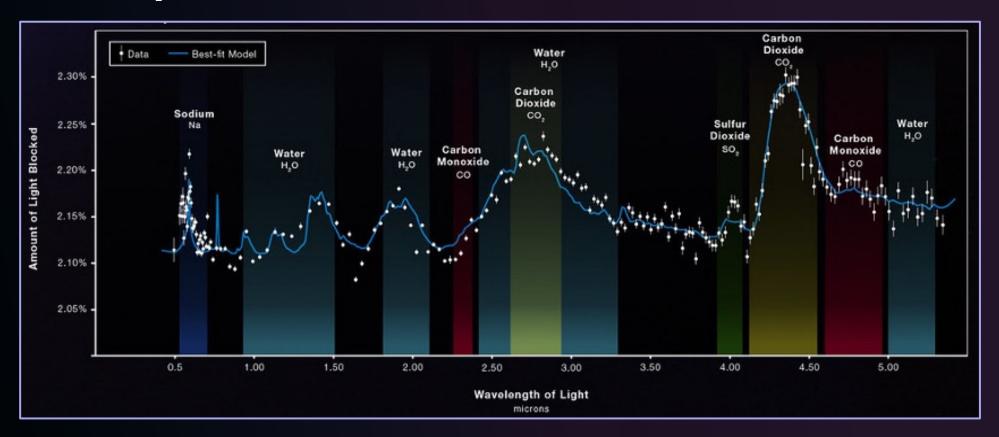
Caption: The animation shows a subset of the LAT gamma-ray records now available for more than 1,500 objects in a new, continually updated repository. Each frame represents three days of observations. Each object's magenta circle grows as it brightens and shrinks as it dims. The yellow circle represents the Sun following its apparent annual path across the sky.

NASA's Swift, Fermi Missions Detect Exceptional Cosmic Blast

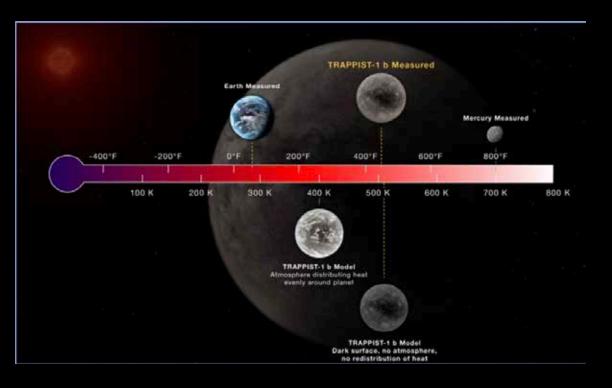

- An unusually bright and long-lasting pulse of high-energy radiation that swept over Earth Sunday, October 9, 2022.
- The emission came from a gamma-ray burst (GRB) the most powerful class of explosions in the universe – that ranks among the most luminous events known.
- Called GRB 221009A, the wave of X-rays and gamma rays triggered detectors aboard NASA's Fermi Gamma-ray Space Telescope, Neil Gehrels Swift Observatory, and Wind spacecraft, as well as others.
- This signal had traveled an estimated 1.9 billion years to reach Earth and provides new insights into stellar collapse, the birth of a black hole.

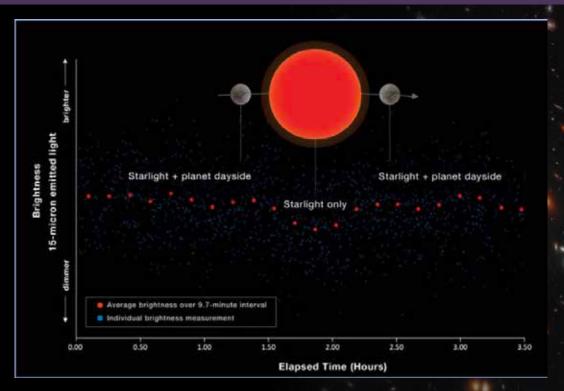


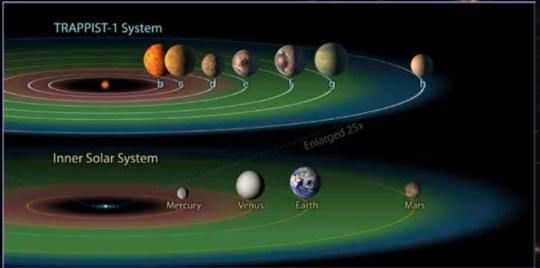
Swift's X-Ray Telescope captured the afterglow of GRB 221009A about an hour after it was first detected. The bright rings form as a result of X-rays scattered from otherwise unobservable dust layers within our galaxy that lie in the direction of the burst and expand over time as we observe scattering from larger and larger angles.


JWST Early Universe: First Results

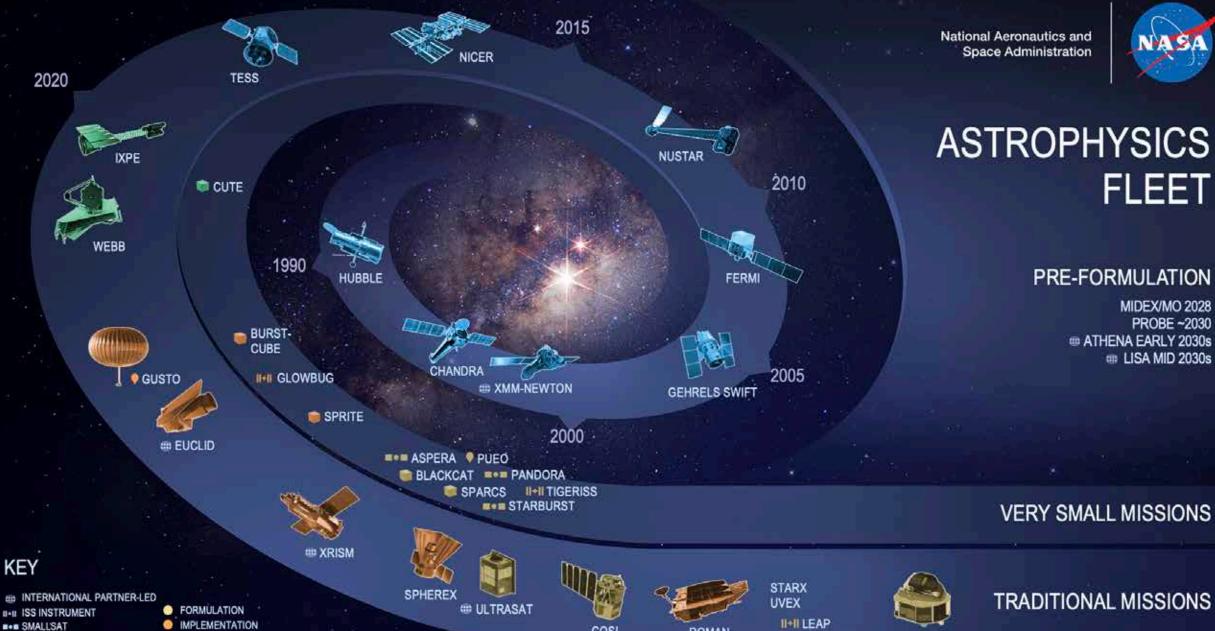
- Abell 2744 with insets showing galaxies that existed 350 and 450 million years after the big bang.
- Webb's findings suggest that the galaxies would have had to begin coming together about 100 million years after the big bang. Credit: NASA, ESA, CSA, T. Treu (UCLA)
- JADES NIRSpec Spectroscopy of GN-z11: a unlensed z = 10.60 luminous galaxy
- Bunker et al. 2023 (arXiv:2302.07256v1)






JWST Exoplanet First Science Results

Trappist 1b



Budget

Astrophysics Budget

- FY23 appropriation \$1510M, versus FY22 appropriation of \$1589M.
- FY24 President's Budget:
 - FY24 request \$1557M (FY23 PBR \$1556M)
 - Modest decadal wedge begins in FY24 for technology maturation in support of Decadal Surveyrecommended GOMAP for Habitable Worlds Observatory
 - Extend operating missions per Senior Review recommendations, including Hubble, Chandra and the Transiting Exoplanet Survey Satellite (TESS)
 - SOFIA close out budget FY23-25 permits responsible closeout, dispositioning of assets, data reprocessing and archiving, and career transition for early careers
 - Delays in Explorers program up to one year
 - Reduction in ATHENA funding pending ESA re-formulation activities

CUBESAT

BALLOON

EXTENDED

COSI

2025

ROMAN

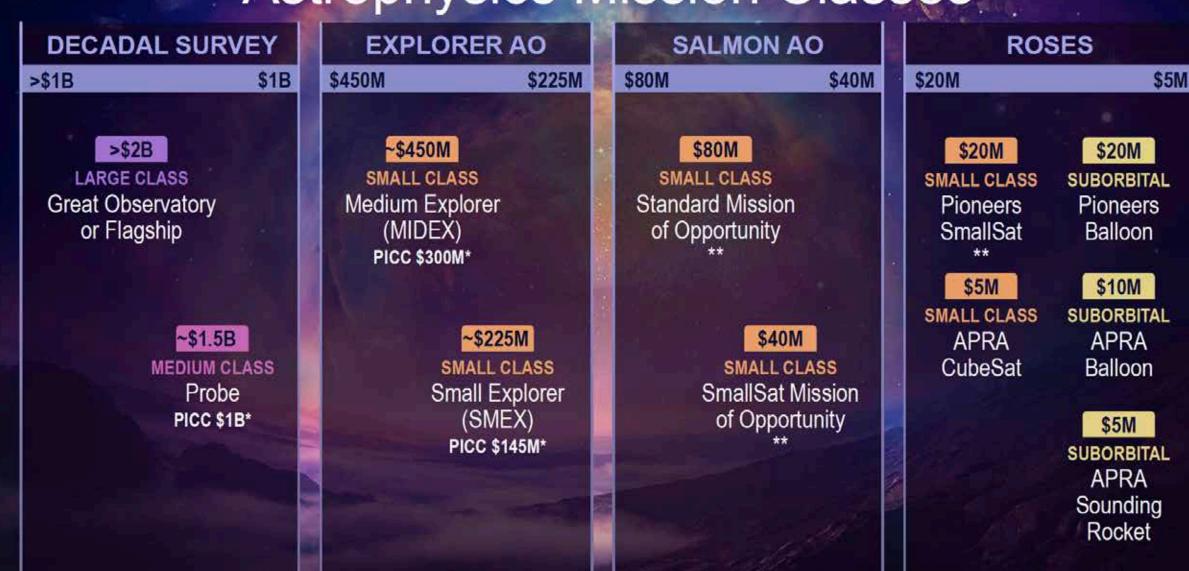
MOONBEAM

ARIEL

TRADITIONAL MISSIONS

VERY SMALL MISSIONS

FLEET


MIDEX/MO 2028 PROBE ~2030

m LISA MID 2030s

PRE-FORMULATION

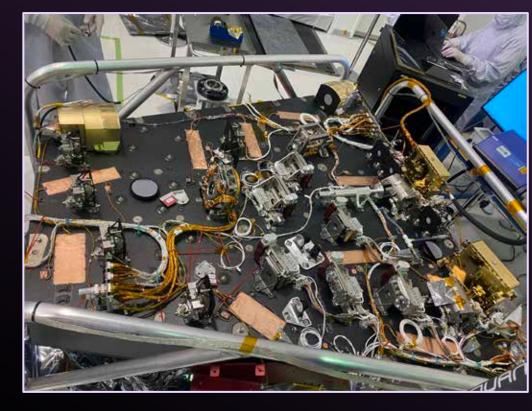
ATHENA EARLY 2030s

Astrophysics Mission Classes

Roman Space Telescope

Features

- Determine the nature of the dark energy that is driving the current accelerating expansion of the universe
- Perform statistical census of exoplanetary systems through microlensing survey
- Survey the NIR sky with unprecedented sensitivity, scale, and efficiency



Roman Coronagraph Instrument

Features

- Able to directly image gas giant exoplanets; pathfinder for future exo-Earth characterization
- Employs active optics to achieve 1000x better planet to host-star flux ratio
- < 1 year to instrument delivery
- All flight hardware @ JPL
- Optics bench fully populated
- Predicted performance:
 ~80% margin on our L1 requirement

Important Milestones

Roman Mission Research and Support Participation Opportunities (ROSES-D.14)

LISA

Laser Interferometer Space Antenna

ESA and NASA Partnership

- LISA will be the first space-based gravitational wave observatory (LRD~2037)
- Sources in LISA's milliHertz band range from white dwarf binaries in our galaxy to merging massive black holes at extreme redshift

NASA Contributions:

- Stable telescopes to facilitate inter-spacecraft interferometry
- Laser Systems for interferometer light source
- Charge Management Device for test mass charge control
- Data analysis pipelines and support for science investigations

Merging black holes produce gravitational waves that distort the fabric of spacetime.

Credit: NASA/GSFC Conceptual Image Lab

Status:

- NASA in pre-Phase A Study and technology development managed by Physics of the Cosmos Program Office at GSFC. Systems engineering & science support from JPL & MSFC.
- ESA approaching end of Phase B1, Mission Adoption milestone planned for Nov. 2023 (TBC)
- The LISA Preparatory Science Program (LPS) accepted proposals as part of ROSES-22. Closed on March 16, 2023.

Astrophysics Explorers Program

Selected before 2011

PROBE 2023

SMEX 2024 2025

4 AOs per decade

SMEX

2014

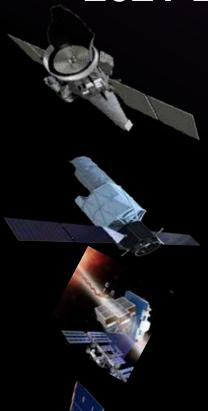
IXPE

MIDEX 2011

NICER

STAR-X **UVEX**

2021


Directed 2013

Directed 2017

2021 Explorer Competitive Step-2 Studies



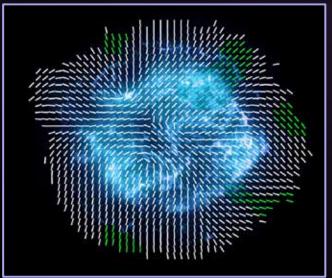
- MIDEX: Survey and Time-domain Astrophysical Research Explorer (STAR-X): Sensitive widefield X-ray surveys with < 5 arcsec imaging. STAR-X can respond within 2 hours to point X-ray and UV telescopes at transient cosmic sources. STAR-X Principal investigator: William Zhang (GSFC)
- MIDEX: UltraViolet EXplorer (UVEX): Deep imaging survey in two bands of ultraviolet light, plus R~1000 spectroscopy – new insights into galaxy evolution and the lifecycle of stars. Distributes alerts for transient sources within 1 hour of data receipt, follows up alerts within 3 hours. UVEX Principal investigator: Fiona Harrison (Caltech)
- MO: LargE Area burst Polarimeter (LEAP): Mounted on the ISS, LEAP studies gamma-ray bursts from the energetic jets launched during the formation of a black hole after the explosive death of a massive star, or in the merger of compact objects. MO Principal investigator: Mark McConnell (University of New Hampshire)
- MO: Moon Burst Energetics All-sky Monitor (MoonBEAM): From its lunar-resonant orbit, MoonBEAM sees almost the whole sky at any time, watching for bursts of gamma rays from distant cosmic explosions and providing rapid alerts. MoonBEAM Principal investigator: Chuimun Michelle Hui (MSFC).

NuSTAR Nuclear Spectroscopic Telescope Array

- In 2022, NASA's NuSTAR mission celebrated 10 years studying the X-ray universe.
- NuSTAR was the first to focus high-energy (>10 keV) X-ray light.
- NuSTAR's made the first unambiguous measurement of a black hole's spin, which it did in collaboration with the ESA (European Space Agency) XMM-Newton low-energy X-ray mission.
- NuSTAR also discovered pulsations from the mysterious Ultraluminous X-ray (ULX) population, which are bright, off-nuclear X-ray sources seen in some nearby galaxies.
 - ULX pulsations imply that at least some ULXs are extreme neutron stars, accreting at 100's of times the limit for stable accretion (i.e., the Eddington limit).

When a star comes too close to a supermassive black hole, tidal forces tear the star apart in a violent and luminous transient phenomenon known as a Tidal Disruption Event. This artist's conception is from a recent news release that reported on NuSTAR observations of an unusually nearby – and thus bright – event, which enabled unprecedented studies of X-ray emission from the newly formed accretion disk and corona.

Credits: NASA/JPL-Caltech



IXPE

Imaging X-ray Polarimetry Explorer

- IXPE (collaboration between NASA and the Italian Space Agency) launched on December 9, 2021.
- IXPE is NASA's first mission to study the polarization of X-rays from many different types of celestial objects.
 - Source classes with robust detections of polarization include magnetars, accreting neutron stars, blazars, accreting stellar mass black holes, and supernova remnants.
- As IXPE approaches the end of its prime mission, APD will make a decision on whether to extend until the 2025 Senior Review
 - Requires an independent assessment of the progress the mission has achieved toward:
 - Meeting its science objectives
 - Fulfilling its technical success criteria
 - Potential for the General Observer

IXPE observation showing the direction of the magnetic field across regions of the remnant Cas A Credits: X-ray: Chandra: NASA/CXC/SAO; IXPE: NASA/MSFC/J. Vink et al.

ARIEL/CASE

Atmospheric Remote-sensing Infrared Exoplanet Large survey Contribution to ARIEL Spectroscopy of Exoplanets

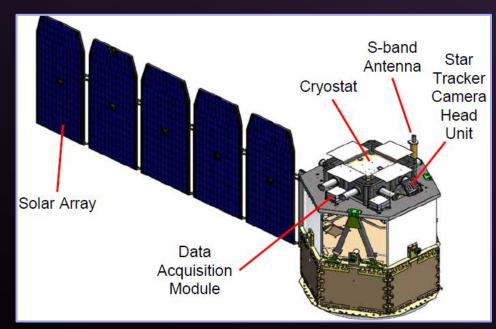
ESA and NASA Partnership

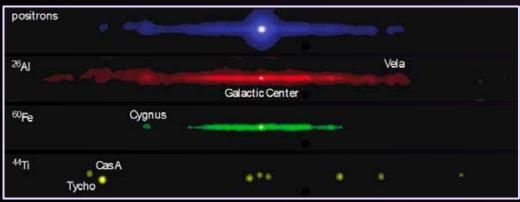
- ARIEL with the CASE, which provides the optical and near-infrared science capabilities and fine guidance sensors will survey and characterize the atmospheres of ~1000 exoplanets.

NASA Contributions:

- Detectors, cold front-end electronics & packaging
- Thermal Management
- Cryoflex cables for ARIEL Fine Guidance System
- Providing US participation in science team, mission survey design, and scientific discoveries

Status:


Project entered Phase C in February 2023



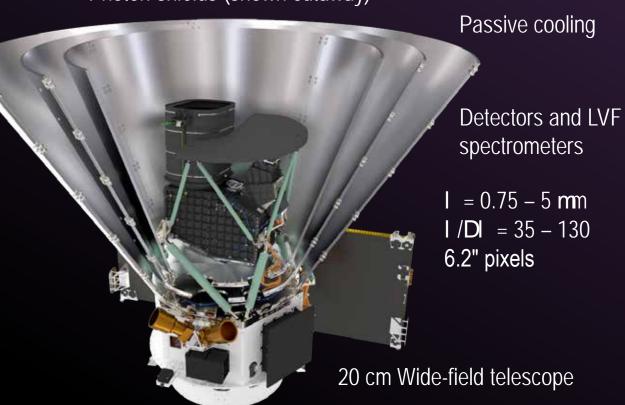
An artist's concept showing ARIEL in orbit. Credit: ESA/STFC RAL Space/UCL/Europlanet Science Office

Compton Spectrometer and Imager (COSI)

- PI: John Tomsick, UC Berkeley
- COSI is Compton imaging spectrometer with cryogenic Ge detectors for 0.1-5 MeV gamma-rays
- COSI will provide an understanding of the positron excess; map ²⁶Al (half-life 60yr) to study element formation; make the first map of ⁶⁰Fe (half-life 2.6Myr, only source is core-collapsed SN) to trace past core collapse supernovae; and discover new young supernovae in ⁴⁴Ti (half-life 0.7Myr).
- COSI will use polarization to gain insight into extreme environments, such as accreting black holes (AGN and Galactic) and γ-ray bursts (GRBs).
- COSI will localize the γ-ray counterparts to GW events (short GRBs) and detect high-energy neutrino counterparts.
- System Requirements Review January 2023;
 Preliminary Design Review February 2023

Simulated Radioactive Milky Way

Sphere-X


An All-Sky Infrared Spectral Sky Survey

Small Mission, Big Science

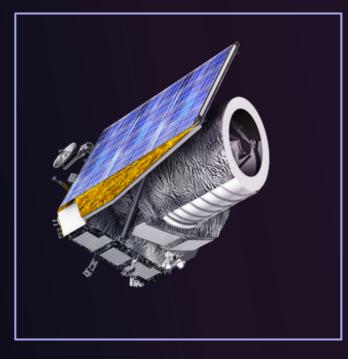
- Origin of the Universe
- Origin and History of Galaxies
- Origin of Water in Planetary Systems
- First All-sky Infrared Spectral Survey
- Critical Design Review (CDR) successfully completed Jan 2022
- Systems Integration Review (SIR) planned for December 2023
- Current Agency launch readiness date is April 2025

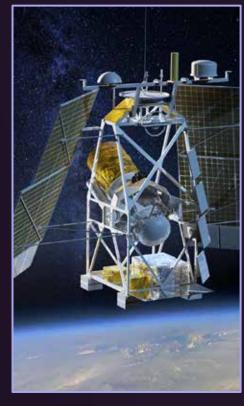
Photon shields (shown cutaway)

LEO spacecraft (Ball)

An All-Sky Infrared Spectral Sky Survey

Science Description	Project Description	Key Information
GUSTO will provide the first complete study of all phases of the stellar life cycle, from the formation of molecular clouds, through star birth and evolution, to the formation of gas clouds and the re-initiation of the cycle. GUSTO provides 500 times the angular and 1,000 times the velocity resolution of previous surveys of the Galaxy in [CII], [OI], and [NII].	Sub-orbital Balloon-borne 0.9 m Cassegrain telescope launched from Antarctica to study the Milky Way and the Large Magellanic Cloud.	Mission Phase: C Launch Date: 12/2023 Mission Life: 75 days Category: 3 Class: D Streamlined Launch Vehicle: Zero Pressure Balloon


• GUSTO is scheduled to fly from Antarctica in December 2023


Astrophysics Division Launches: CY2024

XRISM: Tanegeshima, Japan 2023

EuclidKennedy Space Center, July 2023

GUSTO (SMEX Balloon)Antarctica December 2023

ATHENA

Advanced Telescope for High Energy Astrophysics

ESA and NASA Partnership

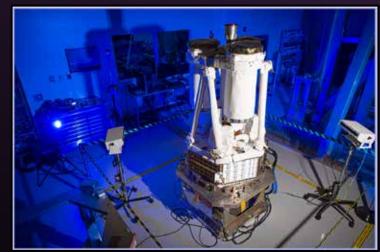
• ATHENA will look deep into the X-ray Universe, studying the evolution of supermassive black holes and hot gas in and out of galaxies over the life of the Universe.

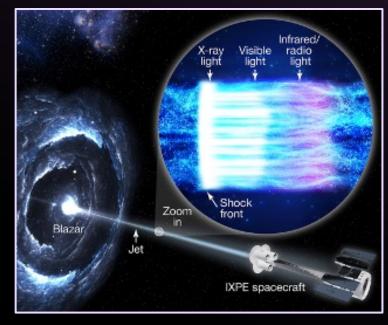
Status:

- Mission is being reformulated by ESA, whilst retaining flagship-level science. NASA has reiterated support for Athena and willingness to reprioritize its contributions.
- Rachel Osten (STScI) and Lía Corrales (U. Michigan) selected as the NASA representatives to the Athena Science Redefinition Team (SRDT). Andy Ptak (NASA Athena PS) selected as Mission Redefinition Team (MRT) point-of-contact.

Artist's concept of ATHENA. Credit: ESA

Current "NewAthena" mission concept

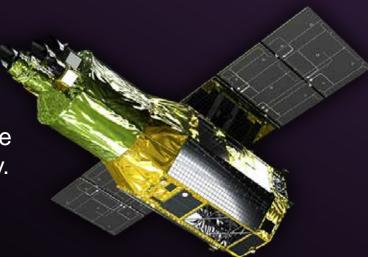

- Effectively dependent on the US contribution of a 50K -> 4K cryocooler to the X-IFU
- Mission profile results in reductions to performance relative to original Athena, but retains a large X-ray mirror, the X-IFU calorimeter with at least 4 eV energy resolution, and the Wide-Field Imager (WFI)


Budget Impacts

- In light of deferred Adoption date ~(2027), FY24 PBR contains significant slowdown to Athena.
- With planned switch to a crycooler as a NASA contribution, the FY24PBR Athena budget withdraws support for the XRCF testing element (FY25 onwards), with a significant reduction in FY24 for XRCF testing.

IXPE shows that many high-energy sources are polarized

- IXPE (Imaging X-ray Polarimetry Explorer, a collaboration between NASA and the Italian Space Agency) launched on December 9, 2021 – it is NASA's first mission to study the polarization of X-rays.
- Mission operations began on January 11, 2022. IXPE is now in the second year of its two-year baseline mission.
- As of January 11, 2023, 39 sources were observed; 20 of these have secure detections of X-ray polarization: e.g.
 - Blazars Mrk 421 and Mrk 501 are 10%-15% polarized in X-rays, 2-5x more than in visible light: X-rays likely from a magnetized shock (lower picture)
 - Accreting stellar-mass black hole Cyg X-3 shows 25% polarization: X-rays likely reflected from a thick dusty torus.
- If IXPE passes review at the end of its two-year mission, a general observer program will begin in February 2024.



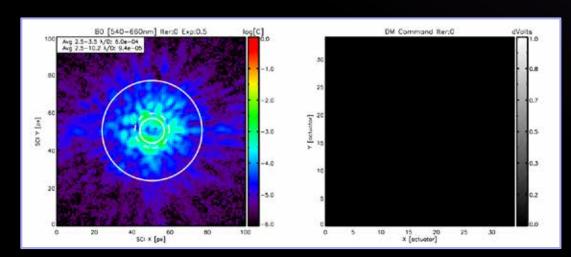
XRISM

X-Ray Imaging and Spectroscopy Mission

- XRISM, formerly known as XARM, is a JAXA/NASA collaborative mission with ESA participation and is expected to launch May 2023.
- The objective of the mission is to investigate celestial X-ray objects in the Universe with high-throughput imaging and high-resolution spectroscopy.
- The XRISM payload consisted of two instruments:
 - Resolve a soft X-ray spectrometer
 - Xtend a soft X-ray imager
- The first XRISM Data Analysis Workshop was held on February 22 & 23, 2023.
 - The objective of this workshop was to prepare the astronomical community for the upcoming Cycle 1 General Observer Call for Proposals for XRISM.

Credit: JAXA

Astrophysics Explorers: Future AOs


- Since the release of the Astro2010 report, Astrophysics has been able to maintain a cadence of 4 Explorers opportunities per decade, each offering a Mission and a Mission of Opportunity.
- The FY24 budget request does not allow the release of the next SMEX/MO AO in Spring 2024; instead, it is deferred by a year to Spring 2025.
- At this point there is no change to the timing of the 2026 MIDEX/MO.

Balloon Program

• During 2022, NASA successfully implemented a scientifically productive Balloon Campaign.

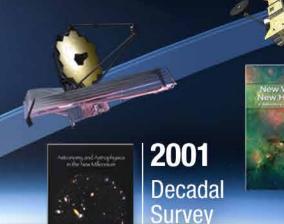
PICTURE-C: Balloon-Borne Coronagraphy

 The first on-sky coronagraph dark hole created in a space-like environment

Chakrabarti et al. - U Mass Lowell

SPIDER: Balloon-borne CMB experiment

 SPIDER studies the Cosmic Microwave Background (CMB) and its polarization for indications of gravitational waves associated with the Big Bang.



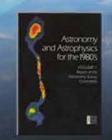
SPIDER's balloon flight track over Antarctica

ASTRO2020 Forward Plan

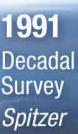
Astrophysics

Decadal Survey Missions

Webb

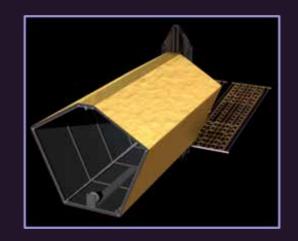


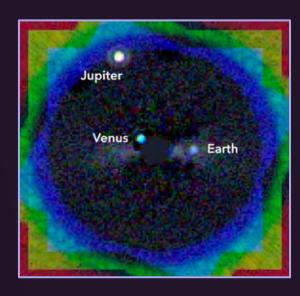
2021 Decadal Survey


1972 Decadal Survey Hubble

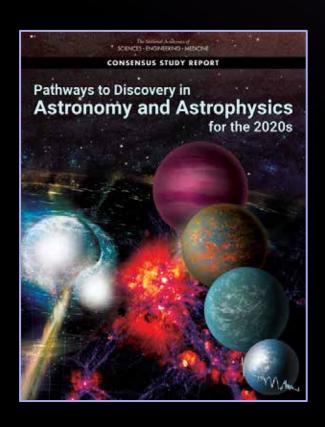
1982 Decadal Survey Chandra

Survey Spitzer


Status of Astro2020 Key Recommendations


Key Mission Recommendations	Latest Action	Next Planned Action
Near-Infrared/Optical/Ultraviolet 6-m telescope with high-contrast imaging capability (part of GOMAP program)	Technology strategy	
Great Observatory Mission and Technology Maturation Program (GOMAP)	GOMAP discussions underway within NASA, Precursor Science workshops held April, October 2022	APAC Spring Meeting, March 29-30, 2023
Space-based time-domain and multi- messenger counterparts program (TDAMM)	APD conducted a 8/22-24/2022 Workshop	APAC Spring Meeting, March 29-30, 2023
Astrophysics Probe Mission	8/16/2022 Draft Call for Proposals	APAC Spring Meeting, March 29-30, 2023
End SOFIA operations by 2023	SOFIA operations ended. NASA's Press Release 9/30/2022	Action complete

Pathways to Habitable Worlds: Astro2020


- Are there habitable planets harboring life elsewhere in the universe?
- Primary recommendation:
 - Space telescope, with ~6 meter aperture and coronagraphic imaging capability
 - Observe ~100 nearby sun-like stars, and detect potentially habitable planets
 - Survey habitable planet candidates for evidence of life
 - Conduct program of general astrophysics
- Primary Technical requirements
 - Segmented mirror telescope w/active control of WFE achieving ~10s pm stability
 - Coronagraph achieving contrast levels of 10⁻¹⁰

Habitable Worlds Observatory

The Habitable Worlds Observatory: Big Picture Strategy

The Habitable Worlds Observatory: Big Picture Strategy

- Build to schedule: Mission Level 1 Requirement e.g. Planetary mission strategy
- Evolve technology:
 - Build upon current NASA investments and TRL-9 technology
 - Segmented optical telescope system from JWST
 - Coronagraph from Roman 's coronagraphic imager program
- Next Generation Rockets:
 - Larger telescope aperture sizes
 - Leverage opportunities offered by large fairings to facilitate mass & volume trades
- **Planned Servicing**: Robotic servicing at L2
- Robust Margins: Design with large scientific, technical, and programmatic margins
- Mature technologies first: Reduce risk by fully maturing the technologies prior to development phase.

The Habitable Worlds Observatory Big Picture Strategy

ASTRO2020 recommendation and timescale drives a focused technology program

Telescope

- Large segmented mirror investments with ongoing technology development program
- Scalable to launcher fairing options & next 5 years of science metrics outcomes
- Legacy of JWST technology investments (TRL-9) and infrastructure
- JWST as an on-orbit testbed
- Industry capabilities
- Focus investments on technology tall-poles rather than investing in infrastructure

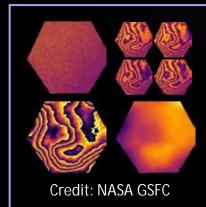
Coronagraph

- Significant investment in Roman coronagraph (future on-orbit testbed)
- Significant investments through SAT & APRA coronagraph programs

The Habitable Worlds Observatory

Habitable Worlds: Primary Science Goal

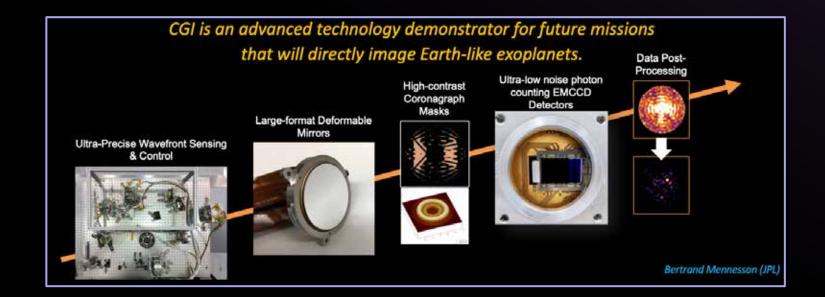
 Survey nearby stars for habitable planets, and spectroscopically characterize them for evidence of life (biosignatures)


Observatory: General Astrophysics Program

Future Great Observatories

- Decadal Survey recommends future X-Ray and Far-IR future great observatories
 - Note that investments would begin towards the end of the decade per the Survey's recommendations
 - APD will maintain X-Ray/Far-IR technical capabilities this decade via:
 - SAT and APRA program investments
 - 2023 Probe solicitation for X-Ray and Far-IR mission concepts
 - Explorers program

Astrophysics Technology Investments Big Picture Strategy



Picometer-scale dynamics measured with high-speed interferometry

Credit: L3/Harris

Lightweight ULE mirror segment

Astrophysics Probe

- On August 16, 2022 NASA issued a draft AO for a PI-led Astrophysics Probe for comment.
- The PI cost cap is \$1B; AO requires a General Observer/Guest Investigator (GO/GI) Program during the 5-year prime mission. For a pointed observatory, 70% of observing time is allocated for GO. A survey observatory will make data available as soon as practicable.
- The target date for the final Probe AO remains July 2023
- This is a two-step AO: because the Probes are more complex than previous Explorers, and this
 is the first one, the competitive Phase A studies will last 12 months
- In response to the recommendation of Astro2020, Astrophysics will accept proposals for:
 - A far-infrared imaging and/or spectroscopy mission
 - An X-ray probe
- Proposing teams should check the Q&As frequently at https://explorers.larc.nasa.gov/2023APPROBE/

Release of final AO:	July 2023 (target)
Proposals due:	NET mid-November 2023

Time Domain and Multi-Messenger Astrophysics (TDAMM)

- Astro2020 Decadal Survey recommended Time-Domain and Multi-Messenger Astrophysics (TDAMM) as highest priority sustaining activity for NASA Astrophysics.
 - TDAMM contributions of current NASA fleet highlight the need to maintain and replace the workhorse missions.
 - Recommended strategic approach is to add space-based capabilities based on science priorities and status
 of complementary facilities.
 - e.g. gravitational-wave, neutrino, international e/m missions
 - Roman Space Telescope is a game changer for TDAMM: Opportunities for TDAM astrophysics in recent Roses call
 - New NASA missions address need for continuous monitoring for transients (X-Ray, Gamma-ray)
 - Smallsat missions (BurstCube, GlowBug,BlackCat, StarBurst)
 - Explorers: COSI (in development)
 - Star-X, UVEX, LEAP and MoonBeam (in Step-2 competitive downselect)
 - NASA partnership with Israel (ULTRASAT) adds sensitive wide-field UV monitoring
 - Planetary Mission NEO-Surveyor adds IR transient monitoring capability

Time Domain and Multi-Messenger Astrophysics (TDAMM)

- Conducting a study of coordinating TDAMM observations among NASA spacecraft using centralized proposal, and ToO initiation to make more efficient use of fleet
- NASA transient alert system
 - Modernizing in preparation for the Rubin era of ~10⁶ alerts per night
 - Funding multi-mission and mission-design software tools for community use
 - Initiating discussions across Agencies e.g. LIGO w/NSF
- PhysCOS/COR hosted TDAMM workshop in Annapolis, MD. on August 22-24, 2022
 - White Paper recently delivered and posted
 - International agency meeting identified areas of collaboration
 - 2nd meeting International working group held 3/2023 to discuss coordination
- Through PhysCOS community groups, supporting new and upcoming Science Analysis Groups in the areas of Gamma-ray Transient Networks and Space Communications

TDAMM Report

TDAMM Workshop

2023 Astrophysics Research Solicitations

Supporting Research and Technologies				
Astrophysics Research & Analysis	APRA	IP		
Strategic Astrophysics Technology	SAT	ΙP		
Astrophysics Theory Program	ATP	IP	DAPR	
Nancy Grace Roman Technology Fellowships	RTF			
Astrophysics Decadal Survey Precursor Science	ADSPS		DAPR	
Data Analysis				
Astrophysics Data Analysis	ADAP		DAPR	
Fermi, Swift, NuSTAR, NICER, TESS, IXPE New	GO/GI		DAPR	
Mission Science and Instrumentation				
Astrophysics Pioneers (suborbital science)	Pioneers		DAPR	
Suborbital payloads solicited through APRA	APRA	IP	DAPR	
Roman Research and Opportunities	Roman	IP	DAPR	
Cross Divisional				
Exoplanets Research Program	XRP		DAPR	
Topical Workshops, Symposia and Conferences	TWSC			
Citizen Science Seed Funding Program	CSSFP			
Graduate Student Research Awards	FINESST			

Solicited Separately					
JWST, Hubble, Chandra GO/GI/Archive/Theory programs	GO/GI		DAPR		
NASA Hubble Fellowship Program	NHFP				
NASA Postdoctoral Program	NPP				
Support for XMM-Newton U.S. Pls (selected by ESA)	XMM GO				
Not Solicited in ROSES-23					
Theoretical and Computational Astrophysics Networks, every other year	TCAN	IP	DAPR		

IP: Proposals require an Inclusion Plan for creating and sustaining a positive and inclusive working environment.

Assessment of IP not part of adjectival rating / does not inform selection of proposals. However, funding only released after a satisfactory Inclusion Plan is accepted.

Inclusion Plan pilot program will continue in 2023 but likely not expand until later.

DAPR: Proposals evaluated using dual-anonymous peer reviews where panelists do not know the identities of the proposing teams and institutions.

On-going & Planned IDEA Initiatives in APD

- Inclusion Plans in ROSES22:
 - Piloting continues APRA, LISA, SAT, TCAN, Roman, Precursor Science
 - IP assessment criteria are not part of evaluation criteria but if IP is inadequate, funding released only after IPs are judged to be adequate
 - ROSES 23 has new standardized language and various programs across SMD will continue to pilot this effort
 - SMD held a community workshop and a resources page available as of January 2023 under SMD Inclusion webpage
- APD Community Days have begin
 - APD Virtual visit (Clampin, Eric Smith, Cucchiara, Sheth) visited Puerto Rico on March 7th.
 - Stakeholders on the island engaged in planning
 - Faculty and graduate students across island invited
 - Follow up visits planned to further engage on specific areas (i.e. engineering / technology as well as undergraduate research etc.)

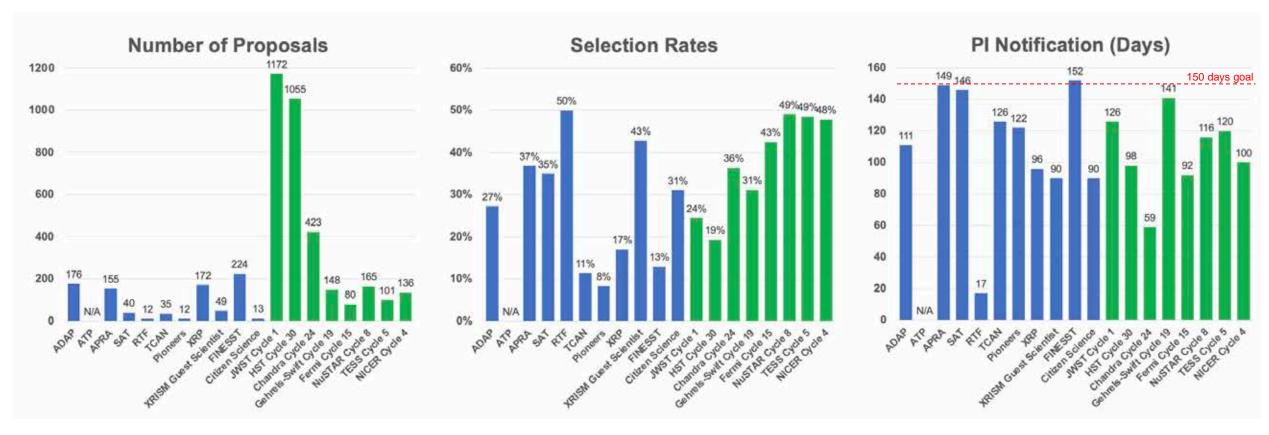
On-going & Planned IDEA Initiatives in APD Continued

 <u>Statement of Principles by APD</u> developed and shared across NASA Astrophysics ecosystem

- Regular attendance at National Society of Black Physicists (NSBP) and Society for Advancement of Chicanos and Native Americans in Science (SACNAS) meetings
- Other previous APD pioneering efforts:
 - Code of Conduct for review panels developed by APD, now adopted SMD wide!
 - Changes in language to Senior Review (SR) aligned with NASA's core value of Inclusion our changes to SR adopted SMD-wide!
 - Changes to AO language

Statement of Principles

Code of Conduct



THANK YOU

Astrophysics R&A Selection Rates

March 2022-2023

R&A: 888 proposals GO/GI: 3,280 proposals

Total: 4,168 proposals

R&A: 24% (19% last year)

GO/GI: 28% Average: 27% 80% of PI notification:

R&A: 110 days GO/GI: 107 days

^{*} Only programs with selections made and PIs notified

Science Data Policy and a Year of Open Science

SMD has released <u>SPD-41a</u>: <u>Scientific Information Policy for the Science Mission Directorate</u> to provide guidance on the open sharing of publications, data, and software created in the pursuit of scientific knowledge.

 SMD has developed Open Science Guidelines that provide further guidance to the community on general implementation of SPD-41a.

The <u>Astrophysics Scientific Information Management</u>
 <u>Policy provides further clarification on the application of SPD-41a to the Astrophysics Division.</u>

ELECTROMAGNETIC SPECTRUM NEAR-INFRARED/ HARD X-RAY/ RADIO/SUBMILLIMETER INFRARED X-RAY **PARTICLE GRAVITATIONAL WAVES** VISIBLE/ULTRAVIOLET **GAMMA-RAY OPERATING MISSIONS NICER CHANDRA** NUSTAR **WEBB GEHRELS** HUBBLE **SWIFT** FERMI XMM-NEWTON ± IXPE MISSIONS IN DEVELOPMENT ARIEL±ULTRASAT± **GUSTO** XRISM ± COSI LISA ± ATHENA ± ROMAN EUCLID ± **SPHEREX VERY SMALL AND SUBORBITAL MISSIONS** BALLOONS **BALLOONS BALLOONS BALLOONS** PUEO 🔮 BALLOONS **CUBESATS CUBESATS** CUBESATS E0= **ASPERA** HOM STARBURST **ROCKETS** ROCKETS PANDORA **ROCKETS** ISS ± 2 Pioneers smallsats 1 Pioneers balloon 5 balloon payloads 1 Pioneers smallsat March 2022 2 sounding rocket payloads 6 balloon payloads 4 balloon payloads 4 balloon payloads

4 sounding rocket payloads

2 cubesats 1 ISS experiment

2 rocket payloads

3 cubesats

1 ISS experiment

± Partner-led mission

JWST Awards To Date

- Public
 - Space Symposium
 - National Air and Space Museum
 - National Space Club and Foundation
 - Aviation Week
 - Bloomberg Businessweek
 - Popular Science
 - American Institute of Aeronautics and Astronautics
 - TIME
 - Explorers Club

- NASA/Science
 - George Rieke
 - Marcia Rieke
 - Charles Bowers
 - Randy Kimble
 - Gillian Wright
 - Pierre Ferruit
 - René Doyon
 - Jane Rigby
 - Michael McElwain
 - Massimo Stiavelli
 - JWST Project Science Team
 - JWST Science & Ops Center Development Team
 - JWST Science Operations Team

Cleanroom workers pose for a quick group photo with the James Webb Space Telescope mirrors on May 4th, 2016. Credit: NASA/Chris Gunn

Three Paths for Community Engagement with Roman

- Help define and shape core community surveys
 - Submit science pitch and/or white paper for Core Community Survey definition
 - Science pitch few paragraphs describing science case for one of the community surveys, short questionnaire on survey parameters
 - Deadline 17 Feb 2023, low bar to entry to encourage high participation
 - White papers several page document with details on science case, sketch of survey design and methods/metrics on how to evaluate science metric against survey parameters
 - Deadline summer, detail enables more meaningful evaluation
- Actively engage with mission partners and science community
 - Join Roman Technical Working Groups
 - Groups pursing topics of interest across many science areas
 - Two groups currently (calibration, software) but will add more after ROSES proposal selection
 - Simple web sign up page, rolling deadline, open to all
 - Plan to form community-led science collaborations later this year
- Obtain funding to prepare for and enhance Roman Science
 - Submit proposal to Roman ROSES solicitation
 - Funding to work on Roman science preparation (including engagement in technical working groups and survey definition)
 - Proposal deadline March 21 2023; another opportunity in 2025

Response to CAA report on Roman Observations

- Committee of Astronomy and Astrophysics Report on Roman Space Telescope Observations
 - Provided a set of 10 principles to guide NASA and Roman on the process for assigning mission observing time allocations

Some takeaways include

- Endorses community led approach to setting Roman observation program
- Emphasizes importance of competitively balancing/awarding time between each of the three CCS and GA Surveys
- We agree with the findings and conclusions in the CAA report
 - The Roman mission (science centers + project) have developed and started implementing a plan to define the core community surveys that builds upon the principles laid out in the CAA report

Astrophysics Technology Program - FY23

Technology Inception & Experimentation APRA & RTF

- 44 new technology projects awarded
- 13 additional non-technology awards
- Average selection rate: 28%
- Portfolio:
 - Supporting Balloons, Sounding Rockets & CubeSats
 - Detectors across wavelengths
 - Mirrors, coatings and gratings

Total: \$55M

Technology Maturation SAT & ISFM

- Portfolio has 36 active SAT & 10 ISFM projects
- 14 new SAT projects awarded in FY23
- 10 new ISFM projects (FY23-FY25)
- Next SAT solicitation planned in FY24 (ROSES-2023).
- Average SAT award: \$1.8M (3 years)
- Average SAT selection rate: 32% (historically is ~30%)

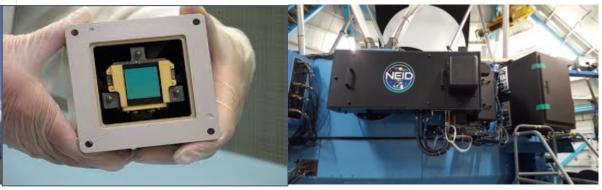
Total: \$26M

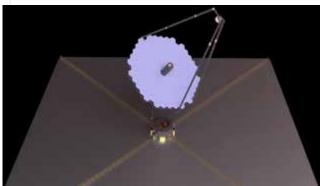
Directed Technologies

- Roman CGI (\$42.5M)
- LISA (\$29.6M)
- Athena (\$16.2M)
- Euclid (\$9.9M)
- NN-Explore NEID (\$3.3M)

Total: \$100M

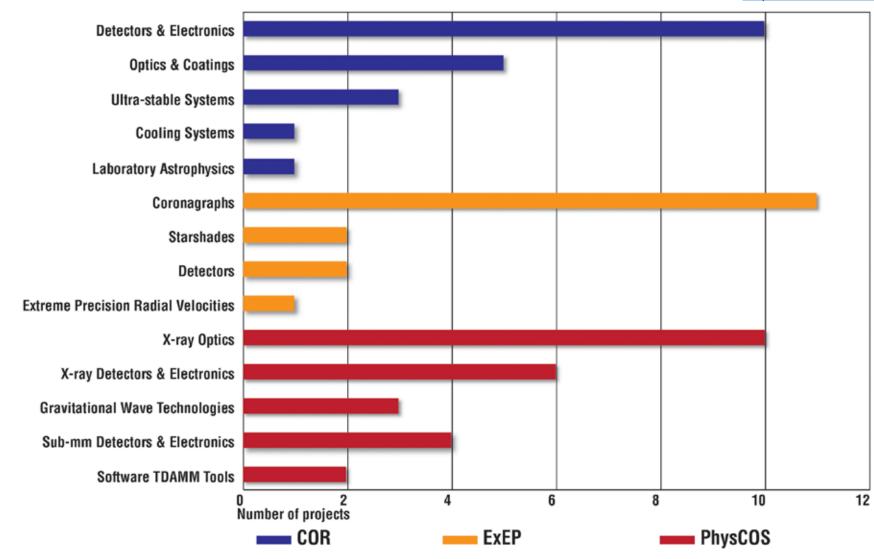
Post-Decadal Initiatives

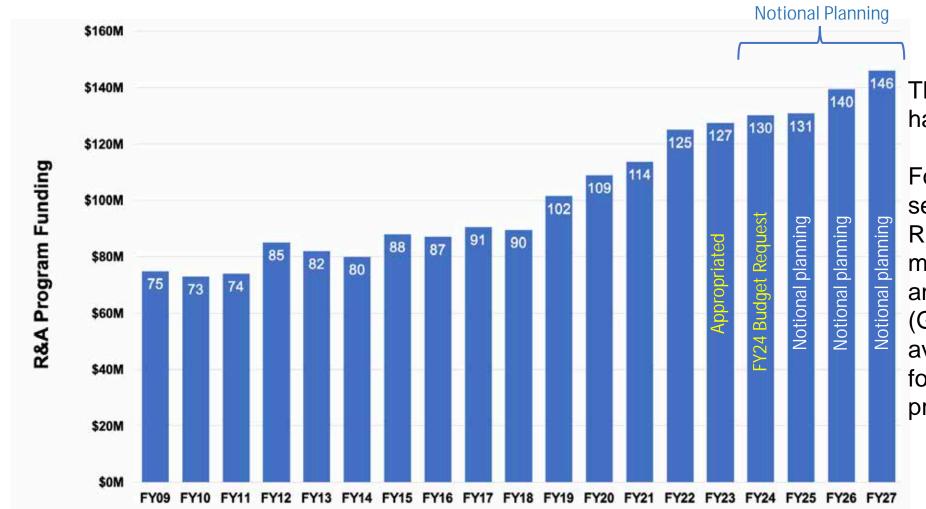

- Coronagraph Testbed
- Ultra-stable Testbed
- Segmented Mirror Telescope Program (SMTP) – Industry Contract


Total: \$15M

Not technology elements:

- TDAMM \$2M
- Precursor Science \$3M Total: \$5M




Current Strategic Technology Projects

• (SAT + ISFM - building blocks)

For more information see http://www.astrostrategictech.us/

Research & Analysis Funding

The Astrophysics R&A Program has seen a sustained growth.

For the last 12 months, the selection rates were 24% for R&A programs and 28% for mission's General Observer and General Investigator (GO/GI) programs, with a total average selection rate of 27% for all Astrophysics ROSES programs.