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The Big Picture

JWST is the most powerful infrared space telescope, ever.

Performance is marvelous, better than (high) expectations almost
across the board. Gas in the tank for 20+ years.

We are in our second year of science operations. JWST launched
12/2021; started science operations 7/2022.

The scientific community submitted a record number of observing
proposals (N=1930) for the third year, requesting 9 years of
observing time.

JWST is a partnership between NASA, ESA, & CSA.
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The science community is turning JWST data into papers.

- >600 research papers based on JWST data have been published
to date.

JWST
science papers

Disclosure: In this summary, I’ve mostly
avoided science papers where I’m a co-
author. I've indicated exceptions with *
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Evolution of JWST science papers
How well JWST works
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JWST Overview:
a Special Issue of PASP

Please cite these
instrumentation papers.

See also JDox user documentation

Publications of the Astronomical Society of the Pacific L gsocuey,
Y o
° (&) n
JWST Overview s p
O (]
Guest Editor George Rieke Steward Observatory, University of Arizona, USA %6' ’)Ab
sy o

Scope The articles in this focus issue describe the design, verification, and in-orbit
performance of the James Webb Space Telescope (JWST) and its instrumentation... and
an overall assessment of the JWST science performance as characterized during
commissioning. OPEN ACCESS

Performance of NIRCam on JWST in Flight
Marcia J. Rieke et al. 2023, PASP 135 028001

In-orbit Performance of the Near-infrared Spectrograph NIRSpec on the James Webb Space

Telescope
T. Boker, et al. 2023, PASP 135 038001

The Mid-infrared Instrument for JWST and Its In-flight Performance
Gillian Wright et al 2023, PASP 135 048003

In-orbit performance of NIRISS
René Doyon et al. 2023, PASP 135 098001|

The Science Performance of JWST as Characterized in Commissioning
Jane Rigby et al. 2023, PASP 135 048001 *

How Dark the Sky: The JWST Backgrounds
Jane Rigby et al. 2023, PASP 135 048002 *

The James Webb Space Telescope Mission: Optical Telescope Element Design,

Development, and Performance
Michael McElwain et al. 2023, PASP 135 058001 *

The Design, Verification, and Performance of The James Webb Space Telescope
M. Menzel et al. 2023, PASP 135 058002

The James Webb Space Telescope Mission
Jonathan Gardner et al. 2023, PASP 135 068001 *



https://iopscience.iop.org/collections/pasp-230123-100

Evolution of JWST science papers
How well JWST works
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JWST has found thousands of galaxies at z>9, transforming our
understanding of the first Gigayear of cosmic history.
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(2023a), Perez-Gonzaléz et al. (2023), Leung et al. (2023), and Casey et al.
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For the first time, we have diagnostic spectra for hundreds of
galaxies as they looked ~500 Myr after the Big Bang.
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For the first time, we have diagnostic spectra for hundreds of
galaxies as they looked ~500 Myr after the Big Bang.

ArXiv 18 Mar 2024: a galaxy at redshift z=12.3; lookback time of 13.4 Gyr; seen as it looked 350
Myr after the Big Bang (Planck 2018 cosmology)

Rest-frame optical diagnostics at z=12.3! Sub-solar oxygen abundance, apparent non-solar N/C/O
abundance ratios, extremely high ionization, possible AGN

Castellano et al. (2024) Zavala et al. (2024)
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Figure 1: JWST/MIRI spectrum of GHZ2 at z = 12.3. Top left: NIRCam F444W cutout image (5" x 5”) centered at the position of

GHZ2, with the MIRI/LRS slit illustrated with the red rectangle (at the two different dither positions). The combined 2D spectrum and the

1(1sed aperture for the 1D extraction are also plotted (see details in the Section Methods). Bottom left: 1D extracted spectrum at the position

Rigby - CAA - 3/2024 of GHZ2 across the most sensitive wavelength range, Aobs &2 5.7 — 10 um and the associated 1o uncertainty (gray region). The redshifted



JWST has revealed that z>10 galaxies are brighter and more
numerous than expected.
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Was star formation more
efficient?

Does feedback not work at
high redshift?

Are there preferentially more
massive stars? (“top-heavy
IMF”)

|s there some contribution
from zero-metallicity stars?
(“Pop lll stars™)



JWST has found high redshift galaxies whose star formation has
completely turned off.
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JWST is finding *a lot* of accreting supermassive black holes in

the early universe.
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20% of galaxies in deep NIRSpec spectra show
narrow-line AGN signatures. Sholtz et al. (2024)

Rigby - CAA - 3/2024

Chandra

Bogdan et al. (2023): an
X-ray quasar with a
photometric redshift of
z=10.3 from JWST



Growing these AGN from solar-mass black holes would require
(implausibly?) very high accretion rates. May need bigger seeds.
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JWST made the first detections of key molecules CO2, SO,, CH4, and
SiO2in the atmospheres of transiting giant planets.
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JWST is searching Earth-mass exoplanets for atmospheres. It’s hard,

Rigby

) FluxH(/uJy) )

because of clouds, host star activity, and the need for the highest

Trappist 1b (Greene et al. 2023) and Trappist 1c (Zieba et al.) likely do NOT

have thick atmospheres.

MIRI imaging, Greene et al. (2023)

—— 503 Kmeas. BB |
400 K Teq BB

—— 508 K 0 redist BB
CO, 93 bar

Expected F1280W
2.5% Measured F1500W _ o. 4 c0, 10 bar |

\

- CAA - 3/2024

Wavelength (um)

precision.

planet-to-star flux (ppm)

800

700 A

600 -

500 A1

400 A

300 A

200 A

100 A

MIRI imaging, Zieba et al. (2023)

—=- 430 K blackbody (inst. rerad.)

340 K blackbody (ful

| redist.)

—— 0.1 bar O, + 100 ppm CO,
—— 10.0 bar O, + 100 ppm CO,

— ultramafic rock
cloudy Venus 10 bar
@ measured

CO;

wavelength (microns)

_A’ / . i i \: /
4 6 8 10 12 14 16



JWST is searching Earth-mass exoplanets for atmospheres. It’s hard,
because of clouds, host star activity, and the need for the highest

precision.
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JWST has studied the dustiest of galaxies, obtaining diagnostics
that were previously impossible.

The dusty galaxy GN20 at z=4.0.

The dust attenuation is measured as Av=44 + 3
magnitudes.

The gas kinematics are dominated by rotation.

JWST/MIRI map of Paschen alpha

5 kpc

Bik et aI submitted 8
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JWST has improved cosmological constraints - showing that the
Hubble tension is not due to the systematic effect of crowding.
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JWST has charted star-by-star the star formation history of a dwarf

galaxy, complete down below eoldmin sequence turnoff.




JWST has charted star-by-star the star formation history of a dwarf
galaxy, complete down below theoldmin sequence uro.
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JWST has charted star-by-star the star formation history of a dwarf
galaxy, complete down below the oldest main sequence turnoff.
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JWST has identified a compact object in the remnants of
supernova SN1987A.

NIRCam MIRI MRS, singly-ionized Argon

NIRSpec IFU, 5x ionized Argon
-

Rigby - CAA - 3/2024 = Fransson et al. (2024)



JWST is improving our understanding of the mechanisms
governing planet-forming disks
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Ramirez-Tannus et al. (2023) report abundant water, CO,
12CO,, HCN, and C,H, in the inner few au of XUE 1, a
highly irradiated disk in NGC 6357.
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24

Espaillat et al. (2023): Left: JIWST MIRI MRS spectrum from
2023 and Spitzer IRS SH spectrum from 2008 Right:
comparisons between the [Ne Il] and [Ne lll] lines within the

same observation.
[Nelll] to [Nell] ratio is 1.4 +-0.4 for Spitzer and 0,2 +-0.06

for JWST

Slide from Macarena Garcia-Marin



JWST is improving our understanding of the mechanisms
governing planet-forming disks
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Banzatti et al. (2023). Continuum-subtracted infrared
water spectra of the compact disk GK Tau (in black) and
the large disk Cl Tau (in gray). Excess emission in the low-
energy lines in compact disks compared to large disks;
enhanced cool component with T= 170-400 K and
equivalent emitting radius Req = 1-10 au.

Banzatti et al. lllustration of the interpretation of the
results in the context of the long-proposed scenario
of inner water enrichment by pebble drift

Slide from Macarena Garcia-Marin



Plumes of water leaking out of Saturn’s moon Enceladus

Villanueva et al. (2023a)




JWST has detected carbon dioxide over “chaos terrain” regions of
Jupiter’s moon Europa — presumably leaking from the ocean.

A Europa NIRCam image

Centered at 3°N 88°W

Villanueva et al. (2023b) £
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Summary

« JWST is performing better than requirements, better than we dared hope.
« JWST papers (N>600 to date) cover an extremely broad range of science.

 JWST’s capabilities have transformed our view of the high-redshift
universe, and are determining the chemical composition of giant planets.

 The user community is analyzing high-quality data, making discoveries, and
proposing new observations.

* Improvements to the pipeline and calibrations will make it easier to make
data science-ready, with the potential to broaden the user community.

 |t’s still early days — the most significant discoveries lie ahead.
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JWST Wavefront Monitoring & Maintenance, Cycle 1
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