


# GLOBAL MONTHLY MEAN CO<sub>2</sub> 420 400 380 340 340 320 1980 1990 2000 2010 2020 2030 YEAR





# An Interagency Greenhouse Gas Information and Analysis System

Ben Poulter<sup>1</sup>, Arlyn Andrews<sup>2</sup>, Lori Bruhwiler<sup>2</sup>, with Kevin Bowman<sup>3</sup>, Abhishek Chatterjee<sup>3</sup>, Dave Crisp<sup>3</sup>, Grant Domke<sup>4</sup>, George Hurtt<sup>5</sup>, David Lawrence<sup>6</sup>, John Miller<sup>2</sup>, Douglas Morton<sup>1</sup>, Lesley Ott<sup>1</sup>, Sasha Reed<sup>7</sup>, Dave Schimel<sup>3</sup>, Gyami Shrestha<sup>8</sup>, Margaret Torn<sup>9</sup>, Chris Williams<sup>10</sup>, Lisamarie Windham-Myers<sup>7</sup>, John Worden<sup>3</sup>



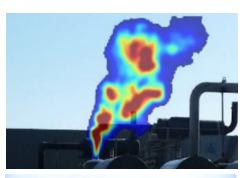














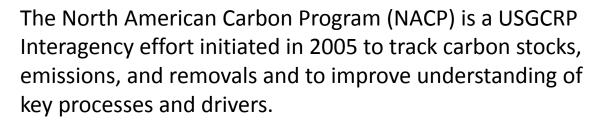



Presentation to Steering Committee on Earth Sciences and Applications from Space Fall Meeting 2021

### Aim: Integrate and expand existing interagency capabilities within a GHG observing system








- Detection and attribution of climate-carbon feedbacks
  - Strategic monitoring; optimize and sustain observing networks
  - Multi-scale data integration; ground networks, aircraft, and space-based obs.
  - Earth system perspective; assess both anthropogenic and natural emissions
  - Robust forecasts and projections: seasonal-to-subseasonal to multi decadal
  - Inform policy; monitor efficacy of climate mitigation and CO<sub>2</sub> removal (CDR)
- Enhance National Greenhouse Gas Inventories (NGHGI)
  - New technologies; remote sensing of biomass and GHGs
  - Advances in modeling; spatially explicit gridded emissions and removals
  - Lower latency activity data; improved observations of emissions and removals
  - Build alobal canacity: 128 countries have no reported national inventory

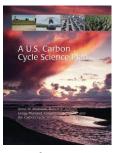
USGCRP agencies are poised to integrate existing networks into a sustained and strategic greenhouse gas observing system

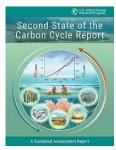
### Two-decades of research laid groundwork for operational Interagency Greenhouse Gas Information System








NASA responded to Congressional direction starting in 2012 to develop a prototype Carbon Monitoring System. They have engaged researchers from other Agencies via a competitive research process.


These research efforts have demonstrated new observational capabilities and data services that are ripe for transition to sustained operations:

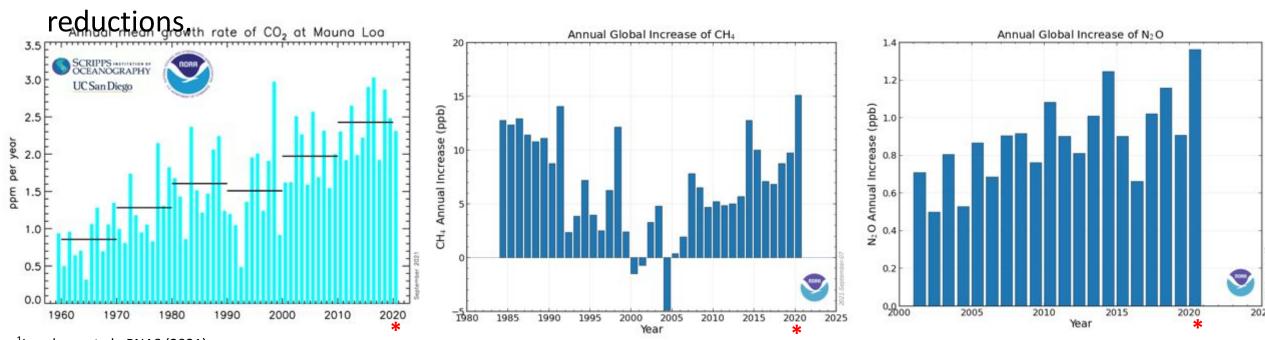
- Improved mechanisms to support long-term planning and interagency coordination are needed (i.e., sustained and directed funding).
- A continuum from research to sustained operations should be maintained to ensure measurement compatibility over decades while allowing for innovation.
- Ongoing engagement with academic researchers and opportunities to develop public:private partnerships are crucial.

### Sustained operations of GHG observations





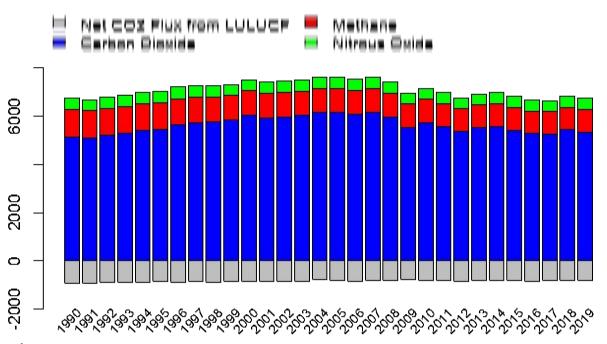


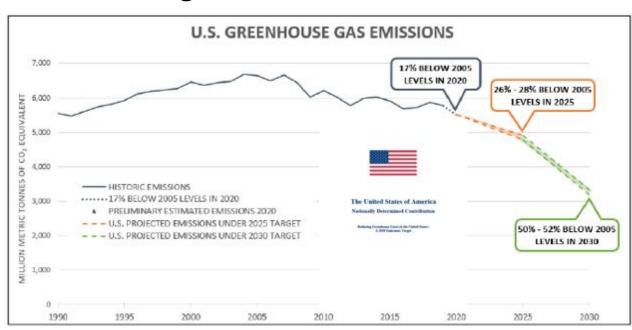





- There is no long-term plan in the United States to support monitoring of greenhouse gases and carbon stocks, or to transition to sustained operations
  - The Status of the Global Climate Observing System 2021: The GCOS Status Report, (GCOS-240), WMO, Geneva.
    - Ensuring the sustainability of observations,
    - Addressing gaps in the system,
    - Ensuring permanent, free and unrestricted access to the observations,
    - Increasing support for policies driven by the UNFCCC Paris Agreement.
  - NACP National Science Implementation Plan (NSIP)
    - Establishment of an interagency National Carbon Monitoring System
    - Strategic investments to further develop and expand in situ measurements to address critical gaps in the current carbon observing system
    - Guidance from the science community to design an integrated and sustained carbon observing system
    - Routinely updated, high resolution, national and global gridded estimates of anthropogenic emissions and ecosystem fluxes for CO<sub>2</sub> and CH<sub>A</sub>
    - New coordinated intensive measurement activities to address key uncertainties identified in SOCCR-2
    - Continued and expanded coordination with international partners (e.g., ICOS, Copernicus)

### The COVID-19 Earth system 'experiment'


- Despite a 5-7% drop in  $CO_2$  emissions, growth rates of atmospheric greenhouse gases ( $CO_2$ ,  $CH_4$  and  $N_2O$ ) increased rapidly in  $2020^{1,2}$ .
- Immediate need for integrated system to contextualize natural variability and carbon-climate feedbacks to enable monitoring, reporting, and verification of emission

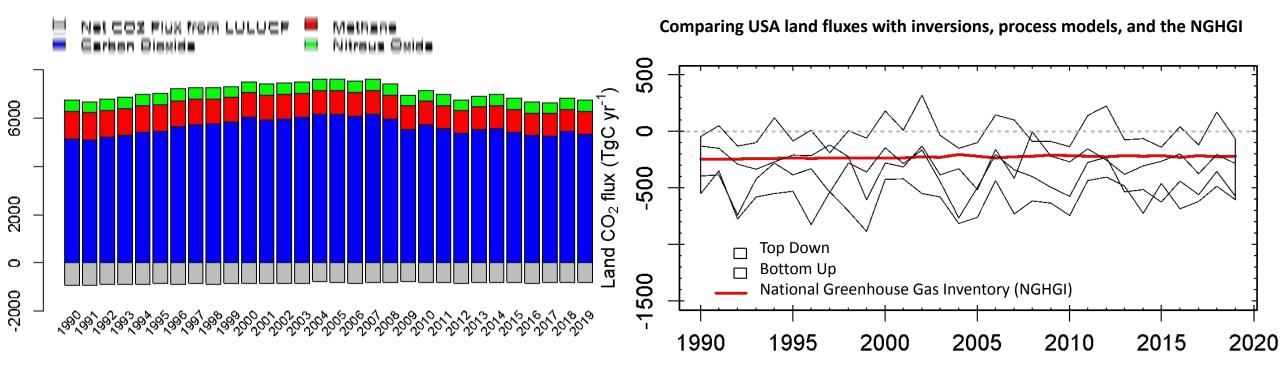



<sup>1</sup>Laughner et al., PNAS (2021) <sup>2</sup>Weir et al., Science Advances (2021)

### Policy Basis: Observing needs to inform the Paris Agreement

- US Government Nationally Determined Contribution (NDC) aims for 50% reduction of GHGs by  $2030^1$  & Global Methane Pledge will reduce  $CH_4$  emissions by 30% by  $2030^2$
- The Global Stocktake requires an accurate summary of emissions and removals consistent with Article 4.1 of the Paris Agreement aiming for net zero emissions






<sup>&</sup>lt;sup>1</sup>From 2005 levels

<sup>&</sup>lt;sup>2</sup>From 2020 levels

## The Global Stocktake will require coordinated and integrated GHG

- Land and oceans remove about half of CO<sub>2</sub> emissions and large year-to-year variability is not included in UNFCCC National Inventory Reports.
- Ground, air, and spaceborne GHG observation networks integrated within data assimilation systems can provide needed framework for MRV.



### Timeline for formation of Interagency Greenhouse Gas Information and Analysis System

#### **Domestic**

**2008/2009:** GHGIS Workshop recommendation

**April 2017:** OSTP task force recommendation for

Greenhouse Gas Observations and Analysis Working

Group (GGOAWG)

**January 2021:** US rejoins Paris Agreement

March 2021: NACP public comment on National

Science Implementation Plan

**April 2021:** NASA Earth System Observatory

May 2021: OSTP to USGCRP 'science

acceleration' public letter

June 2021: CCIWG recognizes interagency

operational GHG workstream

#### **International**

**2016:** Integrated Global Greenhouse Gas Information

System (IG3IS), urban focus

**2020-ongoing:** CEOS Global Stocktake GHG and

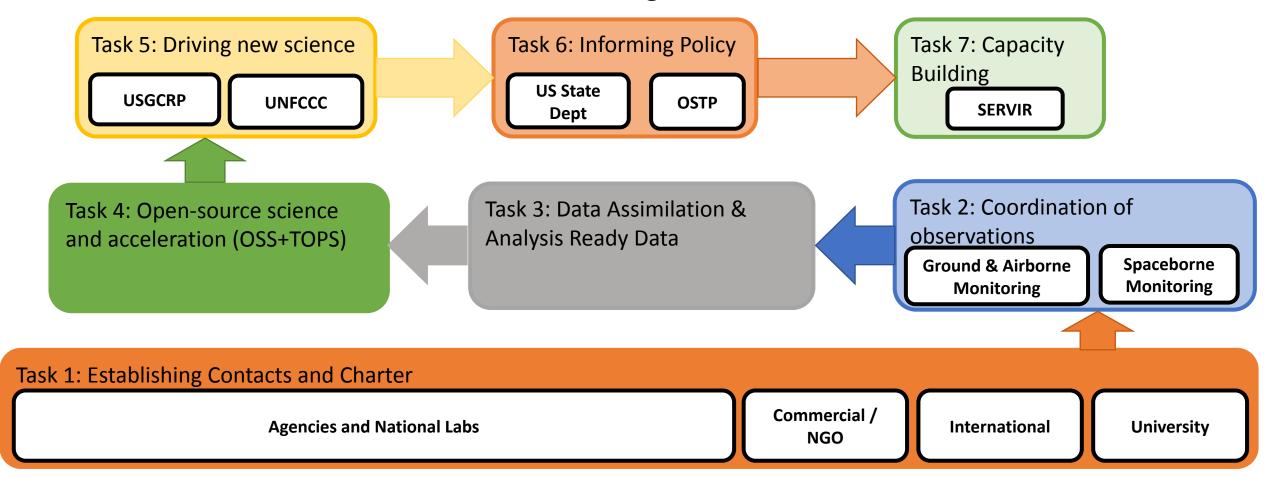
**AFOLU** activities

**January 2021:** EU Prototype system for a Copernicus

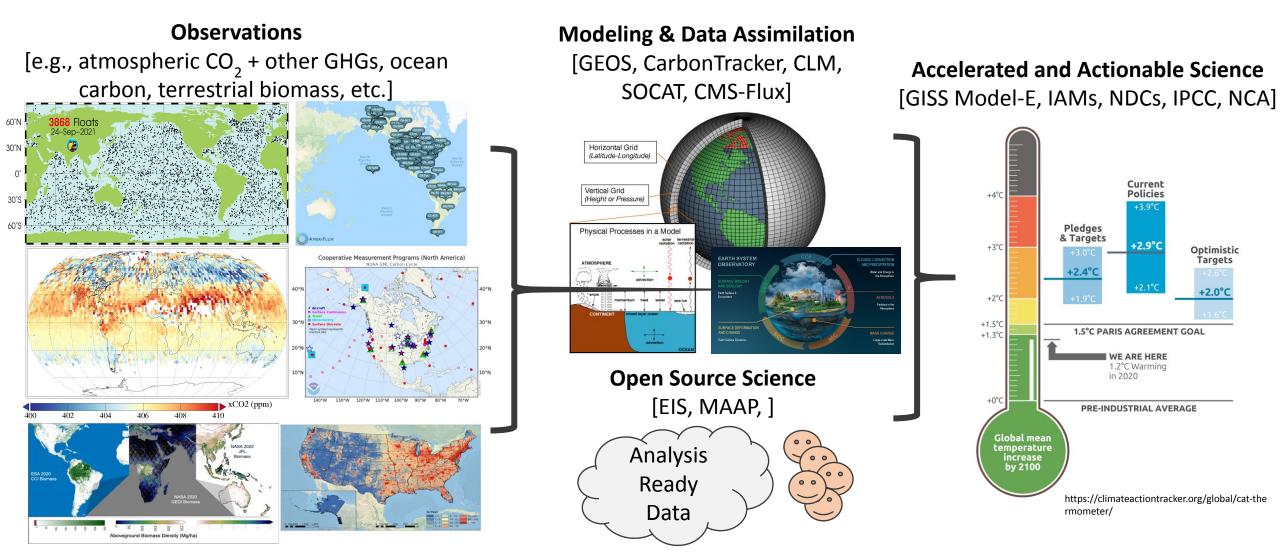
CO<sub>2</sub> service (CAMS) CoCO2 kick off (CO<sub>2</sub>M, MERLIN)

March 2021: UNEP establishes International

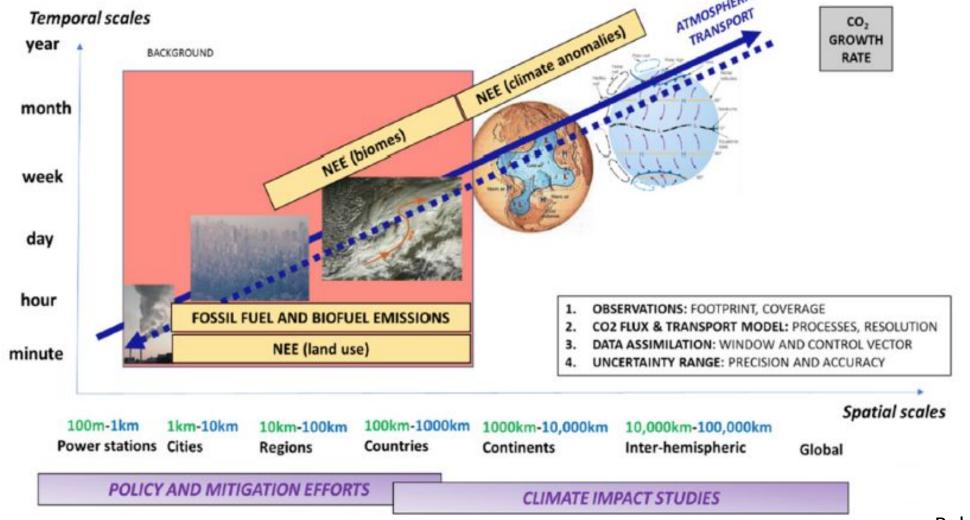
Methane Emission Observatory


**August 2021:** IPCC WGI releases 6<sup>th</sup> Assessment

Report



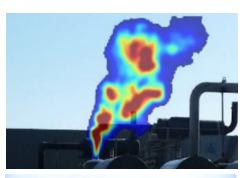

### Framework for an Interagency GHG Information and Analysis System


 Many of the components necessary for an interagency GHG information system exist and a mandate is needed to initiate integration



### Expanding and sustaining strategic observing networks, enabling low-latency science




### Informing stakeholder needs across multiple time and space scales



### Near and long-term actions

| Action                   |                                                                                                                                                                                                                                                            |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Near term<br>2021-2022   | <ul> <li>Socialize and develop concept</li> <li>AGU Town Hall (CCIWG, ObsIWG, CAMS)</li> <li>AMS presentation</li> <li>Invest in National Academies consensus study (2022)</li> </ul>                                                                      |
|                          | <ul> <li>Develop more detailed plan and budgets</li> <li>Infrastructure needs (sites, isotopes, aircore, aircraft)</li> <li>Continuity of space-based measurements</li> <li>Modeling needs</li> <li>Organizational and communications structure</li> </ul> |
|                          | <ul> <li>Pilot study</li> <li>Demonstrate low-latency and forecasting capabilities</li> </ul>                                                                                                                                                              |
|                          | Integration with IG3IS, ClimateTrace, CarbonMapper, Emissions Information System, NASA Earth System Observatory (ESO)                                                                                                                                      |
| Longer-term<br>2023-2028 | Implementation of observation and modeling strategy w/ Tiered budgets                                                                                                                                                                                      |
|                          | Coordination with Copernicus Atmospheric Monitoring Service and IMEO                                                                                                                                                                                       |
|                          | Operational readiness for climate mitigation and future climate assessments                                                                                                                                                                                |

### Aim: Integrate and expand existing interagency capabilities within a GHG observing system







- Detection and attribution of climate-carbon feedbacks
  - Strategic monitoring; optimize and sustain observing networks
  - Multi-scale data integration; ground networks, aircraft, and space-based obs.
  - Earth system perspective; assess both anthropogenic and natural emissions
  - Robust forecasts and projections: seasonal-to-subseasonal to multi decadal
  - Inform policy; monitor efficacy of climate mitigation and CO<sub>2</sub> removal (CDR)
- Enhance National Greenhouse Gas Inventories (NGHGI)
  - New technologies; remote sensing of biomass and GHGs
  - Advances in modeling; spatially explicit gridded emissions and removals
  - Lower latency activity data; improved observations of emissions and removals
  - Build alobal canacity: 128 countries have no reported national inventory

USGCRP agencies are poised to integrate existing networks into a sustained and strategic greenhouse gas observing system

### Backup

#### Interagency and International Context

- The US Global Change Research Program (USGCRP) coordinates research across 13 federal agencies
  - Thirteen Agencies, One Vision: Empower the Nation with Global Change Science
  - Congressionally Mandated
  - US Carbon Cycle Science Program, Interagency Groups



- The US Group on Earth Observations (USGEO) coordinates Federal Agencies' civil Earth observations activities.
  - Subcommittee under the White House National Science and Technology Council's (NSTC) Committee on the Environment (CE).
  - Coordinates participation in the international Group on Earth Observations (GEO), an international voluntary partnership in which the United States is a member and leader
- The Global Climate Observing System (GCOS) aims to provide systematic observations to support the UNFCCC. Related WMO efforts include Global Atmosphere Watch and Integrated Global Greenhouse Gas Information System (IG3IS).

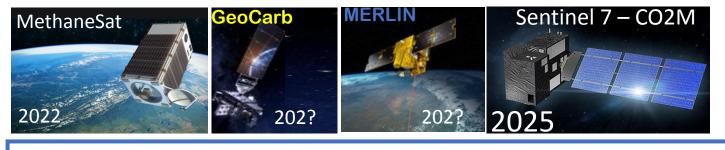






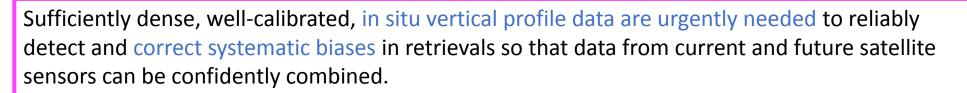


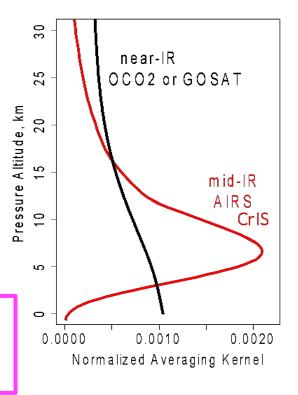





#### International Atmospheric Carbon Satellite Measurement Capabilities

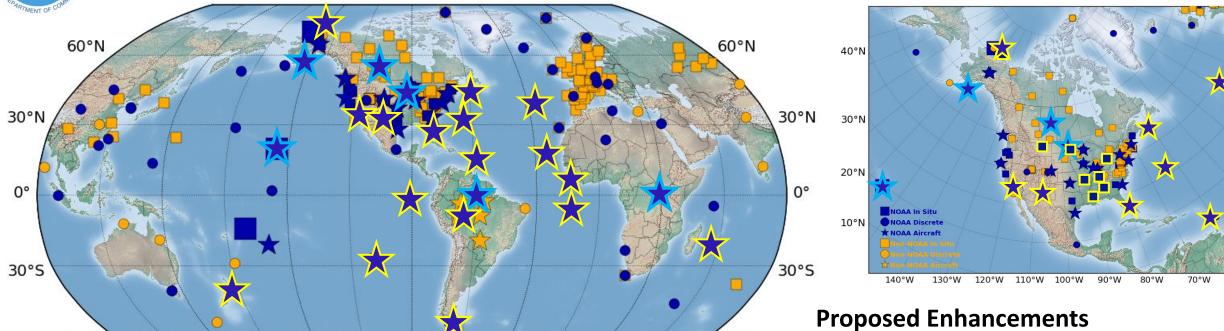
**NEAR-IR: Present** 





Near-IR: Coming soon






Combined thermal-IR and near-IR satellite measurements theoretically enable separation of boundary layer versus free-troposphere signals with rigorous data assimilation techniques.





The US lacks a long-term strategy for satellite greenhouse gases monitoring. A NASA/NOAA plan for sustained atmospheric GHG measurements is needed.

#### **GGGRN**: Restoration and Expansion



60°S 60°S in NOAA's FY22 budget: 20 new Aircraft sites **NOAA Continuous** 

30°E

- 8 new tall tower sites



150°W

150°E

**NOAA Flask** 

**NOAA Aircraft** 

Non-NOAA Flask

Non-NOAA Aircraft

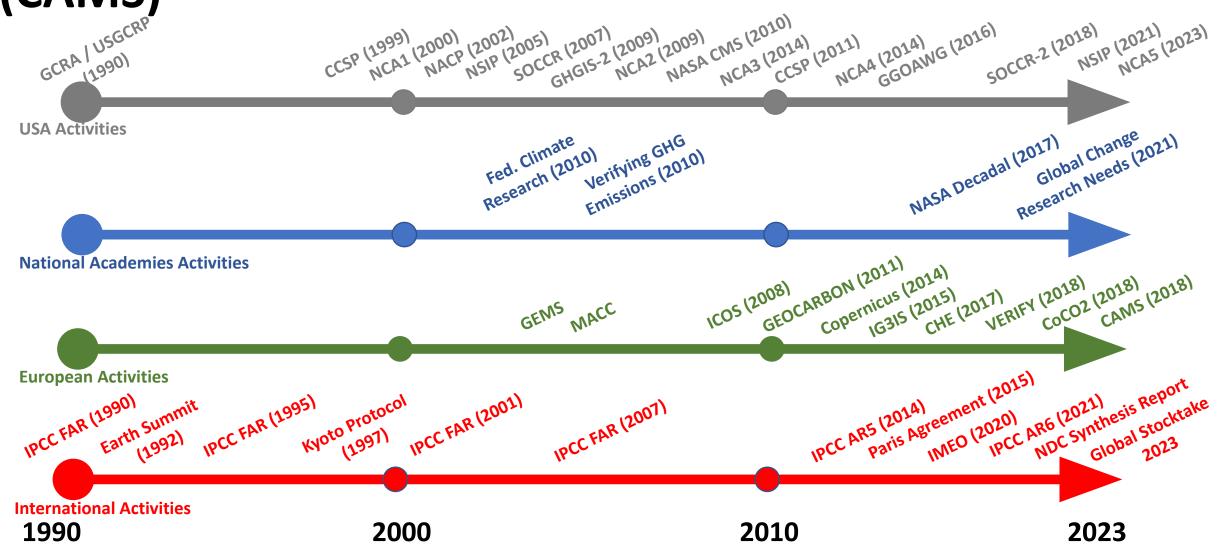
Non-NOAA Continuous

**NOAA GHG Measurements on** Boeing/Alaska Airlines ecoDemonstrator

**Transformative Opportunity:** Commercial aircraft GHG measurements are "shovel ready":

- **Unprecedented 4-D resolution**
- Identify and correct biases in satellite datasets

#### Towards an International Integrated Greenhouse Gas Observing System








Note: Not a comprehensive depiction of all current measurement programs!

# Interagency GHG system would complement the Copernicus Atmospheric Monitoring Service (CAMS)



#### **Photo credit:**

- Side 1 (photos):
  - nasa.gov image of Earth
- Slide 2 and 13 (photos):
  - https://commons.wikimedia.org/wiki/File:Hyperspectral\_gas\_leak\_detection.
     png
  - https://commons.wikimedia.org/wiki/File:Fire-Forest.jpg
  - https://commons.wikimedia.org/wiki/Category:Effects\_of\_thawing\_permafro st#/media/File:Permafrost\_in\_Herschel\_Island\_001.jpg