



JCSDA NOAA CDP Observation Evaluation and Impact Assessment

Benjamin Ruston, Thomas Auligne, Fabio Diniz, Samantha Maticka and Francois Vandenberghe

JCSDA - The Force Multiplier Bringing Agencies Together

The "Quiet Revolution"
Agencies converging on
next-generation,
open-source, unified
data assimilation

Consortium of *Jointness* **–** More science, less redundant work

Overview

The NOAA NESDIS Commercial Data Program (CDP) has enabled access to **Spire GNSS-R** ocean surface winds (OSW) data. These are converted to JCSDA JEDI IODA format.

JCSDA will use **JEDI Skylab** testbed with the JEDI MPAS and JEDI FV3 configurations for end-to-end experimentation.

JCSDA has specifically designed for GNSS-R OSW, JEDI configuration files (YAML format). These provide a user-friendly way to customize quality control procedures and observation error assignments, independently of the JEDI source code.

Code baseline and code updates will be **publicly accessible** via the open source version of JEDI on JCSDA GitHub repository.

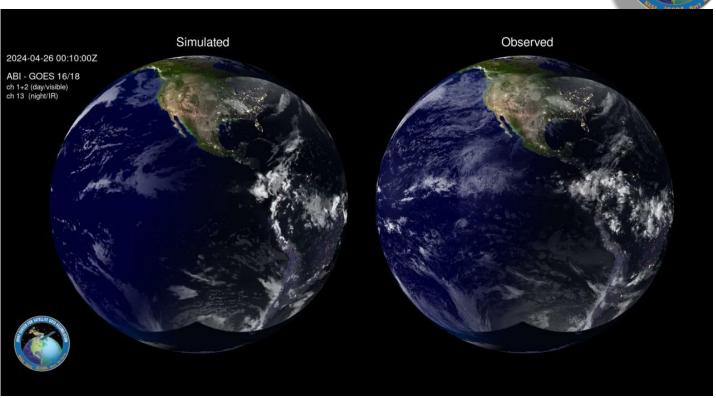
<u>JEDI Github - jedi-bundle</u> <u>JEDI Documentation - readthedocs</u>

Recent news (20Mar2025): Weather Company adopts JEDI to improve everyday forecasts

Observation Impact Assessment

Data Assimilation is used to evaluate impact of observations on environmental model(s).

JEDI:


Configurable model-agnostic observation operators

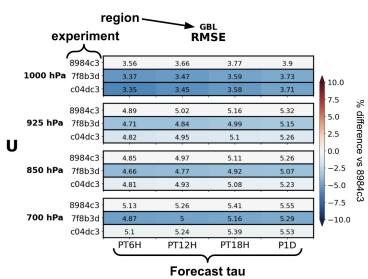
right figure:

JEDI trial at high-spatial and temporal resolution

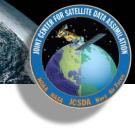
demonstration of:

GOES visible & IR, and ground-based RADAR

SkyLab Experimental Testbed Environment


TOSON MANAGEMENT OF THE PARTY O

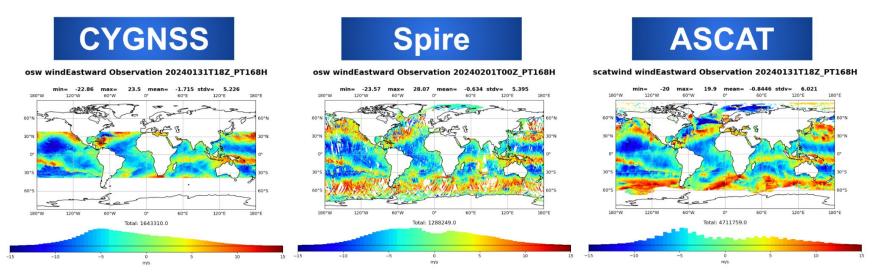
JCSDA JEDI SkyLab is an **end-to-end workflow** for a cycling data assimilation system.


SkyLab brings multiple model interfaces that are abstracted allowing for generic observation operators and solving methods.

JCSDA Skylab diagnostics include the ability to use an **external analysis as verification**. We routinely use the ECMWF ERA-5.

Shown to the right is a verification of a Skylab run with JEDI-MPAS, demonstrating GNSS-R OSW data.

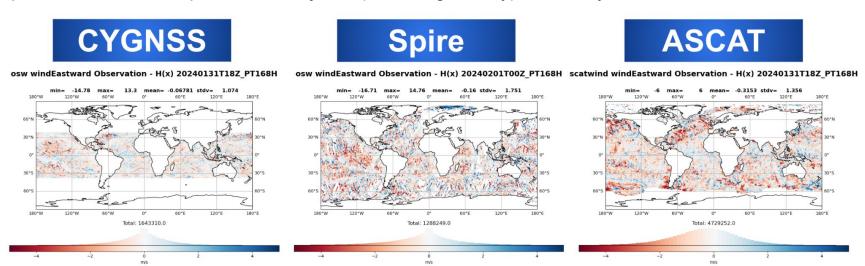
SkyLab Experimental Testbed Steps


1. Observation data ingest & processing

2. Compute Observed minus Simulated (OmB) departures

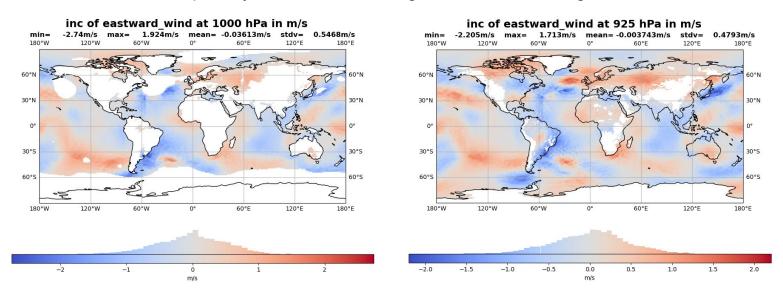
3. Compute DA increment + forecast + observation impact

SkyLab Step 1: Observation Ingest and Processing


JCSDA examined the NOAA purchased Spire OSW dataset (about 6 mos), it was ingested alongside the NASA CyGNSS data and other ocean winds such as the EUMETSAT ASCAT scatterometer.

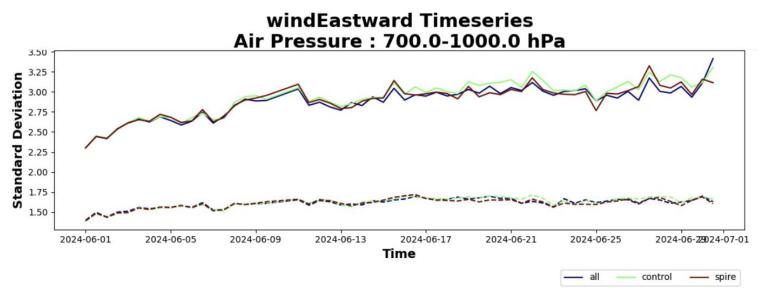
Data ingest enabled from NOAA, python-based decoder established for JEDI IODA file creation from GNSS-R OSW from CyGNSS, Spire and Muon. Decoders in-place for other NOAA operational observations.

SkyLab Step 2: Compute Observed minus Simulated


JCSDA created a new JEDI observation function allowing the use of the wind direction from the model to separate the OSW speed into zonal and meridional components. This provided an end-to-end ability to perform the forward operator and adjoints (assuming identity) necessary for variational data assimilation.

A combination of passive runs and non-cycling DA (re-initialized for each time) were run over the entire dataset. These helped to establish quality control methods and observation error determination.

SkyLab Step 3: Compute DA increment


In-depth examination of the analysis response, and increments (inc) were undertaken to ensure system performance. The final impact system was a 30 km global 3DEnVar using the JEDI-MPAS interface.

A single snapshot of increments from Feb 16, 2024, at 00 UTC for the zonal or eastward wind.

SkyLab Step 3: Observation Impact

The change in fit of other observations in JEDI Skylab can help determine value to system.

The fit of radiosonde by the cycling system as it evolves shows differing response to the additional data. Trials for June 2024 shown above for: control (no GNSS-R OSW), Spire, and Spire+CyGNSS+Muon.

SkyLab Step 3: Forecast Impact

Forecast impacts to 24-hours for JEDI-MPAS system using ERA-5 as verification baseline.

		GBL RMSE				TRP RMSE								GBL RMSE				TRP RMSE				_
	8984c3	2.02	2.04	2.07	2.1	1.12	1.13	1.14	1.15	10.0			8984c3	3.56	3.66	3.77	3.9	1.85	1.9	1.94	1.99	1
1000 hPa	7f8b3d c04dc3	1.96 1.95	1.98	2.01	2.04	1.12	1.11	1.12	1.13 1.15	7.5		1000 hi	a 7f8b3d c04dc3	3.37	3.47 3.45	3.59 3.58	3.73 3.71	1.8	1.85	1.9	1.95 1.99	
	044003	1.95	1.90	2.01	2.04	1.12	1.13	1.13	1.15		%		044005	3.35	3.43	3.30	5.71	1.03	1.09	1.94	1.99	!
	8984c3	3.04	3.1	3.15	3.21	1.19	1.2	1.22	1.24	5.0	diffe		8984c3	4.89	5.02	5.16	5.32	2.3	2.39	2.46	2.51	
925 hPa		2.94	2.99	3.05	3.11	1.18	1.2	1.22	1.24	2.5	ere	925 hP	7f8b3d	4.71	4.84	4.99	5.15	2.26	2.34	2.41	2.47	1
Г	c04dc3	3	3.05	3.1	3.17	1.19	1.21	1.23	1.25	0.0	nce	U	c04dc3	4.82	4.95	5.1	5.26	2.29	2.38	2.45	2.51	1
-	8984c3	2.75	2.8	2.86	2.92	1.35	1.36	1.38	1.4		S	-	8984c3	4.85	4.97	5.11	5.26	2.68	2.8	2.9	2.98	1
850 hPa		2.65	2.7	2.75	2.81	1.33	1.35	1.36	1.38	-2.5	89	850 hP	7f8b3d	4.66	4.77	4.92	5.07	2.63	2.75	2.84	2.93	
	c04dc3	2.73	2.78	2.84	2.9	1.34	1.36	1.37	1.39	-5.0	84		c04dc3	4.81	4.93	5.08	5.23	2.68	2.8	2.9	2.99	1
	8984c3	2.49	2.53	2.58	2.64	1.44	1.46	1.47	1.5	-7.5	\mathbb{G}		8984c3	5.13	5.26	5.41	5.55	3.13	3.2	3.28	3.36	
700 hPa	7f8b3d	2.39	2.44	2.48	2.53	1.42	1.43	1.45	1.47			700 hP	7f8b3d	4.87	5	5.16	5.29	3.09	3.16	3.24	3.32	
	c04dc3	2.46 PT6H	2.5 PT12H	2.55 PT18H	2.6 P1D	1.43 PT6H	1.44 PT12H	1.46 PT18H	1.48 P1D	-10.0			c04dc3	5.1 PT6H	5.24 PT12H	5.39 PT18H	5.53 P1D	3.12 PT6H	3.2 PT12H	3.28 PT18H	3.37 P1D	_ ₹-
	,												,									
	8984c3	0.0011	0.00112	0.00113	0.00116	0.00119	0.00119	0.0012	0.00122	10.0			8984c3	3.62	3.74	3.86	3.99	1.95	1.98	2.02	2.06	
1000 hPa	7f8b3d c04dc3	0.00108	0.00109	0.00111	0.00113	0.00119	0.00119	0.0012	0.00121	7.5		1000 H	a 7f8b3d c04dc3	3.46	3.59	3.71	3.85	1.91	1.94	2.01	2.02	
	C040C3]	0.00109	0.00111	0.00113	0.00115	0.00119	0.0012	0.00121	0.00122		%		C04uC3]	3.53	3.00	3.8	3.94	1.94	1.97	2.01	2.05	1
	8984c3	0.00139	0.00141	0.00144	0.00147	0.00161	0.00162	0.00164	0.00166	5.0	diffe		8984c3	4.81	4.96	5.11	5.27	2.2	2.25	2.3	2.34	
925 hPa		0.00138	0.0014	0.00143	0.00146	0.0016	0.00162	0.00164	0.00166	2.5	ere	925 hP	7f8b3d	4.67	4.82	4.97	5.13	2.17	2.22	2.27	2.31	
)	c04dc3	0.00138	0.0014	0.00143	0.00146	0.0016	0.00162	0.00164	0.00166	0.0	nce	V	c04dc3	4.8	4.95	5.11	5.28	2.19	2.25	2.29	2.34	!
•	8984c3	0.00173	0.00176	0.00179	0.00183	0.0023	0.00233	0.00235	0.00239		×S	-	8984c3	4.72	4.84	4.98	5.13	2.28	2.35	2.41	2.47	
850 hPa		0.00171	0.00173	0.00177	0.0018	0.00229	0.00231	0.00233	0.00237	-2.5	80	850 hP	7f8b3d	4.55	4.67	4.81	4.96	2.25	2.31	2.37	2.42	
	c04dc3	0.00171	0.00174	0.00177	0.00181	0.0023	0.00232	0.00235	0.00238	-5.0	8984		c04dc3	4.69	4.82	4.96	5.12	2.28	2.34	2.4	2.46	
	8984c3	0.00139	0.00141	0.00144	0.00147	0.00198	0.002	0.00202	0.00204	-7.5	\mathbb{G}		8984c3	5.06	5.22	5.37	5.52	2.68	2.73	2.78	2.84	
	7f8b3d	0.00136	0.00138	0.00141	0.00145	0.00195	0.00197	0.00199	0.00202			700 hP	7f8b3d	4.8	4.95	5.1	5.24	2.65	2.7	2.75	2.8	
700 hPa			0.00100	0.00142	0.00145	0.00195	0.00197	0.002	0.00202	-10.0			c04dc3	5.02	5.17	5.33	5.47	2.67	2.72	2.77	2.83	I ₩
700 hPa	c04dc3	0.00137 PT6H	0.00139 PT12H	PT18H	P1D	PT6H	PT12H	PT18H	P1D				04400	PT6H	PT12H	PT18H	P1D	РТ6Н	PT12H	PT18H	P1D	

Forecast impact for June 2025 is shown for three trials with RMSE difference again ERA-5 shown in cell. Control (8984c3), Spire OSW (7f8b3d) and NOAA L2 Spire (c04dc3).

Summary and Conclusions

JCSDA is developing JEDI, a broad **cross-functional configurable assimilation system** for partner applications.

JEDI SkyLab is used by JCSDA to **demonstrate observation behavior and establish pathways** for current and emerging data to be assimilation (e.g. error estimation methodology and quality control approaches).

JCSDA has created ingest pathways for GNSS-R Ocean Surface Wind (OSW) from multiple sources the NASA CyGNSS, Spire and Muon Space.

JCSDA has exercised the JEDI-FV3 and JEDI-MPAS interfaces with SkyLab, to develop configurations that **display positive impact from GNSS-R OSW** on environmental forecasts.

The highly customizable JEDI system as demonstrated with Skylab is being used for a wide-range of applications, and provides a **user-friendly way to customize** quality control procedures and observation error assignments, independently of the JEDI source code.

Questions

SkyLab Step 3: System Configuration

This YAML is the JCSDA JEDI Skylab working configuration for Spire OSW assimilation.

ufo — vi osw_spire.yaml — 110×72 name: osw_spire _source: testing obsdatain: missing file action: error obsdataout: engine: type: H5File allow overwrite: true io pool: write multiple files: true simulated variables: [windEastward, windNorthward] observed variables: [windSpeed] derived variables: [windEastward, windNorthward] vertical coordinate: height_above_mean_sea_level observation vertical coordinate: height interpolation method: linear obs filters: filter: Variable Assignment assignments: - name: DerivedObsValue/windDirection name: ObsFunction/WindUVfromObsSpdHofxDir hofx_group: HofX Assign obsError filter: Perform Action filter variables: - name: windEastward name: windNorthward action: name: assign error error parameter: 3.5 filter: PreQC filter variables: - name: windSpeed maxvalue: 0 name: reject Apply quality control filters filter: Background Check filter variables: - name: windEastward - name: windNorthward threshold: 3.0 name: reject defer to post: true Reject eastward wind where northward wind was rejected and vice versa. filter: RejectList filter variables: - name: windNorthward - variable: OCflagsData/windEastward minvalue: defer to post: true filter: RejectList filter variables: - name: windEastward where: - variable: QCflagsData/windNorthward minvalue: 1 defer to post: true