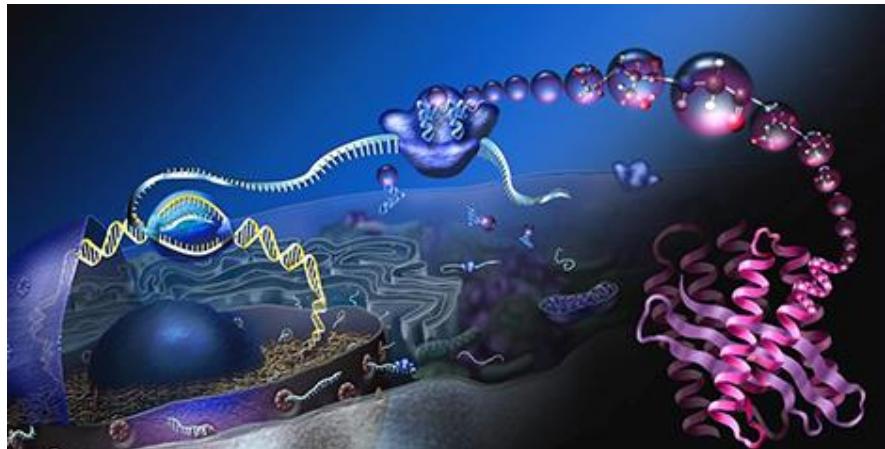
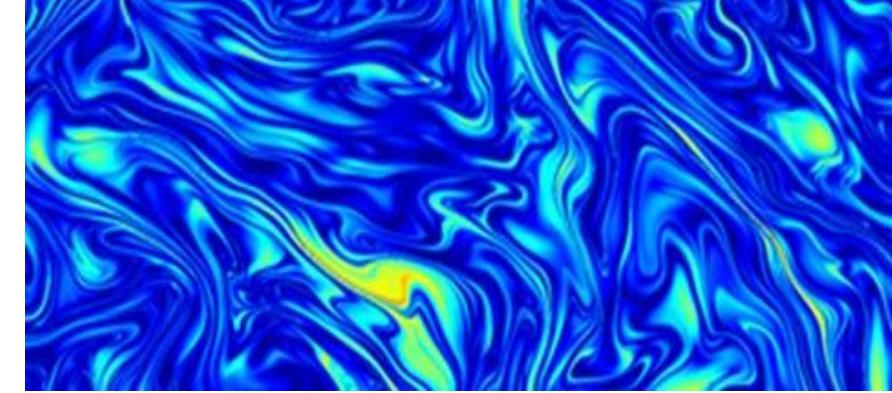
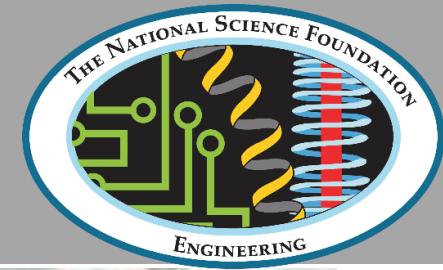


SPRING 2019 MEETING OF THE COMMITTEE ON BIOLOGICAL AND PHYSICAL SCIENCES IN SPACE - The National Academies of ESM

Shahab Shojaei-Zadeh, PhD
CBET Division, Engineering Directorate
National Science Foundation

**Panel on Research Interests and Future Needs at
Federal Agencies Outside NASA, 3/27/2019**


- Overview of NSF, ENG, and CBET
- NSF-CASIS Collaboration
- Selected Awards
- Future Directions

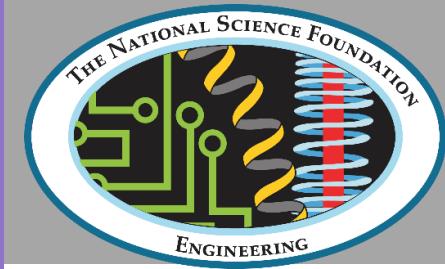
National Science Foundation

FOUNDATION INTRODUCTION

NSF Created by Congress in 1950 "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense..."

- \$7.5B budget (FY2019 request)
- 24% of federally funded basic research at U.S. colleges and universities
- Directorates:
 - Engineering (ENG)
 - Mathematical & Physical Sciences (MPS)
 - Biological Sciences (BIO)
 - Computer & Information Science & Engineering (CISE)
 - Geosciences (GEO)
 - Social, Behavioral & Economic Sciences (SBE)
 - Education & Human Resources (EHR)

NSF Director
France A. Córdova.
Credit: NSF/Stephen Voss



NSF's current headquarters in Alexandria, VA
Credit: National Science Foundation (www.nsf.gov)

National Science Foundation

ENGINEERING (ENG) DIRECTORATE

ENG Mission: Investing in engineering research and education and fostering innovation to benefit society

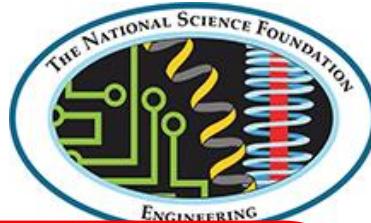
Photo Credit: Joseph Xu

Assistant Director
Dawn Tilbury

Deputy Assistant Director
Linda Blevins

**Emerging Frontiers and
Multidisciplinary Activities
(EFMA)**
Sohi Rastegar

**Engineering
Education and
Centers
(EEC)**
Kon-Well Wang


**Chemical,
Bioengineering,
Environmental,
and Transport
Systems
(CBET)**
Richard Dickinson

**Civil,
Mechanical, and
Manufacturing
Innovation
(CMMI)**
Rob Stone

**Electrical,
Communications,
and Cyber
Systems
(ECCS)**
Fil Bartoli

**Industrial
Innovation and
Partnerships
(IIP)**
Andrea Belz

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Division Director
Richard Dickinson

Deputy Division
Director
Timothy Patten

Chemical Process Systems

Portrait of Robert McCabe.	1401 Catalysis Robert McCabe
Portrait of Christina Payne.	1417 Molecular Separations Christina Payne
Portrait of Triantafyllos Mountziaris.	1403 Process Systems, Reaction Engineering, & Molecular Thermodynamics Triantafyllos Mountziaris
Portrait of Carole Read.	7644 Electrochemical Systems Carole Read
Chemical Process Systems Cluster VACANT	

Engineering Biology & Health

Portrait of Steven Peretti.	1491 Cellular & Biochemical Engineering Steven Peretti
Portrait of Aleksandr Simonian.	5345 Engineering of Biomedical Systems Aleksandr Simonian
Portrait of Leon Esterowitz.	7236 Biophotonics Leon Esterowitz
Portrait of Chenzhong Li.	7909 Biosensing Chenzhong Li

Environmental Engineering & Sustainability

Portrait of Karl Rockne.	1440 Environmental Engineering Karl Rockne
Portrait of Nora Savage.	1179 Biological & Environmental Interactions of Nanoscale Materials Nora Savage
Portrait of Bruce Hamilton.	7643 Environmental Sustainability Bruce Hamilton
Portrait of James Jones.	022Y INFEWS James Jones
Portrait of Brandi Schottel.	Environmental Engineering & Sustainability Cluster Brandi Schottel

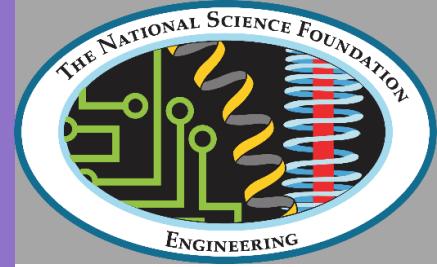
Transport Phenomena

Portrait of Harsha Chelliah.	1407 Combustion & Fire Systems Harsha Chelliah
Portrait of Ronald Joslin.	1443 Fluid Dynamics Ronald Joslin
Portrait of William Olbricht.	1415 Particulate & Multiphase Processes William Olbricht
Portrait of José Lage.	1406 Thermal Transport Processes José Lage
Portrait of Shahab Shojaei-Zadeh.	Transport Phenomena Cluster Shahab Shojaei-Zadeh

Division Experts and AAAS Science & Technology Policy Fellows

Portrait of Carol Lucas.	Engineering of Biomedical Systems Expert Carol Lucas
Portrait of Geoffrey Prentice.	Multiple Programs Expert Geoffrey Prentice
Portrait of Shanni Silberberg.	AAAS S&T Policy Fellow Shanni Silberberg
Portrait of Thomas Baird.	AAAS S&T Policy Fellow Thomas Baird

POWERED THROUGH PARTNERSHIP

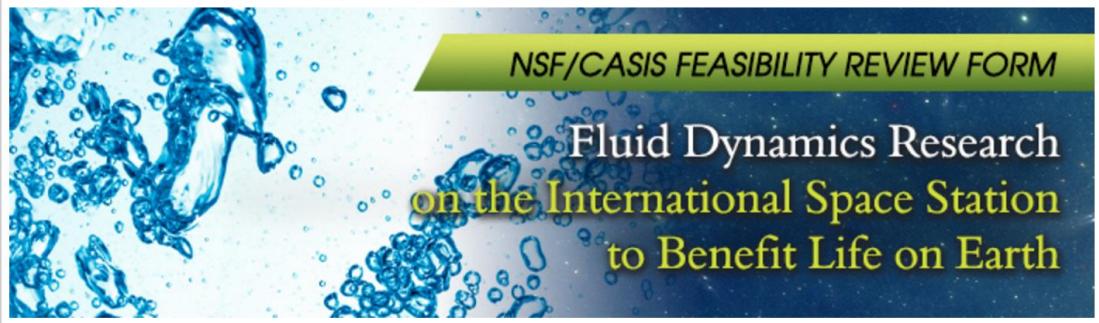

WWW.ISS-CASSIS.ORG

In 2011, NASA chose the Center for the Advancement of Science in Space (CASSIS) to be the sole manager of the International Space Station U.S. National Laboratory. The mission of CASSIS is to maximize use of this unparalleled platform for innovation, which can benefit all humankind and inspire a new generation to look to the stars.

National Science Foundation

NSF-CASIS: RESEARCH IN SPACE TO BENEFIT LIFE ON EARTH

- **Pre-proposal evaluation by CASIS**
 - Feasibility review for operational feasibility and terrestrial economic benefit
Doable on ISS; benefits on Earth
- **NSF provides funding support to**
 - Conduct research, prepare experiments for onboard ISS, collaborate with service providers, provide preliminary analysis to conduct experiments, analyze and interpret data, and disseminate results
- **CASIS will assist grantees in**
 - Translating ground-based experiments and technologies into the space-appropriate hardware


National Science Foundation

NSF-CASIS: SOLICITATIONS SO FAR

On Station

News and Views from the International Space Station U.S. National Laboratory.

PUBLISHED ON MONDAY, DECEMBER 14, 2015

CASIS and the National Science Foundation Announce Joint Solicitation in Fluid Dynamics on the International Space Station

Kennedy Space Center, FL. (December 14, 2015) – The Center for the Advancement of Science in Space (CASIS) and the National Science Foundation (NSF) today announced a joint solicitation wherein researchers from the fluid dynamics community will have the ability to leverage resources onboard the International Space Station (ISS) U.S. National Laboratory. Up to \$1.8 million will be awarded for multiple research investigations to support flight projects to the ISS National Laboratory.

[NSF 16-518](#)

Fluid Dynamics

[NSF 17-517](#)

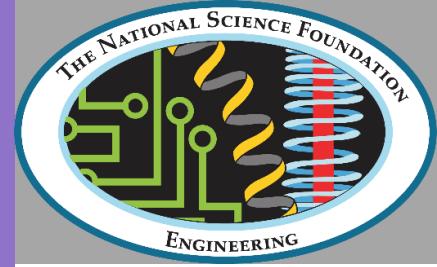
Combustion & Thermal Transport

[NSF 18-521](#)

Fluid Dynamics & Particulate/ Multiphase

[NSF 19-525](#)

Transport Phenomena Research


[NSF 19-509](#)

Tissue Engineering and Mechanobiology

National Science Foundation

NSF-CASIS: SELECTED AWARDS

Selected Awards

Quantifying Cohesive Sediment Dynamics for Advanced Environmental Modeling

Unmasking contact-line mobility for Inertial Spreading using Drop Vibration & Coalescence

Inertial Spreading and Imbibition of a Liquid Drop Through a Porous Surface

Kinetics of nanoparticle self-assembly in directing fields

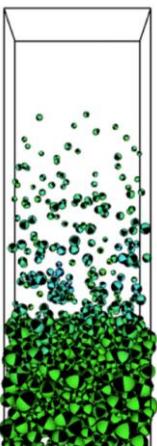
Flame Spread in Confined Spaces: Interactions between Flame & Surrounding Walls

Spherical Cool Diffusion Flames Burning Gaseous Fuels

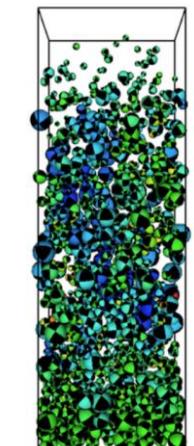
Thermally activated directional mobility of vapor bubbles using microstructured surfaces

ISS-CASIS: QUANTIFYING COHESIVE SEDIMENT DYNAMICS FOR ADVANCED ENVIRONMENTAL MODELING

PIS: P. LUZZATTO-FEGIZ & E. MEIBURG, UC SANTA BARBARA


Background and objectives

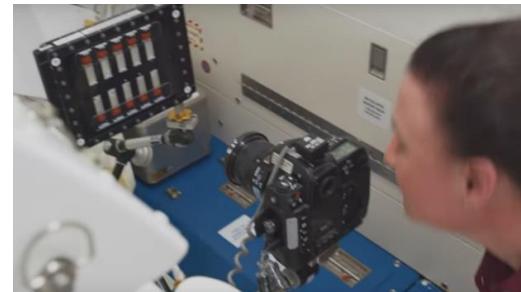
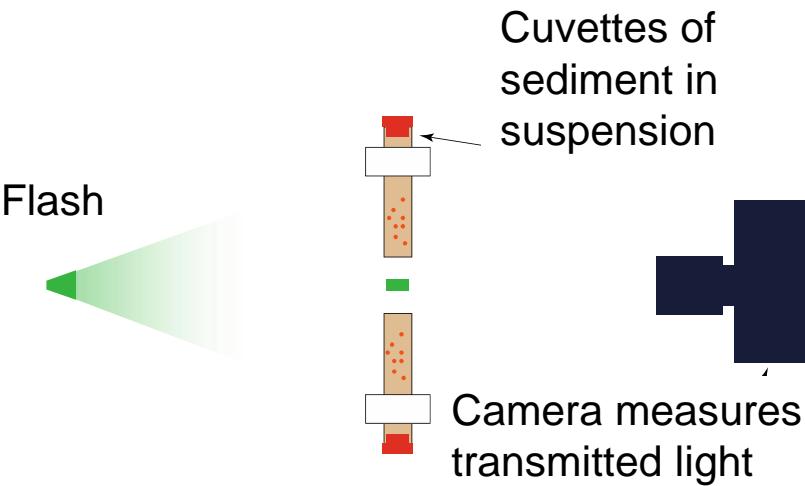
- Predicting sediment cohesion and aggregation is essential for modeling ecosystems, pollutant transport, hydrocarbon reservoirs;
- Cohesive forces are much weaker than gravity, and difficult to measure on Earth;
- ISS experiments can observe aggregation in different sediment mixtures over months;
- Comparing ISS experiments to simulations will yield how cohesion depends on composition.


Ground experiments

- Built ground-based replica of BCAT-CS setup aboard ISS;
- Verified that the intended range of sediment concentrations can be measured accurately;
- Chose camera/flash settings for ISS;
- Selected combinations of quartz/clay types and solutes.

Simulations

- Developed cohesive-particle simulations;
- Use simulations + BCAT data to relate forces to composition + solutes
- Published: Vowinckel *et al.*, *J. Fluid Mech.*, 2019

ISS-CASIS: QUANTIFYING COHESIVE SEDIMENT DYNAMICS FOR ADVANCED ENVIRONMENTAL MODELING

PIS: P. LUZZATTO-FEGIZ & E. MEIBURG, UC SANTA BARBARA

Setup onboard ISS: BCAT-CS

Launch to ISS

- Launched: SpaceX-15, 6/29/2018;
- Experiment start: 7/26/2018;
- Re-start due to equipment issue: 8/13/2018;
- Completion: 11/20/2018;
- Two extensions granted to investigate long-term behavior;
- Samples returned: SpaceX-16, 1/14/2019

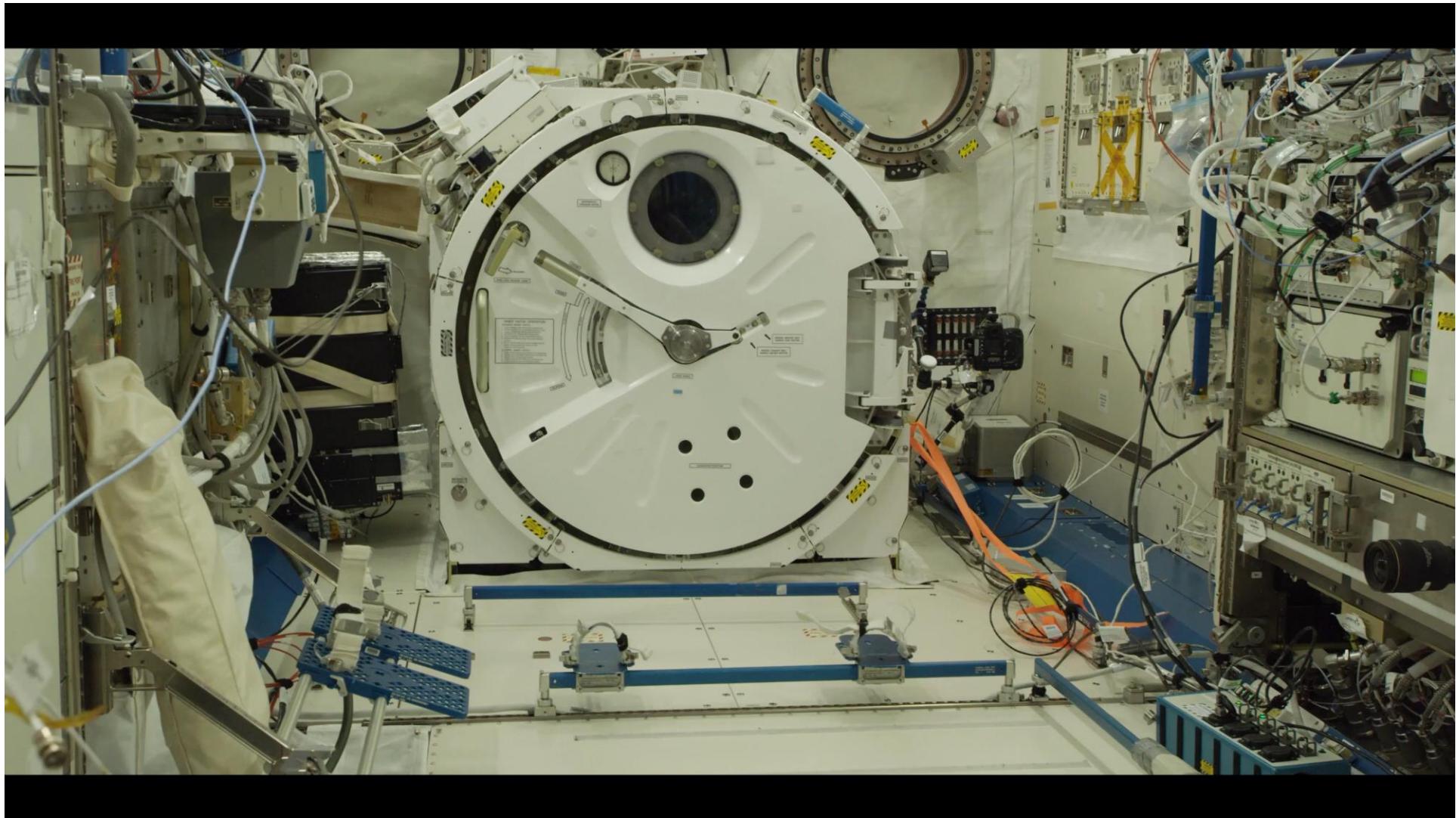
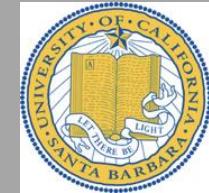
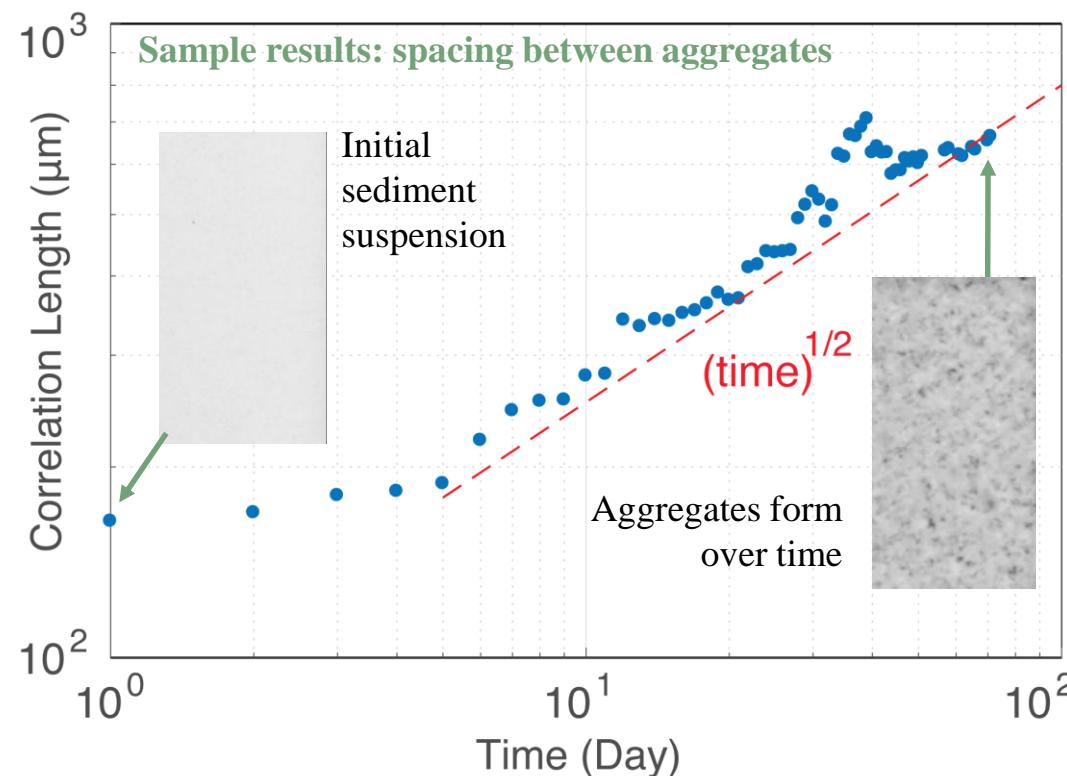

Serena Auñón-Chancellor &
Alexander Gerst set up and
operate BCAT-CS

Photo Credit: Richard Dickinson

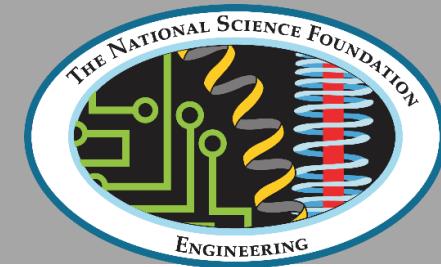
ISS-CASIS: QUANTIFYING COHESIVE SEDIMENT DYNAMICS FOR ADVANCED ENVIRONMENTAL MODELING


PIS: P. LUZZATTO-FEGIZ & E. MEIBURG, UC SANTA BARBARA


ISS-CASIS: QUANTIFYING COHESIVE SEDIMENT DYNAMICS FOR ADVANCED ENVIRONMENTAL MODELING

PIS: P. LUZZATTO-FEGIZ & E. MEIBURG, UC SANTA BARBARA

Preliminary findings from ISS experiment


- Aggregation rates successfully measured as a function of sediment composition;
- Aggregation observed also for sediment traditionally considered very weakly cohesive;
- Long-term experiments reveal power-laws for aggregation, enabling development and testing of theoretical models.

National Science Foundation

FUTURE INTERESTS: INPUT FROM CURRENT AWARDEES

Combustion

Current fire experiments are conducted in Microgravity Science Glovebox

Larger facility for burning solid materials

- How does scale play a role in fire behavior?
- Enabling new research areas (e.g., water droplets for fire suppression in microgravity)

State-of-the-art diagnostic techniques (other than cameras, radiometers,...)

Multiphase Flows

Contact line dynamics in two phase flows: μg provides larger deformation/slower dynamics

Dynamics of low-Re turbulent liquid-gas flows (gravity dominates such flows on earth)

Heat Transfer

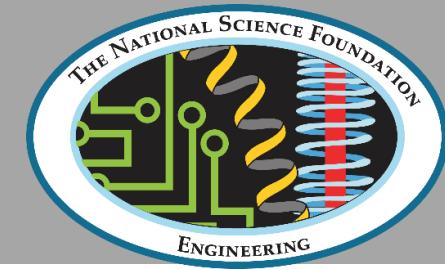
Extending the CVB (Constrained Vapor Bubble) experiments

How do loop heat pipes (HP) perform in microgravity?

- Fabricate transparent HP to observe behavior rather than just measure temperature
- Optimal internal geometry for microgravity wickless HP?

Colloids and Surfactants

Currently BCAT (binary colloidal alloy test) & ACE (advanced colloids experiments)


Host of experiments on colloidal assembly in the absence of gravity

Emerging area: Study of photo-surfactants (surface tension – Marangoni forces/ buoyancy)

National Science Foundation

EMERGING AREAS WITHIN THE ENG & ACROSS DIRECTORATES

Emerging Frontiers in Research and Innovation

EFRI seeks to support multi-/inter-disciplinary and potentially transformative research at the frontiers of engineering research that addresses a national need or grand challenge

Some recent EFRI topics

Flexible Bioelectronics Systems ([BioFlex](#))

Origami Design for the Integration of Self-assembling Systems for Eng. Innovat. ([ODISSEI](#))

CBET-Proposed EFRI topics

Plastic-Eradicating Technologies

Distributed Chemical Manufacturing

Curbing Atmospheric CO₂

Sensing and Understanding the Microbiome in Soil

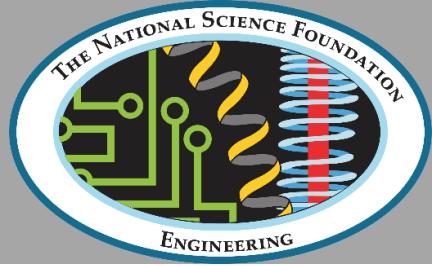
Synthetic Biology for Engineering Solutions

Designing Materials to Revolutionize and Engineer our Future

DMREF seeks to accelerate discovery/development of materials with specific and desired functional properties from first principles.

Topics: Catalysis, 2D Materials and Membranes, Photonics, etc...

TEN BIG IDEAS!


Looking Ahead: Ten Big Ideas

RESEARCH IDEAS

- **Navigating the New Arctic**
- **Understanding the Rules of Life: Predicting Phenotype**
- **Harnessing Data for 21st Century Science and Engineering**
- **Work at the Human-Technology Frontier: Shaping the Future**

PROCESS IDEAS

- **Growing Convergent Research at NSF**
- **NSF-INCLUDES: Enhancing Science and Engineering through Diversity**
- **Mid-scale Research Infrastructure**
- **NSF 2050: Seeding Innovation**

Thank you!