

Cherry Lab

Biological Data Resources

Benjamin Hitz, PhD
4/1/2015 CBPSS Panel
<http://cherylab.stanford.edu>

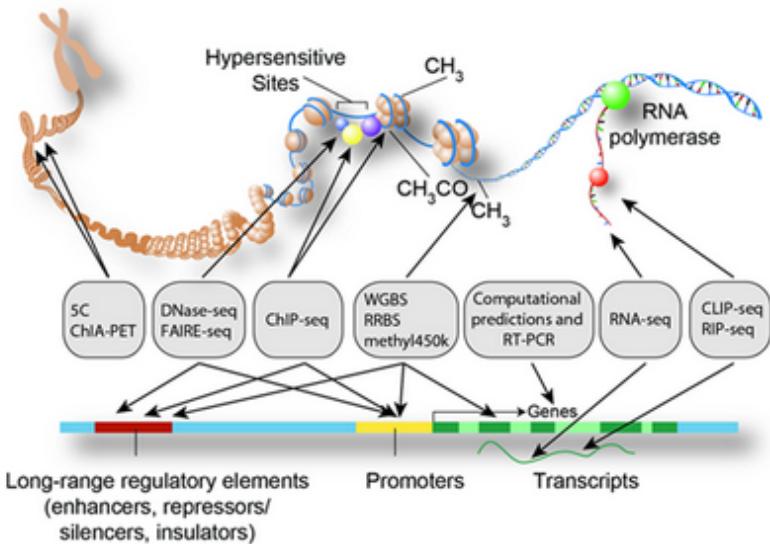
The logo for SGD (Saccharomyces Genome Database) is located in the top left corner. It consists of a red, rounded rectangular button with the letters "SGD" in a white, sans-serif font. A smaller, semi-transparent red shape is positioned to the left of the main button.

SGD

- The original model organism database for the first eukaryotic genome (*Saccharomyces cerevisiae*) to be sequenced
- Stores genes and biological annotations extracted from scientific literature *via* manual curation

<http://www.yeastgenome.org/> ... since 1993

SGD Annotations


GO: FUS3 encodes a MAP protein kinase as shown by direct enzyme assay in Bao et al. (2004).

Phenotype: A null mutant of VAC14 has abnormal vacuolar morphology in S288C strain background as shown in Alghamdi et al. (2013).

Bioentity (what is it)	Bioconcept (what it does)	Reference (who said it)	Experiment (how is it known)	Strain (details)
FUS3	GO: MAP kinase activity	PMID:1562 0357	Direct enzyme assay	
VAC14	Phenotype: Vacuolar morphology	PMID: 23389034	Classical genetics	S288C

Additional properties (e.g., allele, conditions, qualifier) can be attached to any annotation.

ENCODE: Encyclopedia of DNA Elements

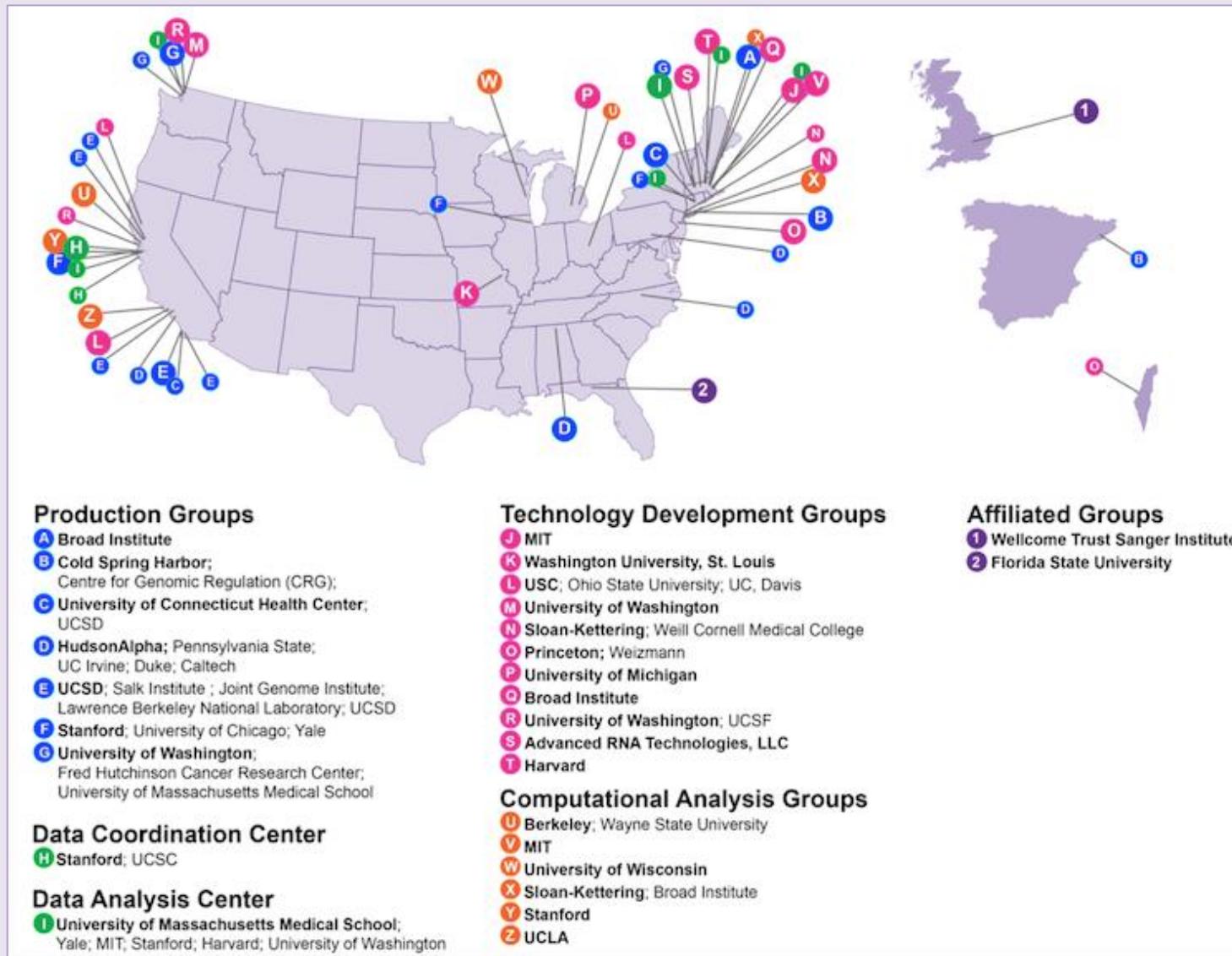
The ENCODE (Encyclopedia of DNA Elements) Consortium is an international collaboration of research groups funded by the National Human Genome Research Institute (NHGRI). The goal of ENCODE is to build a comprehensive parts list of functional elements in the human genome, including elements that act at the protein and RNA levels, and regulatory elements that control cells and circumstances in which a gene is active.

Image credits: Darryl Leja (NHGRI), Ian Dunham (EBI), Michael Pazin (NHGRI)

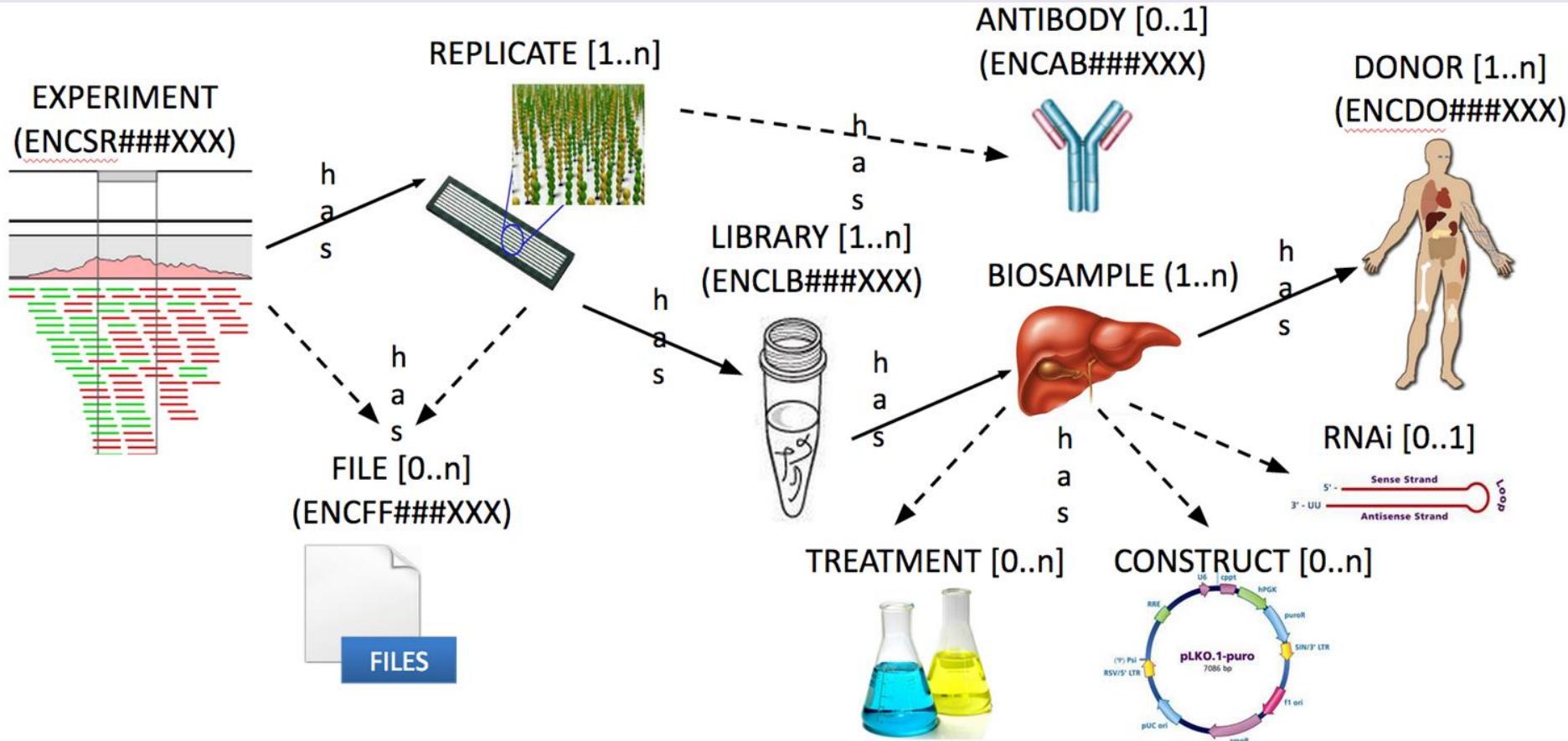
Data

To find and download ENCODE Consortium data:

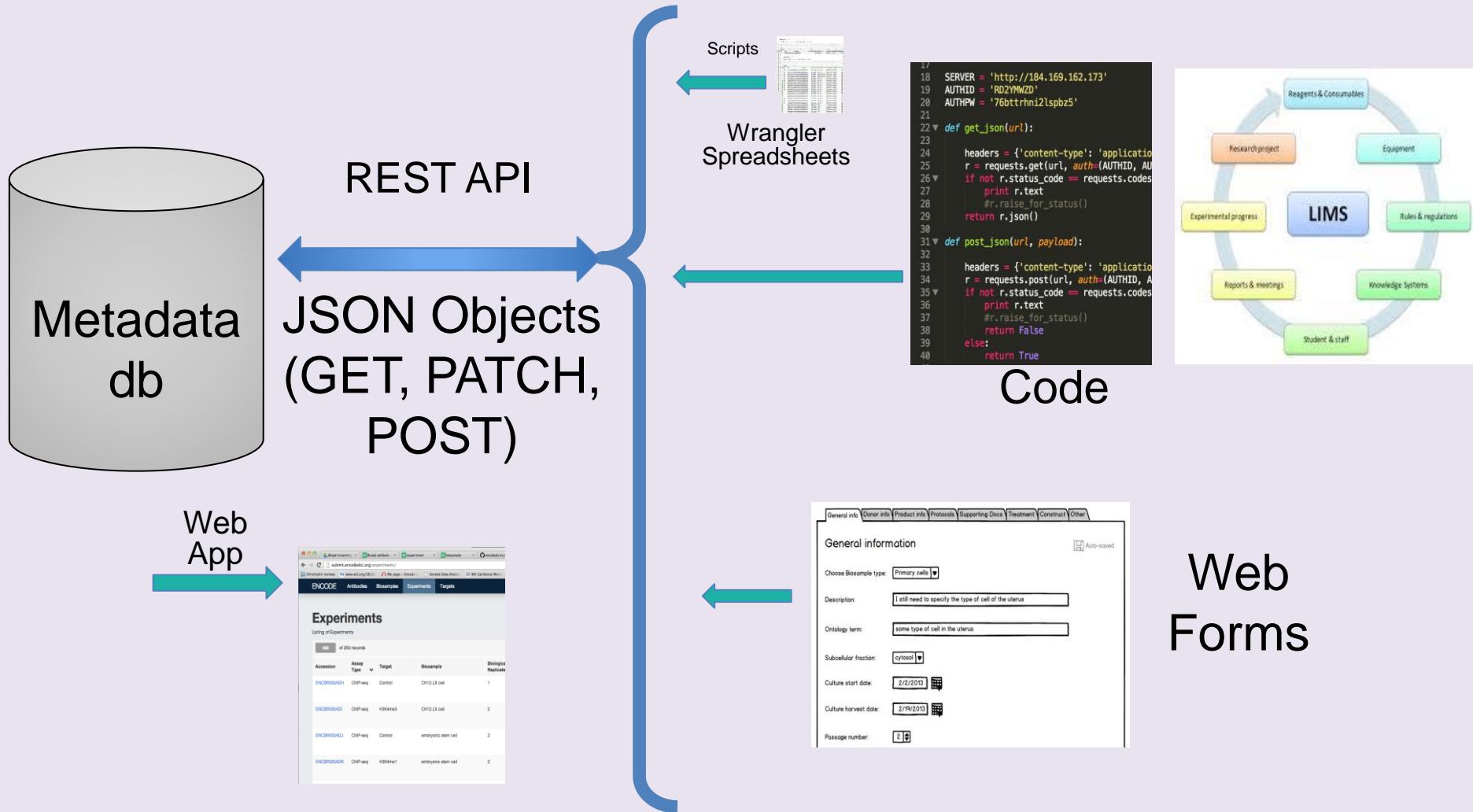
- Click the Data toolbar above and browse data

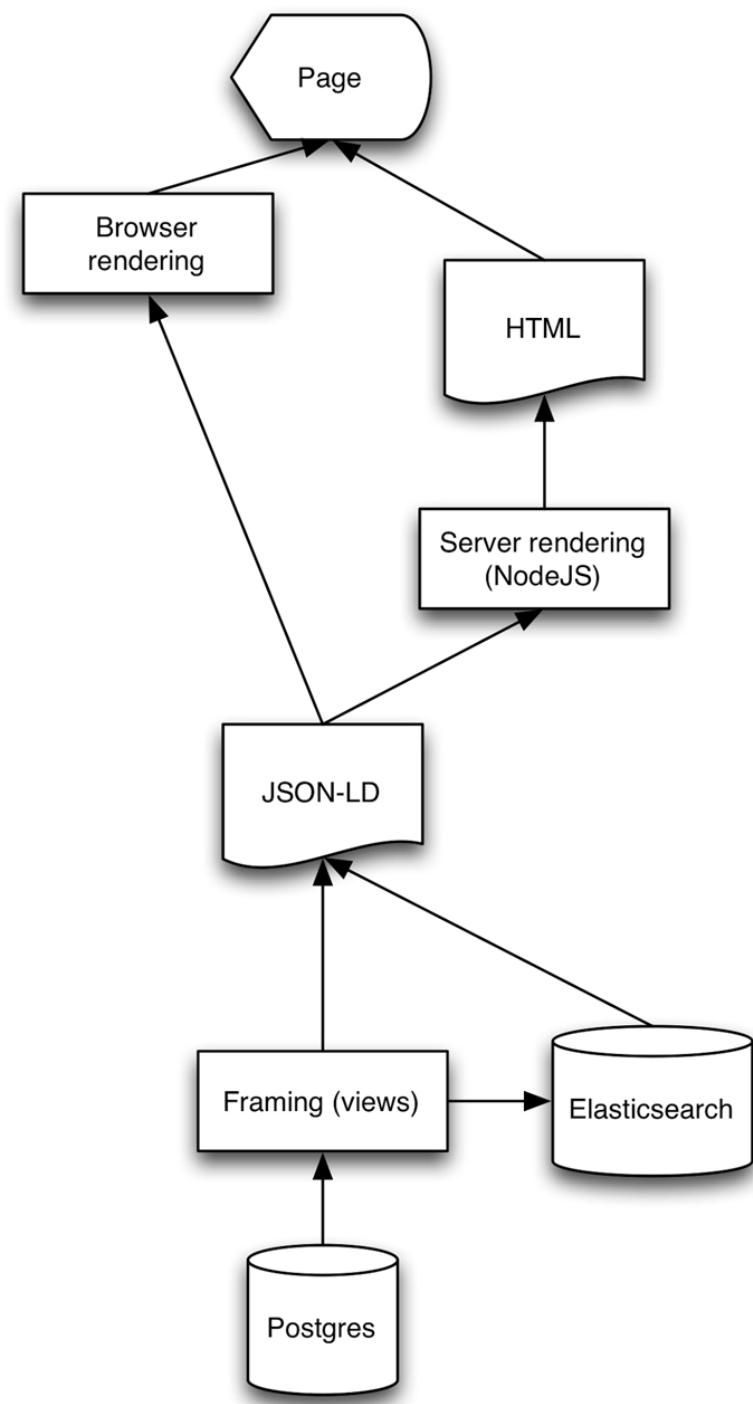

News

Sept 12, 2014: Data release: 23 human and 5 mouse datasets.

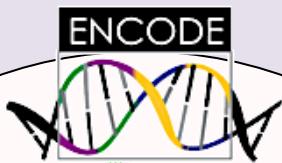

[\[read more\]](#)

August 28, 2014: modENCODE and ENCODE [comparison papers](#)


What is the ENCODE Consortium?



Metadata model


Metadata submission

Software Stack

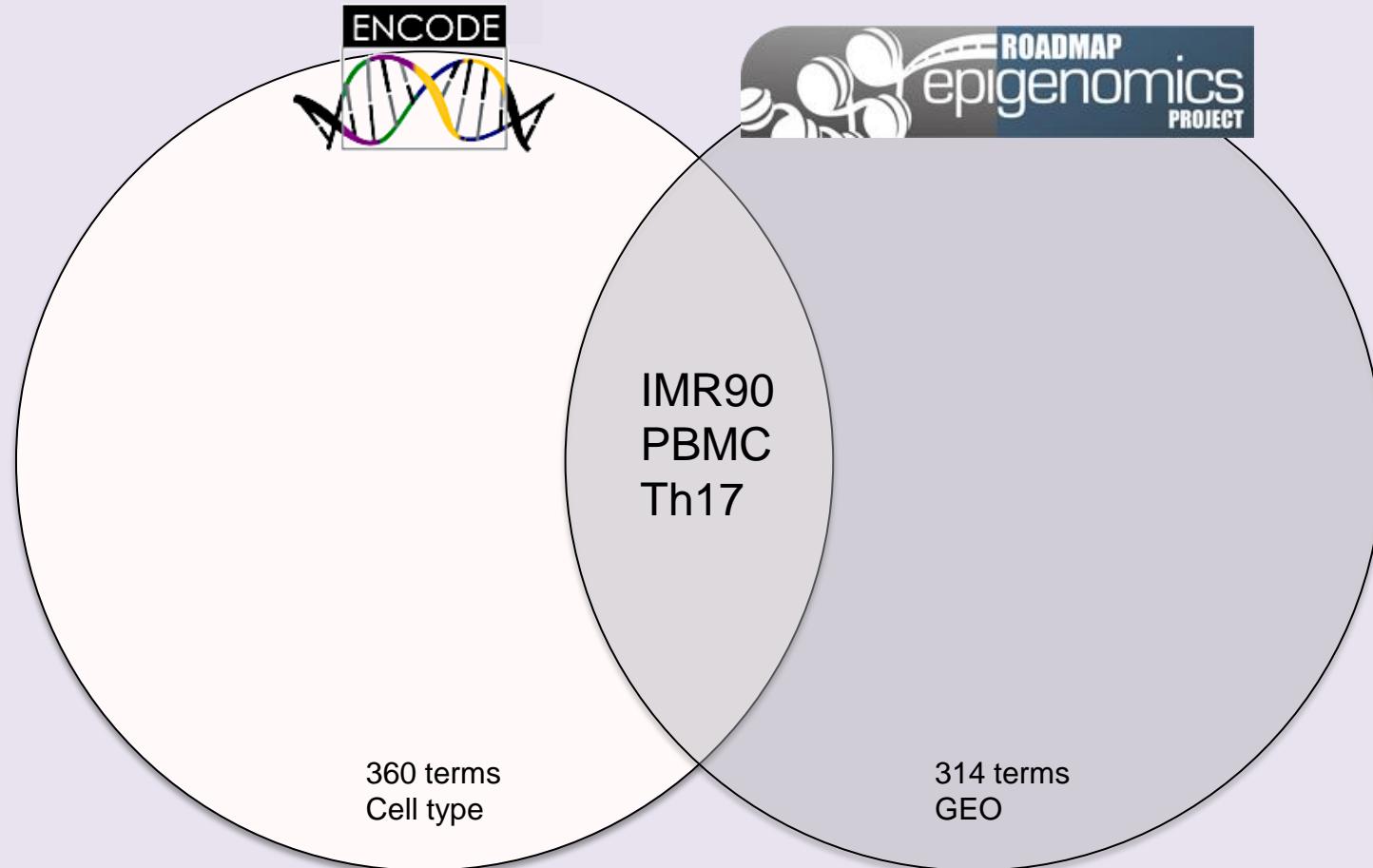
Find Common Biosamples Between Two Consortia

ENCODE

UHMV-EC-dNeo BC Brain rH11058N
 UHMV-UHN HSMMtube FSHD Panis
 C Prostate Gland H12817N Monocytes-CD14+ RO Medul.
 Myometr Cord CD4 naive HMVEC-dB1-Neo HWP
 HPDE6-E6E BC Pericardium H12529N HSMM FSHD BC Colon T-47L
 HSMMtube HMVEC-dB1-Ad BC Skeletal Muscle SK-N-
 JAM-B HPC-PL HFL24W H9ES-EBD HMNC-PB Cerebellum OC PBDE1
 HMVEC-dLy-Ad hMSC-BM BC Esophagus H9ES-CM HIPECiC M059.
 CN-M HSMM emb BC Left Ventricle N H1-neurons HMVEC-dAd Kidney
 MRT A hMSC-UC HEK293-T-REX GM12878-XiMat SkMC Treg Wb
 EK HPIEpC H9ES-EB BC Lung HCH 0011308.2P HSaVEC Dnd NHDF
 NH-A hMSC-BM hMSC-AT BC Pancreas H12817N HFF HsaVEC MRTT
 MRT G HPAEC Caco H7-hESC Adult CD4 Th Chorion SKMC HPAEpi
 HMF hMSC-UC bone marrow MSC BC Uterus BN HFL11W HMVEC-
 CWRU HMEC HL CD4+ Naive Wb Fibrobl GM HConF HCF BC Skin Decidua P
 Cap HRE HPIEpC HEpiC BG02ES GM Fibro H9ES Liver STL M
 NHBE HOB HEK293b Colo BC Leukocyte UHN HAoEC HA-sp hMNC-PB Lo
 IMR Th1 Wb HBPV BC Kidney H12817N Th BC Kidney HVMF HTR8svn F
 iPSC NIH1 HOB Cord CD4 Th Hepatocytes Fibrobl HFDP CMK hMSC-AT M
 Melano ECC Heart OC FibroPAG HBVSMC HCM Globula HPF Kidney
 HREpiC HeLa-S HFF-Myc Esophagus BC HCH HAL NHDF LHC
 HLF HSMM CD20+ RO CD AG BC Lung H12817N HepG HMEpC R
 Mel HVMF HGF Ha-h HCFaa HepG2b HCH HEK H9ES-E Astrocy RP
 HUVEC BJ HPC-PL GC B cell BE2C BC Liver CLL HWP Raji
 K562b HCPePiC HAoAF Frontal cortex OC HCT HCT HT HRGEC
 HRPEpC HAC H9ES-APP Cerebrum frontal OC HEK293T PBM
 HPAF HPdLFB Huh BC Esophagus H12817N H1-hESC HAoAF BC Testis N
 2-D HMEpC HAEpiC Breast OC BC Penis H12817N HHSEC BC Breast
 cytes-CD Th2 Wb bone marrow HS27a HDFPC HAoEC AoAF NB Prf
 H Jurkat NHEM M2 HMNC-CB CD34+ Mobilized Colon OC IPS PI
 NHBE RA HMNC-CB BC Jejunum H12817N HMEC BC Stomach Po
 uing BC BC Rectum N BC Small Intestine Colon BC HNPCEpC
 AoSMC BC Skeletal Muscle H12817N NHEM.M2 Ishikawa
 iEM M BC Bladder BC Spleen H12817N iPS hFib2 iPS Ste
 steobl HSMMtube emb BC Placenta UHN RG02ES FBR
 ing OC HMVEC-Lly BC Stomach H12817N
 olon H12817N HMVEC-dLy Ne
 ipe

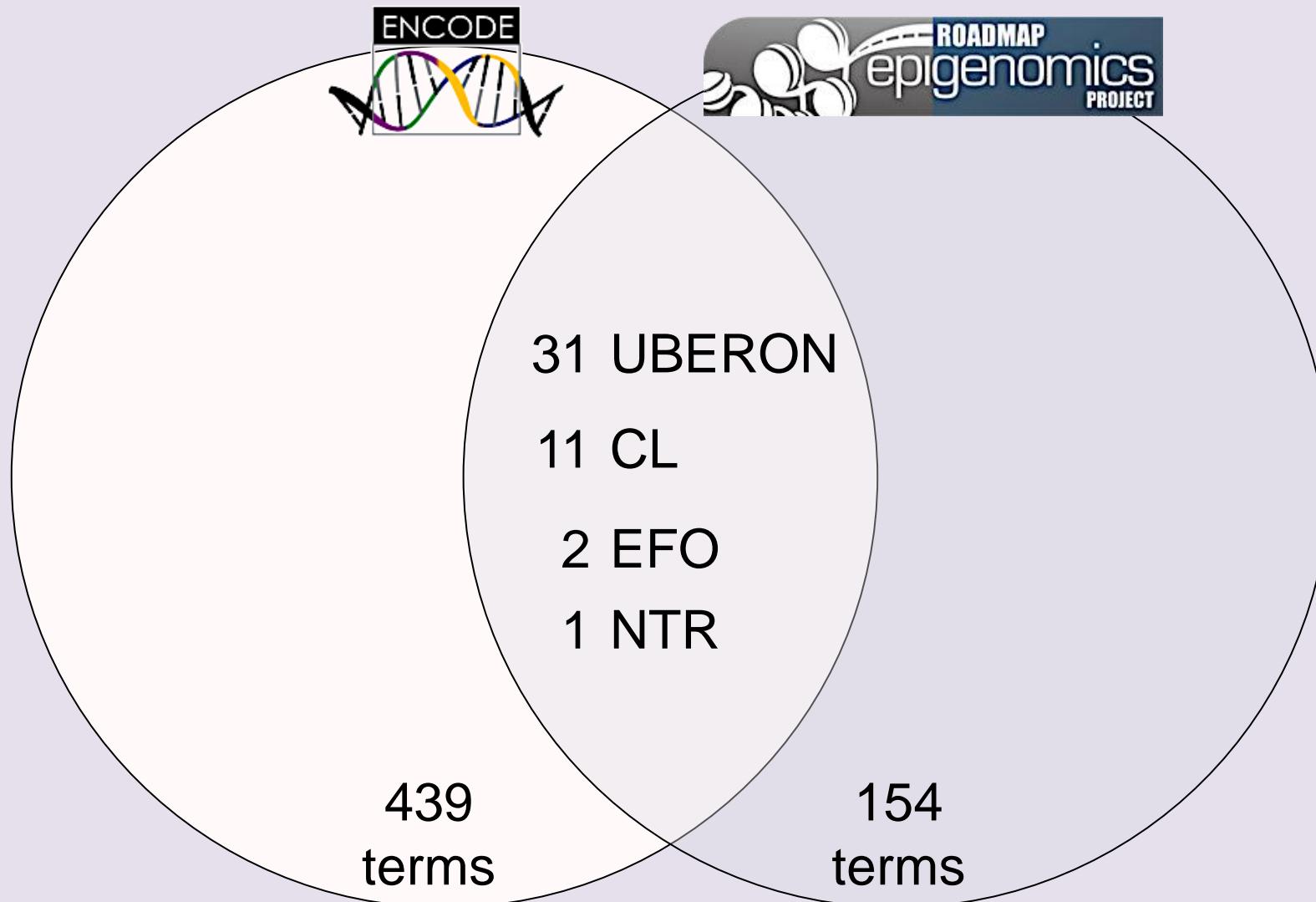
356 terms

<http://genome.ucsc.edu/ENCODE/cellTypes.html>


ROADMAP epigenomics PROJECT

HUES64-derived Neu...
 PS-15b Peripheral Liver Adren...
 Angular Chondrocytes Cultured Nucl
 pmoa mesoderm chondrogenic hiPS-15b
 indiff Primary Cell CRL-2097TM Embryon...
 amary Bladder Intestine Atrium hES-1
 KOSR hIPS-18c stimulated Epithelial HUE...
 ES 8p embryonic Substantia Quadriceps Stem 1
 hIPS-27b Naive Progenitors Arm Head mem...
 e HUES Day Eminence Hippocampus Fetal HUES 45
 myo Mucosa hESC Neurosphere Lung ES-NA Breas...
 Body Cingulate Myoepithelial Small BM-MSC Lumin...
 Germinal Kidney PBMC Colon Nigra Temporal IL Va...
 p Lobe Gland Neurons Cells EB d CD25int CD Gastric Up...
 s HUES 3p UCSF Ovary Inferior ADMSC CD WA dif hips-20
 iult H9p Adrenal Cord Middle IPS stim Cortex hNP Leg...
 he Tissue Spleen Mid Matrix hiPS TESR CD45RA BM...
 s H1-BMP Smooth Melanocyte Adipose Diff Th vH...
 Left Colonic Neuronal Frontal hips 20b
 Freg DF ES-I Gyrus Rectal Renal Embryoid Trunk ectoderm
 enis ATCC Neurospheres Endoderm Hlp Lower hN newb...
 Skin Thymus Mobilized Foreskin hSKM Large...
 Right CD45RO Fib Fibroblasts Abdomen MACS hES...
 Back Line Ventricle Progenitor Cat Duodenum HUES 1...
 Limb Brain Memory Keratinocyte Adipocyte IMR-132...
 Marrow ES Ganglionic Aorta Esophagus iPS-1...
 iPS-17a Brain-Germinal Mesenchymal Blood iPS-2...
 Pelvis hiPS-17b Fibroblast Skeletal Stomach...
 Bi-ips Muscle cells (3F)/11a(1)-P Human Spina...
 hiPS-18b Derived hiPS-11b iPS 18a
 Induced hiPS 11a hiPS 18a

314 terms


GEO characteristics: common_name, tissue_type, cell_type, lines

Labs were internally consistent

... but only 3 biosample names match exactly between projects

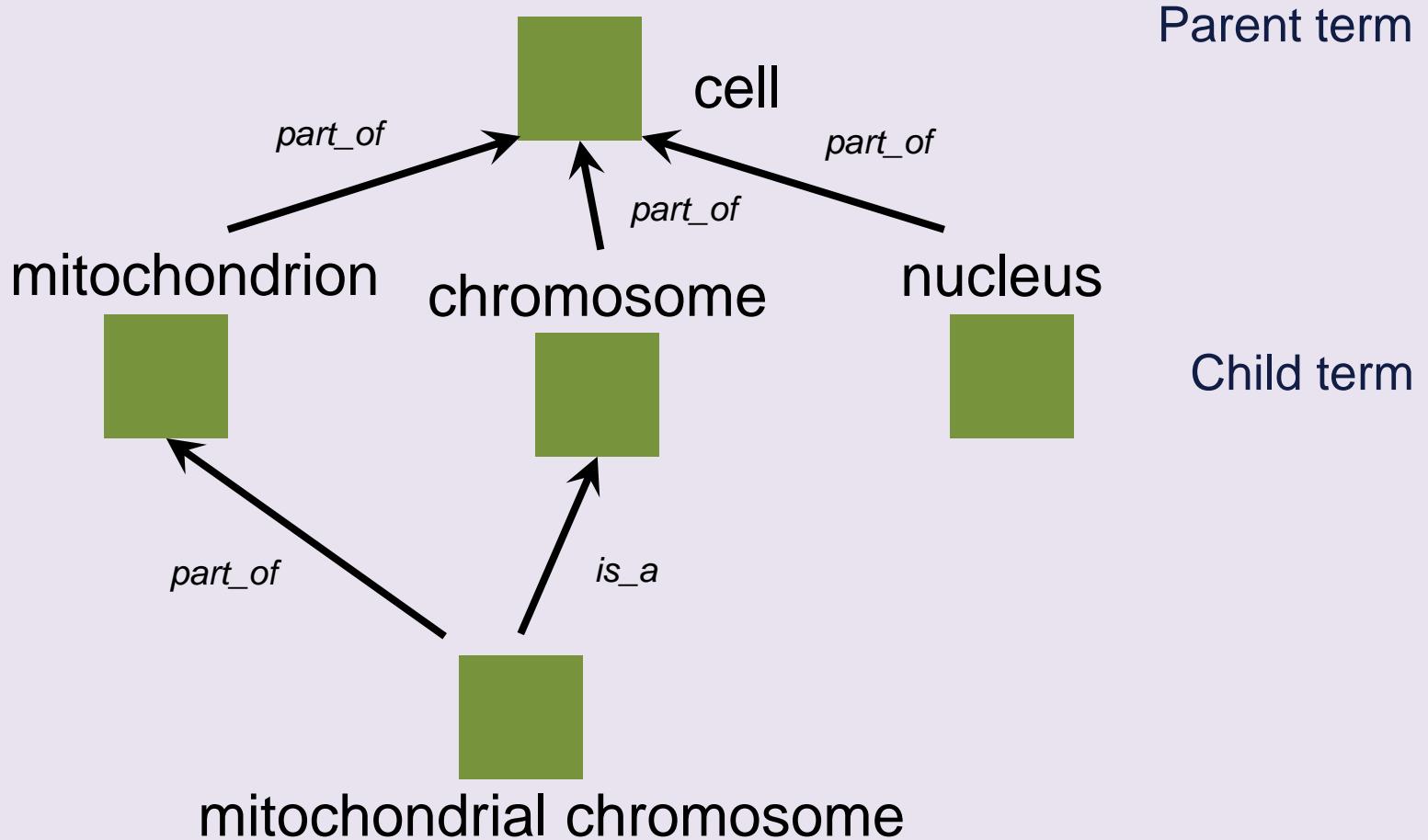
45 Biosamples in Common Between Current ENCODE & REMC

An ontology is a set of words...

mitochondrion

cell

mitochondrial
chromosome


chromosome

nucleus

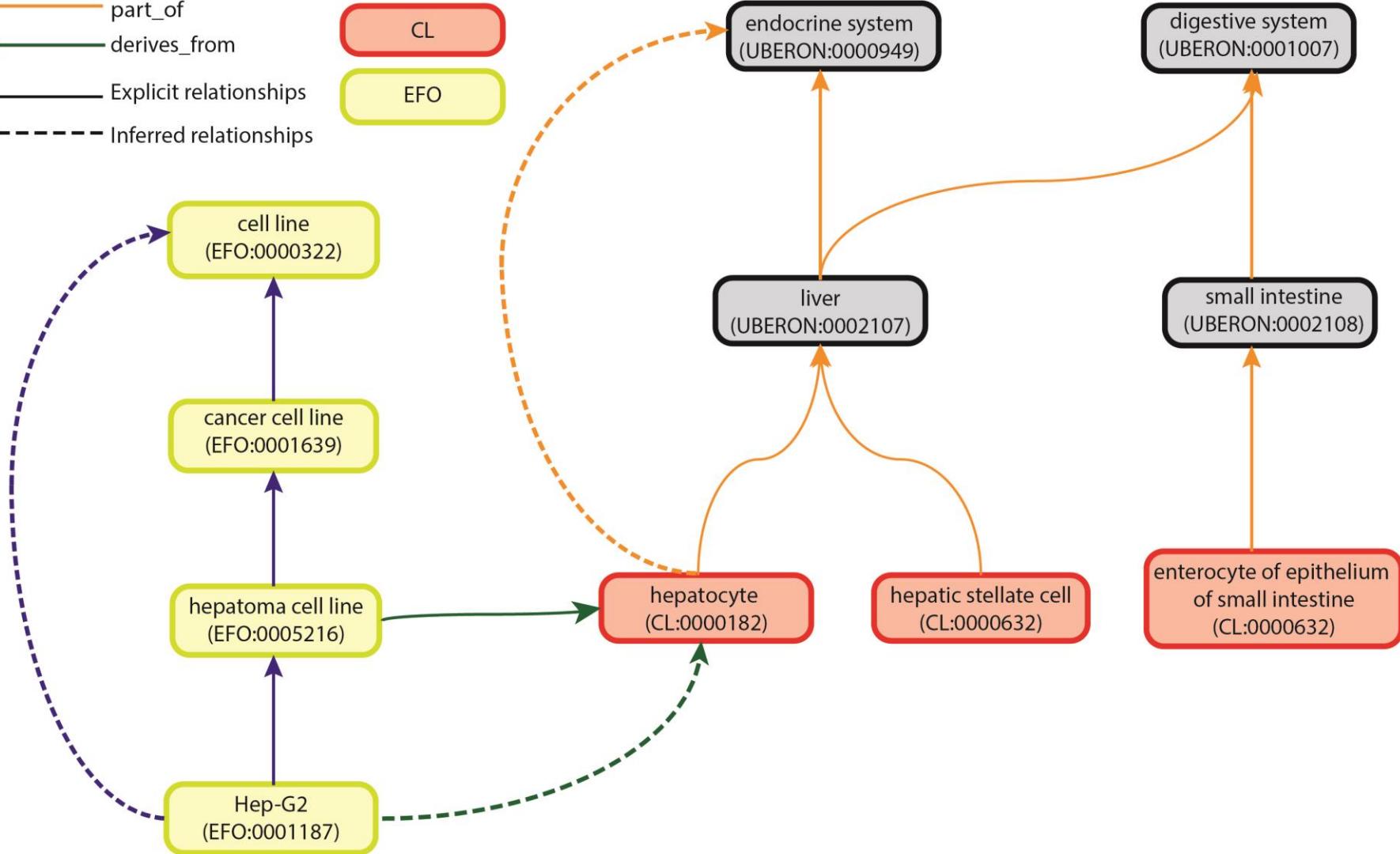
An ontology is a set of words...

.. with different types of relationships to each other.

Why use ontologies?

- Consistency of language and identifiers facilitates identification of data programmatically. Alternative spellings & phrases are synonyms. Independent of a particular data model.

$F \neq f \neq Female \neq female$


- Biological concepts are defined to provide scope

Mitochondria: A semiautonomous, self replicating organelle that occurs in varying numbers, shapes, and sizes in the cytoplasm of virtually all eukaryotic cells. It is notably the site of tissue respiration.

- Relationships between terms can be computed to provide additional annotation details for grouping, searching, or analysis

is_a
part_of
derives_from
Explicit relationships
Inferred relationships

Uberon
CL
EFO

Experiment 1

20-hydroxyecdysone
(CHEBI:16587)
Treatment 1

hepatic stellate cell
(CL:0000632)
Biosample 1

RRBS
(OBI:0001862)
Assay 1

DATA FILES

hormone
(CHEBI:24621)

liver
(UBERON:0002107)

DNA methylation profiling
(OBI:0000634)

estradiol
(CHEBI:23965)
Treatment 2

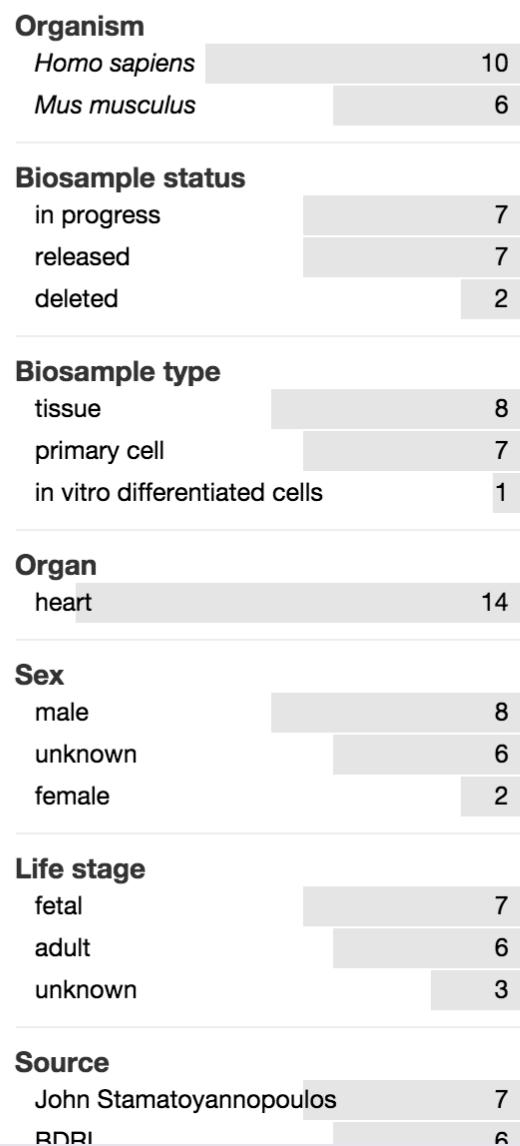
Hep-G2
(EFO:0001187)
Biosample 2

MeDIP-seq
(OBI:0000693)
Assay 2

DATA FILES

Experiment 2

Challenge: Find all heart-related tissues?



Heart_OC
HCF
HCFaa
HCM
Others?

undifferentiated
PMA-Ionomcytin Nurnoral
iPS-20b Mesendoderm Pancreas
iPS-15b HUES64-derived Neural
iPS-15b Peripheral Liver Anterior
Angular Chondrocyte Cultured Nuclei
Sigmoid mesoderm chondrogenic hIPS-15b
undiff Primary Cell CRL-2097TM Embryonic
Mammary Bladder Intestine Atrium hES-I purified
KOSR hIPS-18c stimulated Epithelial HUES 6p
HUES 8p embryonic Substantia Quadriceps Stem Islets
hIPS-27b Naive Progenitors Arm Heart mem
positive HUES Day Eminence Hippocampus Fetal HUES 45p
myo Mucosa hES Neurosphere Lung ES-WA Breast
Body Cingulate Myoepithelial Small BM-MSC Luminal Tissue
Germlinal Kidney PBMC Colon Nigra Temporal IL Variant
Scalp Lobe Gland Neurons Cells EB d CD25int Gastric Upper
Pcaes HUES 3p UCSF Ovary Inferior ADMSC CD WA dif hIPS-20b
Adult H9p Adrenal Cord Middle iPS stim Cortex HNP Leg
Bone Tissue Spleen Mid Matrix hIPS TESR CD45RA BMP
Testes H1-BMP Smooth Melanocyte Adipose Diff Th vHMEC
Left Colonic Neuronal Frontal hIPS 20b Caudate
Treg DF ES-I Gyrus Rectal Renal Embryoid Trunk ectoderm
Penis ATCC Neurospheres Endoderm Hlp Lower hN newborn
Skin Thymus Mobilized Foreskin hSKM Large
Right CD45RO Fib Fibroblasts Abdomen MACS hES
Limb Brain Ventricle Progenitor Cat Duodenum HUES 1p
Memory Keratinocyte Adipocyte IMR iPS-11c
Barrow ES Ganglionic Aorta Esophagus iPS-17b
hIPS-17a Brain-Germinal Mesenchymal Blood IPS-27b
Pelvis hIPS-17b Fibroblast Skeletal Stomach
Biceps Muscle cells(3F)/11a(1)-P Human Spinal
hIPS-18b Derived hIPS-11b iPS-18a
i-Ionomcytin Induced hIPS-11a hIPS-18a
pluripotent Neuron Mononuclear
Trophoblast iPS-27e Placenta
Pancreatic

Fetal Heart
Heart
Right Atrium
Right Ventricle
Others?

Showing 16 of 16

heart (*Mus musculus*, adult 8 week)

Type: tissue
Source: John Stamatoyannopoulos

Biosample
ENCBS536YRO
deleted

heart (*Homo sapiens*, fetal 80 day)

Type: primary cell
Source: BDRL

Biosample
ENCBS913ULP
in progress

heart (*Homo sapiens*, fetal 76 day)

Type: primary cell
Source: BDRL

Biosample
ENCBS953MIB
in progress

heart (*Mus musculus*, adult 8 week)

Type: tissue
Source: John Stamatoyannopoulos

Biosample
ENCBS331ENC
released

cardiac fibroblast (*Homo sapiens*)

Type: primary cell
Source: ScienCell

Biosample
ENCBS307AAA
released

heart (*Mus musculus*, adult 8 week)

Type: tissue
Source: John Stamatoyannopoulos

Biosample
ENCBS846GWQ
released

heart (*Mus musculus*, adult 8 week)

Biosample

A

Assay

ChIP-seq	2392
RNA-seq	655
DNase-seq	265
RNA profiling by array assay	180
shRNA knockdown followed by RNA-seq	167
+ See more...	

Experiment status

released	4400
revoked	4

Genome assembly

hg19	2542
mm9	560
dm3	108

Organism

<i>Homo sapiens</i>	3389
<i>Mus musculus</i>	879
<i>Drosophila melanogaster</i>	108

Target of assay

transcription factor	1228
histone modification	779
control	410
RNA binding protein	224
other context	27
+ See more...	

Biosample type

immortalized cell line	2530
primary cell	767
tissue	700
stem cell	208
in vitro differentiated cells	122
+ See more...	

Organ

brain	200
skin of body	165
blood vessel	109
lung	89
liver	78
+ See more...	

Biosample treatment

ethanol	54
17 β -estradiol	36
dimethyl sulfoxide	35
dexamethasone	28
all-trans-retinoic acid	21
+ See more...	

Available data

fastq	3890
bam	3045
bigWig	3012
bed_narrowPeak	1316
broadPeak	1295
+ See more...	

ENCODE Data Methods About ENCODE Help

Search ENCODE

Showing 25 of 4404

ChIP-seq of MEL cell line (*Mus musculus*)
Target: H3K36me3
Lab: Michael Snyder, Stanford
Project: ENCODE

ChIP-seq of K562 (*Homo sapiens*, adult 53 year)
Target: Control
Lab: Richard Myers, HAIB
Project: ENCODE

ChIP-seq of K562 (*Homo sapiens*, adult 53 year)
Target: Control
Lab: Richard Myers, HAIB
Project: ENCODE

ChIP-seq of K562 (*Homo sapiens*, adult 53 year)
Target: Control
Lab: Richard Myers, HAIB
Project: ENCODE

ChIP-seq of K562 (*Homo sapiens*, adult 53 year)
Target: Control
Lab: Richard Myers, HAIB
Project: ENCODE

ChIP-seq of GM12878 (*Homo sapiens*, adult 53 year)
Target: Control
Lab: Richard Myers, HAIB
Project: ENCODE

ChIP-seq of GM12878 (*Homo sapiens*, adult 53 year)
Target: Control
Lab: Richard Myers, HAIB
Project: ENCODE

ChIP-seq of HepG2 (*Homo sapiens*, child 15 year)
Target: Control
Lab: Richard Myers, HAIB
Project: ENCODE

ChIP-seq of HepG2 (*Homo sapiens*, child 15 year)
Target: Control
Lab: Richard Myers, HAIB
Project: ENCODE

shRNA knockdown followed by RNA-seq of HepG2 (*Homo sapiens*, child 15 year)

B

Assay

ChIP-seq	106
RNA-seq	59
DNase-seq	11
whole genome bisulfite sequencing	9
RAMPAGE	6
+ See more...	

Experiment status

released	200
----------	-----

Genome assembly

mm9	45
hg19	16

Organism

<i>Mus musculus</i>	136
<i>Homo sapiens</i>	64

RNA-seq of forebrain (*Mus musculus*, embryonic 11.5 day)
Lab: Barbara Wold, Caltech
Project: ENCODE

RNA-seq of hindbrain (*Mus musculus*, embryonic 11.5 day)
Lab: Barbara Wold, Caltech
Project: ENCODE

RNA-seq of midbrain (*Mus musculus*, embryonic 11.5 day)
Lab: Barbara Wold, Caltech
Project: ENCODE

RNA-seq of hindbrain (*Mus musculus*, postnatal 0 day)
Lab: Barbara Wold, Caltech

ENCODE Data Methods About ENCODE Help

Search ENCODE

Showing 25 of 200

Visualize | **View All**

Organ

brain	200
skin of body	165
blood vessel	109
lung	89
liver	78
heart	75
kidney	67
muscle organ	41
mammary gland	36
extraembryonic structure	33
bone element	32
eye	25
gonad	22

+ See more...

Biosample treatment

ethanol	54
17 β -estradiol	36
dimethyl sulfoxide	35
dexamethasone	28
all-trans-retinoic acid	21

+ See more...

Available data

fastq	3890
bam	3051
bigWig	3012
bed_narrowPeak	1316
broadPeak	1295

+ See more...

B

Assay	ChIP-seq	106
	RNA-seq	59
	DNase-seq	11
	whole genome bisulfite sequencing	9
	RAMPAGE	6

+ See more...

Experiment status	released	200
-------------------	----------	-----

Genome assembly	mm9	45
	hg19	16

Organism	Mus musculus	136
	Homo sapiens	64

Biosample type	tissue	160
	primary cell	40

Organ	brain	200
	skin of body	165
	blood vessel	109
	lung	89
	liver	78
	heart	75
	kidney	67
	muscle organ	41
	mammary gland	36
	extraembryonic structure	33
	bone element	32
	eye	25
	gonad	22
	stomach	22
	placenta	19
	bronchus	18
	small intestine	18
	mouth	16
	spleen	14
	thymus	13
	large intestine	11
	prostate gland	11
	esophagus	10
	pancreas	8
	spinal cord	8
	urinary bladder	6
	adrenal gland	5
	thyroid gland	3
	tongue	3
	trachea	3
	lymphatic vessel	1

- See fewer

Showing 25 of 200

Visualize View All

RNA-seq of forebrain (*Mus musculus*, embryonic 11.5 day)

Lab: Barbara Wold, Caltech
Project: ENCODE

Experiment

ENCSR160IN
released

RNA-seq of hindbrain (*Mus musculus*, embryonic 11.5 day)

Lab: Barbara Wold, Caltech
Project: ENCODE

Experiment

ENCSR160TOE
released

RNA-seq of midbrain (*Mus musculus*, embryonic 11.5 day)

Lab: Barbara Wold, Caltech
Project: ENCODE

Experiment

ENCSR037BCA
released

RNA-seq of hindbrain (*Mus musculus*, postnatal 0 day)

Lab: Barbara Wold, Caltech
Project: ENCODE

Experiment

ENCSR0821FGB
released

RNA-seq of forebrain (*Mus musculus*, postnatal 0 day)

Lab: Barbara Wold, Caltech
Project: ENCODE

Experiment

ENCSR277RHK
released

RNA-seq of midbrain (*Mus musculus*, postnatal 0 day)

Lab: Barbara Wold, Caltech
Project: ENCODE

Experiment

ENCSR026ZRP
released

RNA-seq of hindbrain (*Mus musculus*, postnatal 0 day)

Lab: Thomas Gingeras, CSHL
Project: ENCODE

Experiment

ENCSR248BAQ
released

RNA-seq of midbrain (*Mus musculus*, postnatal 0 day)

Lab: Thomas Gingeras, CSHL
Project: ENCODE

Experiment

ENCSR255SDF
released

RNA-seq of forebrain (*Mus musculus*, postnatal 0 day)

Lab: Thomas Gingeras, CSHL
Project: ENCODE

Experiment

ENCSR233S2V
released

RNA-seq of forebrain (*Mus musculus*, embryonic 11.5 day)

Lab: Barbara Wold, Caltech
Project: ENCODE

Experiment

ENCSR000OOX
released

RNA-seq of Purkinje cell (*Homo sapiens*, adult 20 year)

Lab: Barbara Wold, Caltech
Project: ENCODE

Experiment

ENCSR171EDR
released

RNA-seq of Purkinje cell (*Homo sapiens*, adult 20 year)

Lab: Barbara Wold, Caltech
Project: ENCODE

Experiment

ENCSR072QFA
released

RNA-seq of Purkinje cell (*Homo sapiens*, adult 20 year)

Lab: Barbara Wold, Caltech
Project: ENCODE

Experiment

ENCSR072QFA
released

Organ

brain	200
skin of body	165
blood vessel	109
lung	89
liver	78
heart	75
kidney	67
muscle organ	41
mammary gland	36
extraembryonic structure	33
bone element	32
eye	25
gonad	22
stomach	22
placenta	19
bronchus	18
small intestine	18
mouth	16
spleen	14
thymus	13
large intestine	11
prostate gland	11
esophagus	10
pancreas	8
spinal cord	8
urinary bladder	6
adrenal gland	5
thyroid gland	3
tongue	3
trachea	3
lymphatic vessel	1

- See fewer

ENCODE DCC

<https://www.encodeproject.org/>

Eurie Hong, Mike Cherry (PI), Jim Kent (co-PI), Ben Hitz

Zhiping Weng, ENCODE DAC

Data Wranglers

Esther Chan, Jean Davidson, Venkat Malladi, Cricket Sloan, J. Seth Strattan

Software Engineers

Funding Source: NHGRI

Nikhil Podduturi, Laurence Rowe, Forrest Tanaka

QA, administration, biocuration

Brian Lee, Stuart Miyasato, Matt Simison, Zhenhua Wang, Marcus Ho

Malladi et al. ; Database, 2015, 1–11 doi: 10.1093/database/bav010

@encodedcc

encode-help@lists.stanford.edu

<https://github.com/ENCODE-DCC/>

Using ontologies for metadata annotation

1. **Uber Anatomy ontology** (UBERON; <http://uberon.org/>)
 - tissues: heart, blood, brain
2. **Cell Ontology** (CL; <http://cellontology.org/>)
 - primary cell types: hepatocyte, cardiomyocyte
3. **Experimental Factor Ontology** (EFO; <http://www.ebi.ac.uk/efo/>)
 - immortalized cell lines: K562, HepG2, MCF-7
4. **Ontology for Biomedical Investigations** (OBI; http://obi-ontology.org/page/Main_Page)
 - experimental assays: RNA-seq, CLIP-seq, ChIP-seq, etc
5. **Chemical Entities of Biological Interest** (ChEBI; <http://www.ebi.ac.uk/chebi/>)
 - chemical treatments: estradiol, ethanol, etc
6. **Sequence Ontology** (SO; <http://www.sequenceontology.org/>)
 - nucleic acid being sequenced: microRNA, poly-A+ mRNA, etc
7. **Gene Ontology** (GO; <http://www.geneontology.org/>)
 - group gene products that are targets of ChIP-seq or RNAi experiments