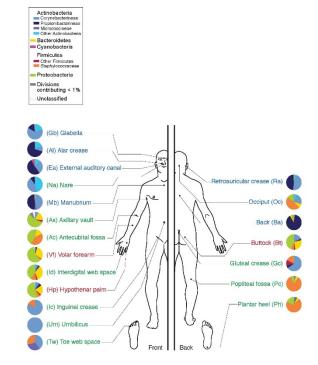


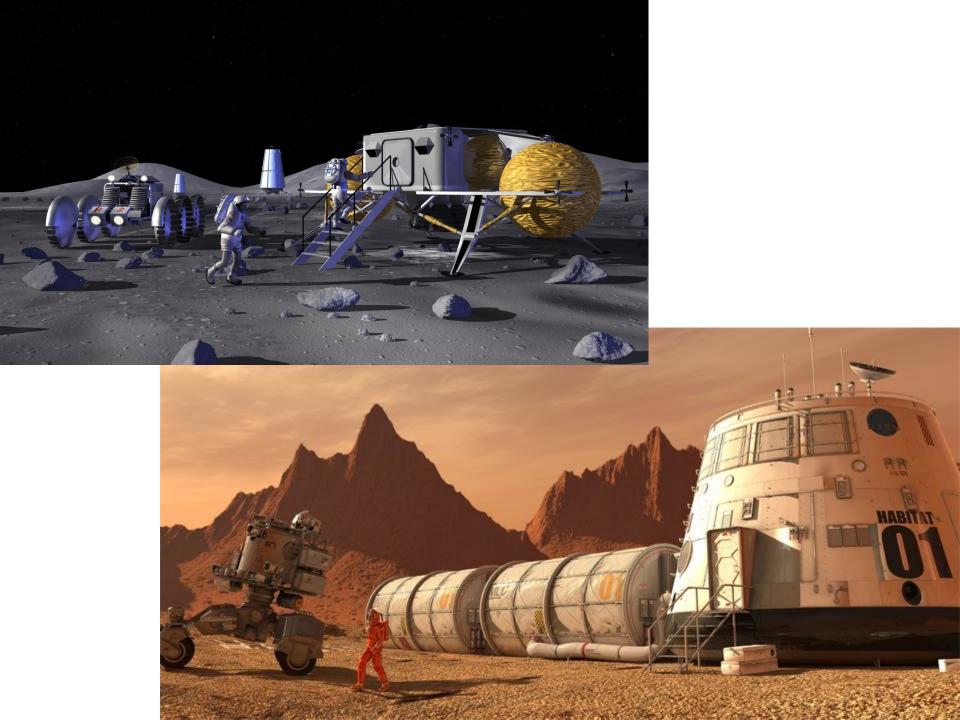
Mobilizing microbes for the Moon

Charles Cockell
UK Centre for Astrobiology, University of Edinburgh

Why microbes on the Moon?

Microorganisms are nature's engineers and factories

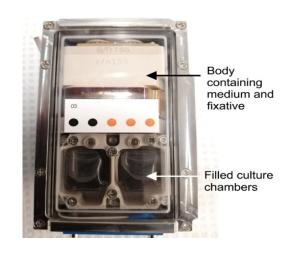


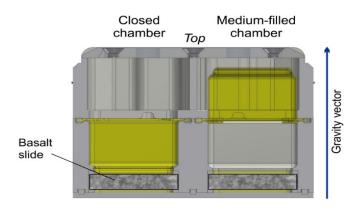

- These capacities can be augmented by synthetic biology/genetic modification

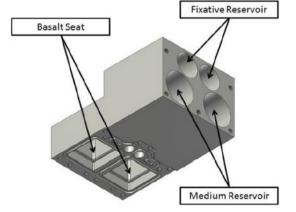
Microorganisms are an integral part of human existence

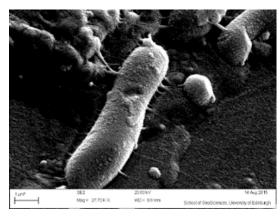
Human beings are mammal-microbe hybrids (Weird thought of the day – humans are exoskeleton mobility suits for microbes)

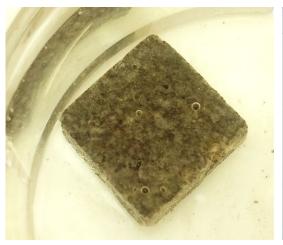
- Humans are about 50% mammal cells/50% microbial cells.
- ➤ Rather than view microbes as 'hitchhikers' we should view them as an inseparable part of the biota.
- 'Mobilize microbes' to establish a permanent human presence beyond Earth.



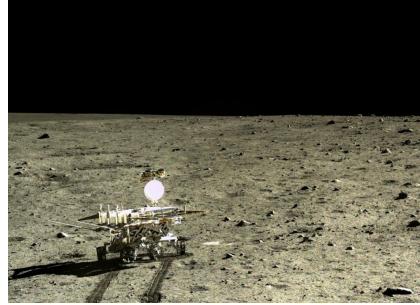


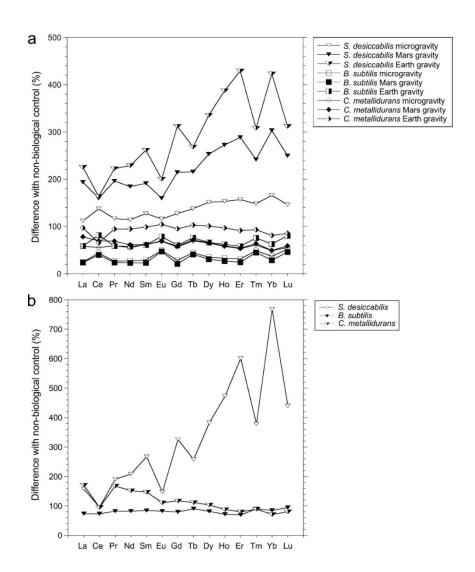

Mining in space Using "biomining" – microbes doing mining A Biomining Reactor


BioRock involved development of new hardware that can be used to study **microbe-mineral interactions** and biofilm **formation in space**.


with our microbes.....

Experiment uses basalt rock as a mining substrate


- Lots of it on the Moon and Mars


Element	Concentration (%)	
Sodium	1.92	
Magnesium	10.00	
Aluminium	15.35	
Silicon	47.48	
Phosphorus	0.128	
Potassium	0.162	
Calcium	11.69	
Titanium	1.344	
Manganese	0.186	
e_2O_3 Iron 12.12		
	Sodium Magnesium Aluminium Silicon Phosphorus Potassium Calcium Titanium Manganese	

We were able to demonstrate for the first time the principles of biomining in space by mining rare earth elements from basalt rocks

Aerospace components, aluminum alloys Scandium Yttrium Lasers, TV and computer displays, microwave filters Lanthanum Oil refining, hybrid-car batteries, camera lenses Cerium Catalytic converters, oil refining, glass-lens production Aircraft engines, carbon arc lights Praseodymium Computer hard drives, cell phones, high-power magnets Neodymium Promethium Portable x-ray machines, nuclear batteries High-power magnets, ethanol, PCB cleansers Samarium TV and computer displays, lasers, optical electronics Europium Gadolinium Cancer therapy, MRI contrast agent Terbium Solid-state electronics, sonar systems Dysprosium Lasers, nuclear-reactor control rods, high-power magnets Holmium High-power magnets, lasers Fiber optics, nuclear-reactor control rods **Erbium** Thulium X-ray machines, superconductors Ytterbium Portable x-ray machines, lasers Chemical processing. LED lightbulbs Lutetium

ARTICLE

OPEN

Check for updates

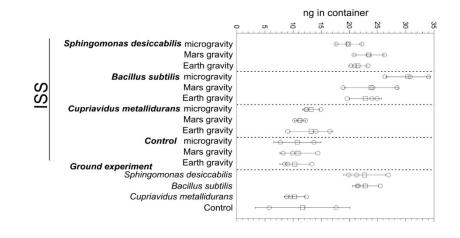
Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity

Charles S. Cockelle 1186, Rosa Santomartino 119, Kai Finster 2, Annemiek C. Waajen 1, Lorna J. Eades 3, Ralf Moeller 4, Petra Rettberg 4, Felix M. Fuchs 5, Rob Van Houdt 6, Natalie Leys 6, Ilse Coninx 6, Jason Hatton 7, Luca Parmitano 7, Jutta Krause 7, Andrea Koehler 7, Nicol Caplin 7, Lobke Zuijderduijn 7, Alessandro Mariani 8, Stefano S. Pellari 8, Fabrizio Carubia 8, Giacomo Luciani 8, Michele Balsamo 8, Valfredo Zolesi 8, Natasha Nicholson 1, Claire-Marie Loudon 1, Jeannine Doswald-Winkler 9, Magdalena Herová 9, Bernd Rattenbacher 9, Jennifer Wadsworth 10, R. Craig Everroad 10 & René Demets 7

Rare Earth Elements on the Moon

Lunar KREEP terrain

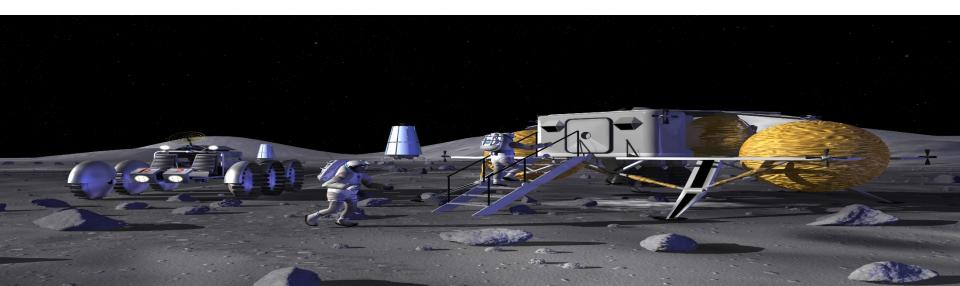
- The Oceanus Procellarum region, including Imbrium Basin contains KREEP rocks [Potassium (K), Rare Earth Element (REE), Phosphorus (P)].
- ➤ Up to ten times higher REEs than other rocks, but still 10-100 times less than REEs ores on Earth.
- Could be higher concentrations at sub-km scales.


Biomining can help us achieve a self-sustaining presence in space and learn how to do mining on Earth without environmental destruction

We also demonstrated vanadium biomining

Vanadium has uses in:

- High strength steel alloys
- Abrasion and thermal fluctuation resistant steel
- Neutron absorption in reactor metals
- Batteries
- etc



		1	2	3	4
	•	•	Percentage		
		Concentratio	above control	Percentage of	Percentage in cell
		n (ng)	(%)	basalt (%) x 10 ⁵	pellet (%)
S. desiccabilis	Microgravity	19.84±2.29	184.92±75.33	8.62±1.00	1.39±0.51
	Mars gravity	23.45±2.70	216.32±68.43	10.19±1.17	1.69±0.40
	Earth gravity	21.50±1.59	208.70±55.85	9.34±0.69	0.96±0.23
B. subtilis	Microgravity	30.38±3.90	283.22±116.44	13.20±1.69	0.96±0.36
	Mars gravity	23.83±4.78	219.78±78.37	10.35±2.08	1.86±0.53
	Earth gravity	22.83±2.84	221.59±63.30	9.91±1.23	1.74±0.85
C. metallidurans	Microgravity	13.19±1.53	122.97±50.10	5.73±0.66	2.67±1.05
	Mars gravity	11.23±0.96	103.54±31.78	4.88±0.42	4.20±1.73
	Earth gravity	10.26±1.85	128.21±49.47	5.74±1.65	1.67±0.35
Non-biological control	Microgravity	10.73±4.19	-	4.66±1.82	-
_	Mars gravity	10.84±3.19	-	4.71±1.39	-
	Earth gravity	10.30 ± 2.65	-	4.47±1.15	-
Ground 1 g	S. desiccabilis	22.69±3.72	194.13±143.11	9.86±1.61	2.46±1.31
experiment	B. subtilis	22.81±2.31	195.12±141.63	9.91±1.00	1.41±0.31
•	C. metallidurans	10.26±1.85	87.78±65.04	4.46±0.08	2.73±1.06
	Control (non-		-		-
	biology)	11.69±8.40		5.08±3.65	

Cockell CS et al (2020) Microbially-enhanced vanadium mining and bioremediation under micro- and Mars gravity on the International Space Station. Frontiers Microbiol. (in press).

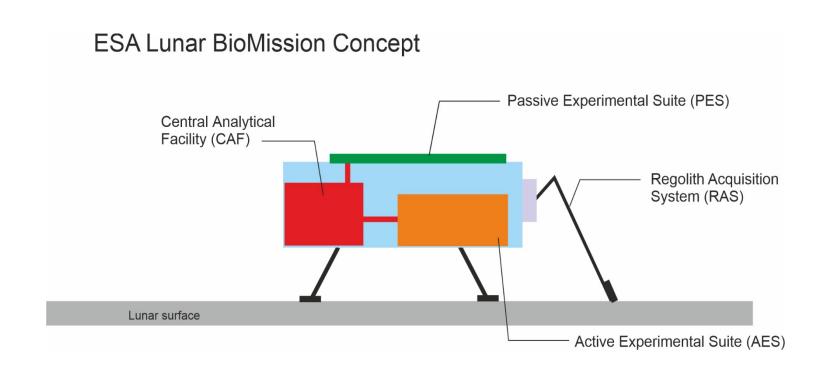
BioRock-L and beyond....

- Autonomous BioRock hardware
- Flights to Moon, Mars and beyond
- Currently developing autonomous capability with Kayser and University of Edinburgh

Ultimately we want to build a lab on the Moon...

This is an old paper, but an updated version might include the capacity for molecular biology, synthetic biology, cell biology, human biology etc.

ASTROBIOLOGY Volume 7, Number 5, 2007 © Mary Ann Liebert, Inc. DOI: 10.1089/ast.2006.0082


Special Review

Lunar Astrobiology: A Review and Suggested Laboratory Equipment

AARON GRONSTAL,¹ CHARLES S. COCKELL,¹ MARIA ANTONIETTA PERINO,² TOBIAS BITTNER,³ ERIK CLACEY,⁴ OLATHE CLARK,⁵ OLIVIER INGOLD,⁶ CATARINA ALVES DE OLIVEIRA,⁷ and STEVEN WATHIONG⁶

We are developing a proposed lunar BioMission concept

- Part of ESA's proposed Large Logistics Lander (EL3) proposed programme
- Passive and active biological analysis with a range of biological models
- Interactions with radiation, regolith etc.
- Sophisticated biomolecular/genetic analysis on the lunar surface.

Acknowledgements

Science and Technology Facilities Council

ESA

UK Space Agency

Kayser Space

