

2021

STATION

IROSA INSTALLED FIRST ROLLOUT SOLAR ARRAY OVER 3 EVAS

HIGHLIGHTS

5 CREWED LAUNCHES CREW-2 DRAGON CREW-3 DRAGON SOYUZ MS-17 SOYUZ MS-18 SOYUZ MS-19

8 CARGO

STATION SCIENCE CHILE HARVEST COOL FLAMES BISHOP AIRLOCK GITAL ROBOTIC ARM FARTH CLIMATE STUDIES COLD ATOM LAB AR ASTROBLE WAKES UP DNA RESEARCH

SINCE APOLLO 8

CREW-2 LAUNCH KIMBROUGH, MCARTHUR, HOSHIDE, PESQUET

CREW-3 LAUNCH NOV. 11, 2021 CHARL MARSHBURN BARRON, MAURER

ISS Mission Goals - The Decade of Results

Enable Deep Space
Exploration
Validate Exploration Technologies
and Reduce Human Health Risks

Conduct Research
to Benefit Humanity
Life-saving medical research
& applications, understanding
climate change, sharing
discoveries with all

Enable International Collaboration

Maintain & expand international partnerships, set norms & standards

Foster Commercial
Space Industry
In partnership with Commercial
LEO Office

Incubate in-space manufacturing, support commercial LEO facilities and customers

Inspire Humankind

Broaden reach of space benefits, engage public, create diverse future STEM workforce

Provide National Human Space Flight Infrastructure

Ensure continuous human presence in LEO - no gap; provide destination for crew & cargo transportation

ISS Extension Through 2030

- On December 31, 2021, the White House announced a decision to extend operations of the ISS through 2030*
- Extension through 2030 will allow time to complete critical exploration development activities while bringing new commercial LEO capabilities online

- The ISS International Partners are working with their respective governments to extend through 2030
- There are no technical constraints to operating through 2030

Benefits of Extension

Utilization Transition from ISS to CLD (notional)

CLD

Users

International Partner Utilization

NASA Technology Demonstration

NASA Human Research

NASA Science

Other Government Agency Research

In-Space Product Manufacturing

Commercial Tourism, Marketing

ISS

Through ISS Intergovernmental Agreement (IGA) and bilateral agreements

Long-duration microgravity testing of exploration systems (ECLSS, Crew Health Systems, Food Production, etc.)

HRP risk reduction plans - multiple subjects for varied durations

Biological, Physical, Earth, Planetary decadal-driven science

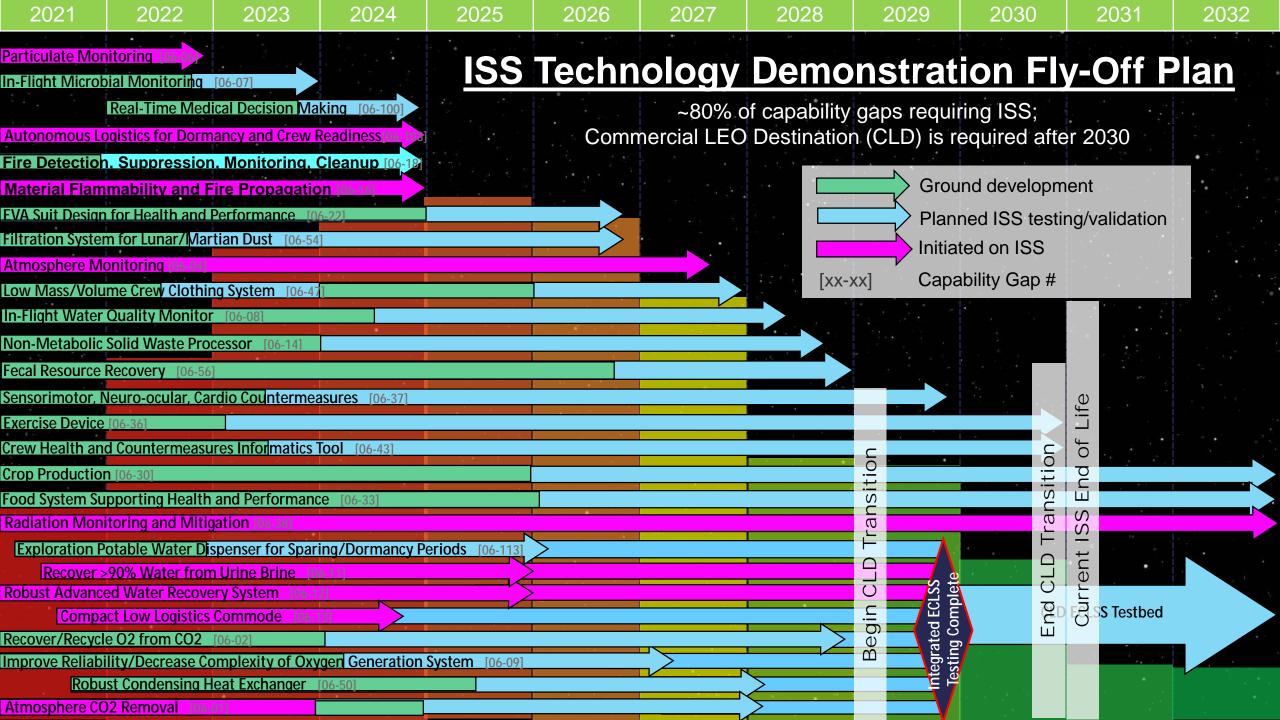
Through ISSNL or NASA collaboration (NIH, NSF, DoD, others)

NASA in-space production + ISSNL

ISS Private Astronaut Missions, Commercial Use Policy, reimbursement of resources

Bilateral government to government agreements and arrangements directly with industry

Accommodation for ongoing subset of testing, possible incorporation into CLD designs


Ongoing research with NASA crew and possibly private astronauts, exploration analogs

Purchase accommodation for ongoing decadal-driven science; transfer hardware or purchase commercial facility services

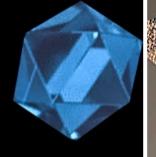
Through LEO National Lab

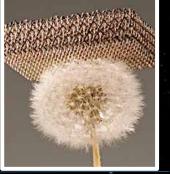
Development through LEO National Lab; commercial production business to business

Business to business

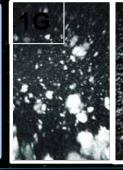
Exploration Capabilities Development Technology Demonstrations

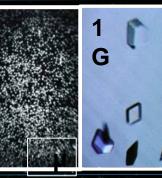
Above: Mark Van de Hai installing 4-Bed CO2 Scrubber in the US Laboratory

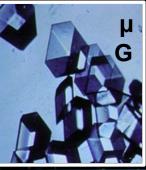

Right: Space Suit Evaporation Rejection Flight Experiment (SERFE)



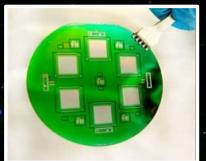
Below: Brine Processor Assembly installed in March 2021

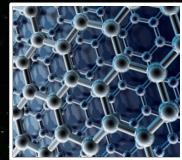






Crystals

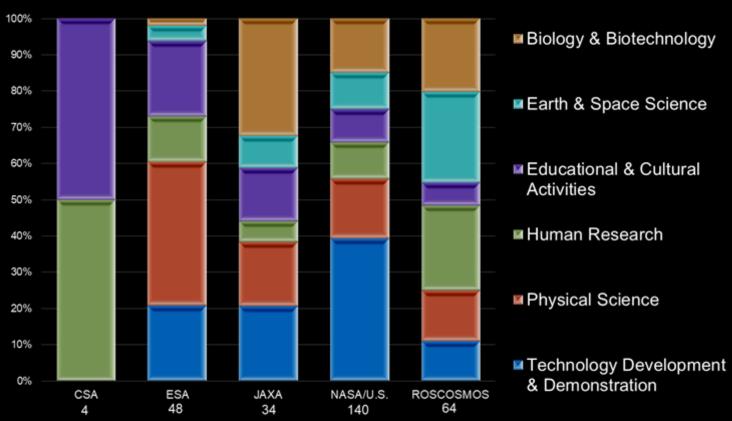




Tissue
Engineering and
Regenerative
Medicine

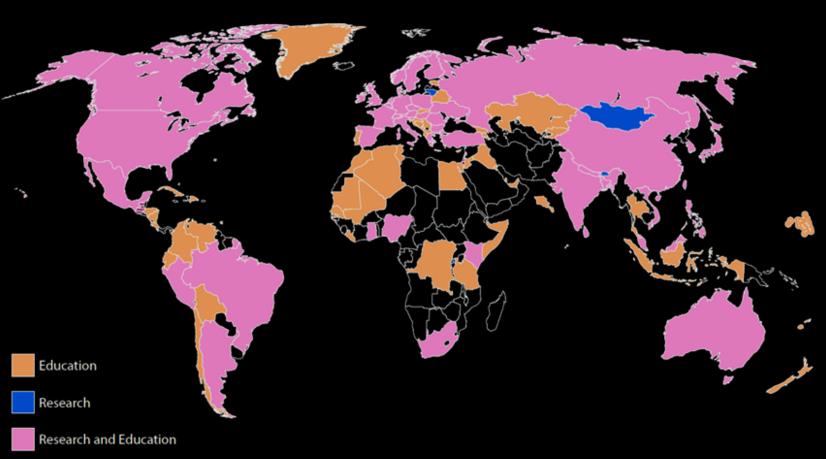
ISS Research Statistics

Investigations for 65: 290


- 140 NASA/U.S.-led investigations
- 150 International-led investigations
- 81 New Investigations
 - 0 CSA
 - 24 ESA
 - 11 JAXA
 - 43 NASA/US
 - 3 ROSCOSMOS

MCB Approved Statistics Exp. 0-62

- 3040 Investigations
- 4418 Investigators Represented
- 109 Countries/Areas with ISS Research and Education Participation
- Over 2377 Scientific Results
 Publications (Dec 1998 Nov 2021)


Estimated Number of Investigations Expedition 0-65: 3202*

Albania **Algeria** Argentina **Armenia Australia** Austria Bangladesh **Belarus** Bermuda **Bhutan** Bolivia **Bosnia** Brazil Bulgaria Chile China Columbia Costa Rica Croatia Cuba **Cyprus Czech Republic Democratic Republic of the Congo Dominican Republic Ecuador Egypt Estonia** Eiji **Finland** Georgia Ghana Greece Greenland Guatemala **Honduras** Hungary India Indonesia Iraq Ireland Israel Jordan Kazakhstan Kenya Kuwait Kyrgyzstan Lebanon

International Participation on ISS

New Entries

109 highlighted countries and areas have participated in ISS Research and Education Activities

Belgium Canada Denmark France Germany Italy Japan Netherlands Norway Russia Spain Sweden Switzerland United Kingdom

United States *New participating country

Liberia Lithuania Luxembourg Macedonia Malaysia Maldives

Mali Marshall Islands

Mauritania Mexico

Monaco

Mongolia

Montenegro

Morocco

Nepal

New Zealand

Nicaragua

Nigeria

Peru

Philippines

Poland

Portugal

Qatar

Republic of Malta

Republic of Korea

Republic of South Africa

Romania

Rwanda*

Senegal

Serbia

Singapore

Slovakia

Slovenia

Somalia

Sri Lanka

Taiwan

Tanzania

Thailand

Trinidad and Tobago

Tunisia

Turkey Ukraine

United Arab Emirates

Uruguay Vatican City

Venezuela Vietnam 11

NASA's FUTURE LEO NEEDS

NASA anticipates to meet these needs as it transitions from International Space Station operations to new commercial LEO destinations that are commerciallyowned and operated.

Science

Technology Demonstrations

Crew Accommodations & Training

National Lab Services

Physical & Biological Research

COMMERCIAL LEO DEVELOPMENT PROGRAM ROAD MAP

Near Term Mid-Term

Far Term

International Space Station (ISS) Operations

Commercial LEO Destinations Development

CLD Operations

Phase 1: Early Design Maturation

Phase 2: Certification & Services

Design and Development

LEO economy developed by enabling a supply side and actively maturing a sustainable demand side

S

J Commercial Destinations

P on ISS (CDISS)

P

Commercial Destinations

Free Flyer (CDFF)

Plan based on NASA readiness, maturation of destinations, and market demand

End Goal

Sustainable Commercial Operations with multiple customers

Demand Stimulation (In-Space Manufacturing, R&D to Applications)

ISS National Lab/CASIS (Science, Applied R&D, Tech Dev, STEM)

Commercial Use of ISS (Commercial and Marketing Activities)

Private Astronaut Missions (Tourism)

Gov't LEO Requirements (Human Research, Life & Physical Sciences)

Transition LEO Economy Activities from ISS to Commercial Destinations

ISS National Lab Status (CASIS)

- All Independent Review Team Actions Completed
 - Primarily new Board and new acting Executive Director
 - User Advisory Committee established and meeting
 - o Transparent, peer-reviewed project evaluation process established
 - NASA liaison transitioned to ISS Director
 - Cooperative Agreement simplified
 - Annual Performance Goals restructured to reflect priorities and outcome-based

- 88 payloads delivered in FY21, second most in single year (despite COVID)
- 85% of total costs for selected projects were externally funded
- Beginning to see more demand than resources available
- NASA-CASIS partnership is strong
- NASA studying potential future models of a national laboratory in LEO