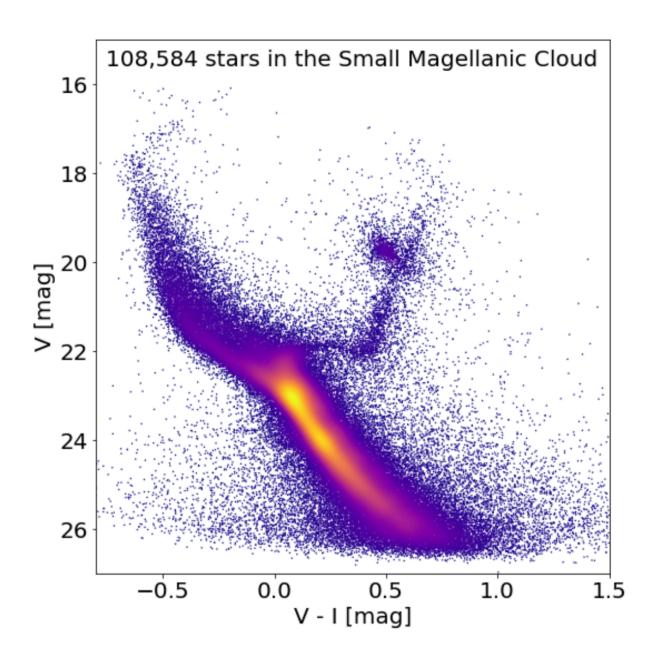
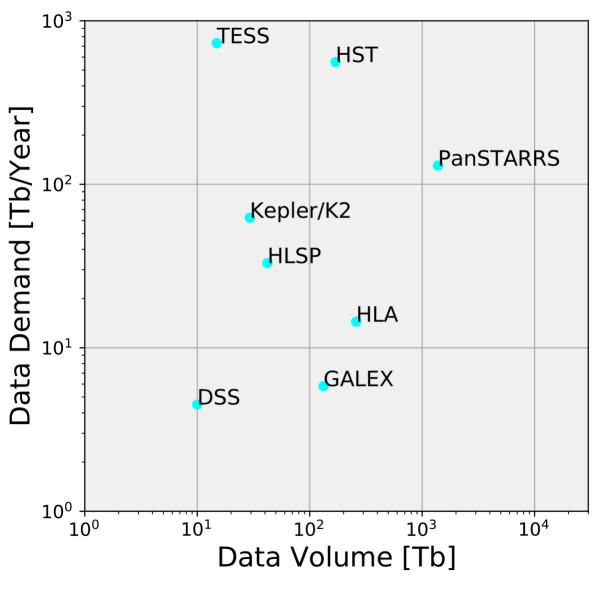
A vision for the future of astronomical archives

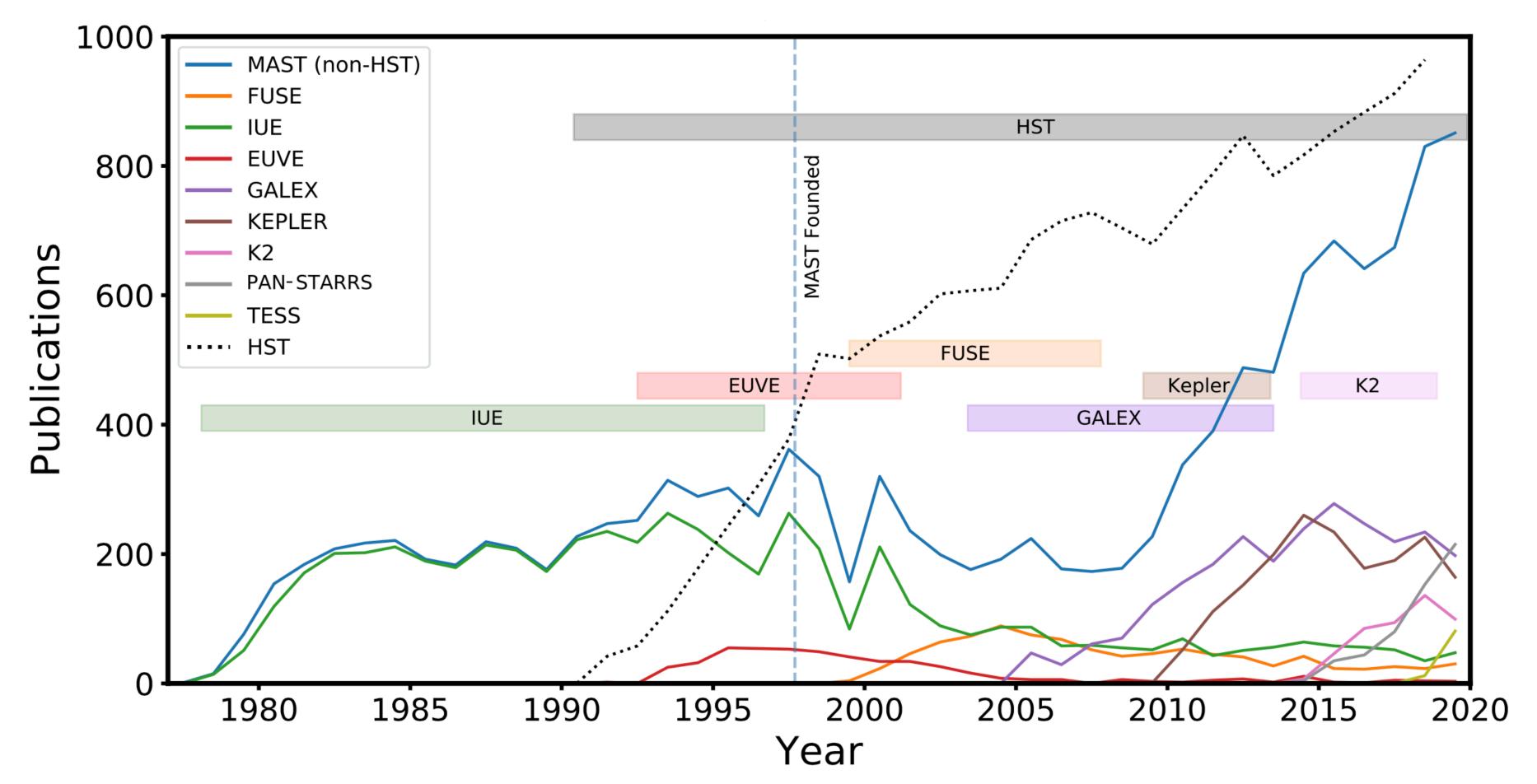
Astro2020: An Enabling Foundation for Research


Arfon Smith, Space Telescope Science Institute



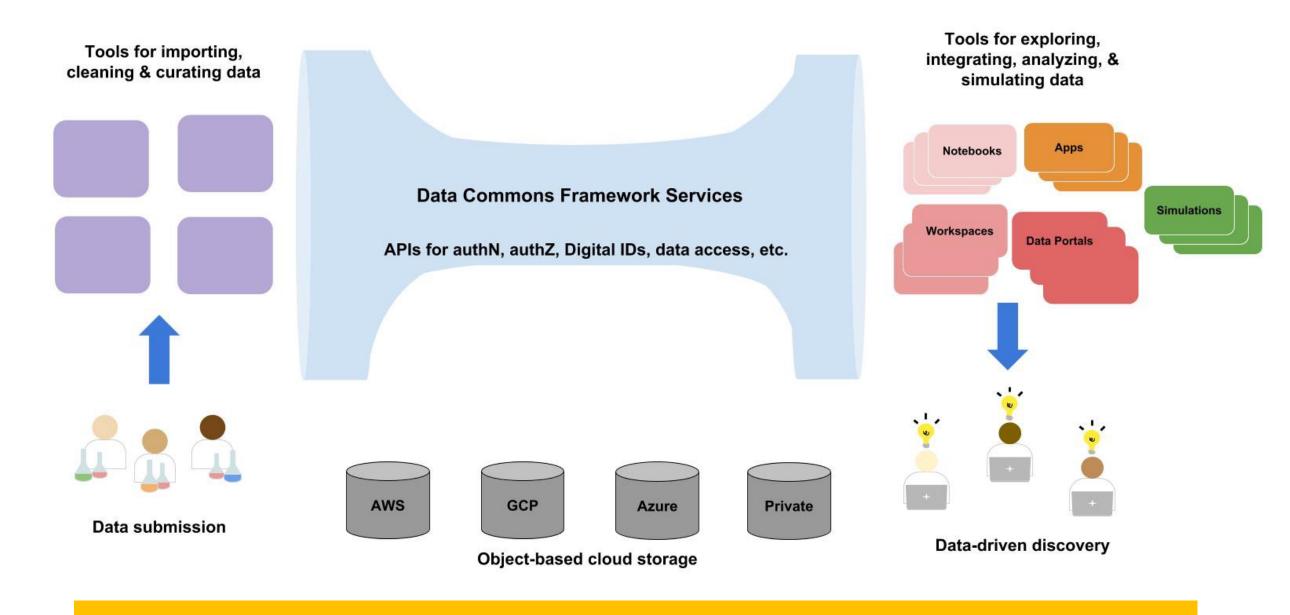
What do archives do?

- Store, preserve, and distribute the bits.
- Place core services and interfaces around the data.
- House experts that interface with the community to understand and *anticipate* their needs.
- Build value-added interfaces tailored to specific scientific domains.
- Curate knowledge, including generating value added products.
- Collaborate with other archives.


Archives are repositories of expertise and knowledge

MAST's most popular missions

Archives enable science


Archives must evolve to support the science of the 2020s

- Current model of search → retrieve → analyze (locally) of data is sub-optimal for peta-scale datasets (and combinations thereof) and sophisticated analyses (e.g. applying machine learning techniques).
- "Color of money" physical siloing of key datasets (e.g. VRO/LSST, WFIRST) likely to be rate-limiting for science.
- Standard operating model of requires significant time and expense devoted to important, but non-specialist "data plumbing" problems at centers.
- Most archives and missions lagging significantly behind commercial sector data management (e.g. those using public/commercial cloud computing).
- Very limited adoption of open source and *open development* paradigm for infrastructure resulting in minimal reuse between centers, facilities, and research disciplines.

Astronomy should take a more unified approach to data management operations (including archives).

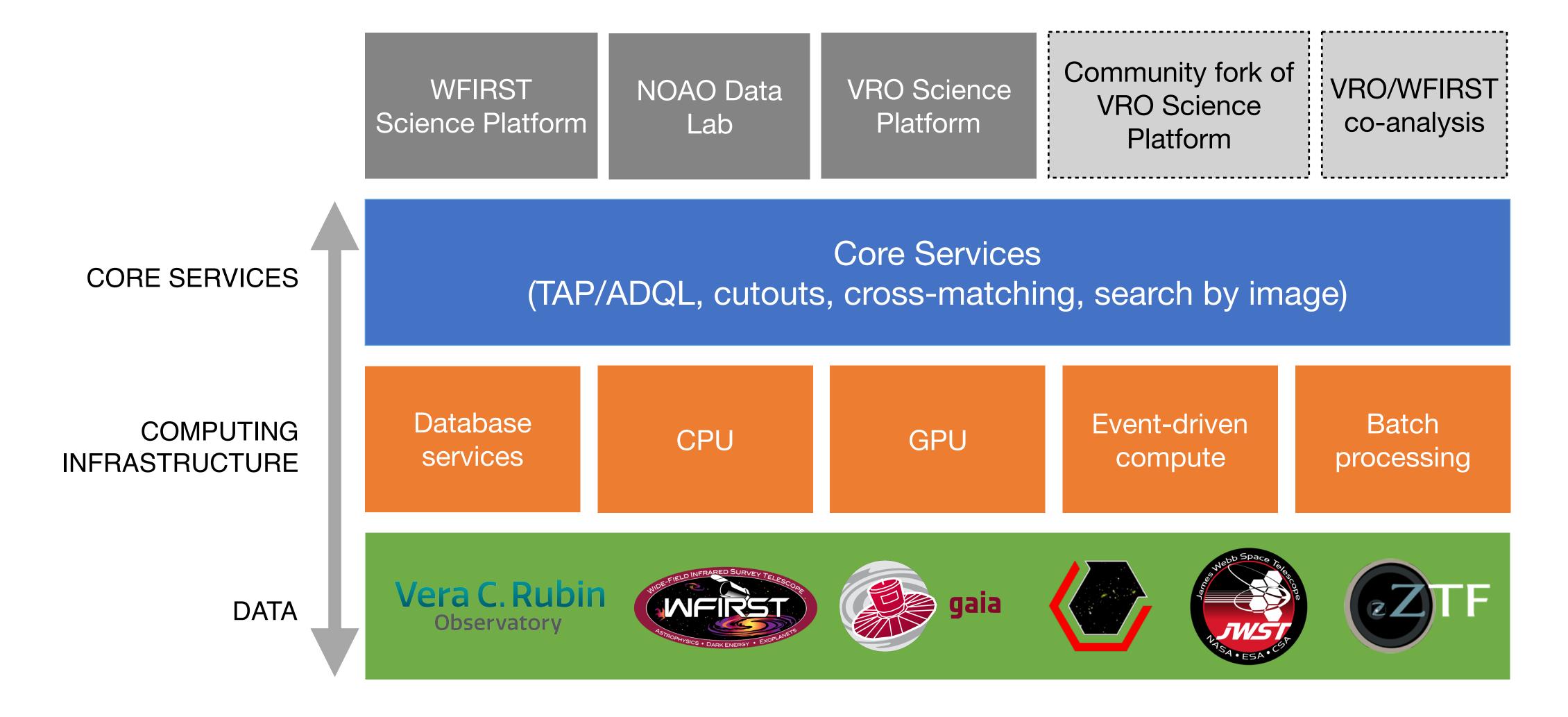
Adopt conventions from other disciplines (e.g. biomedical)

- 1. **Modular:** composed of functional components with well-specified interfaces.
- 2. Community-driven: created by many groups to foster a diversity of ideas.
- 3. **Open:** developed under open-source licenses that enable extensibility and reuse, with users able to add custom, proprietary modules as needed.
- 4. **Standards-based:** consistent with standards developed by coalitions such as the Global Alliance for Genomics and Health IVOA.

End-to-end design principle

Astronomy should adopt a cloud-hosted data commons model for storing data.

Data commons co-locate **data** with **cloud computing** infrastructure and commonly used **software services**, **tools & apps** for managing, analyzing and sharing data to create an **interoperable resource** for the research community.


Cloud + open infrastructure as a science accelerator

- Major projects/facilities should agree to co-locate data (e.g., pixels & catalogs) in the commercial/public cloud.
- Development and sharing of machine-readable infrastructure templates would enable significantly easier **infrastructure reuse between projects** (including older facilities) and between research disciplines (e.g. astronomy and earth science).
- Commoditization of low level infrastructure would allow individual projects to focus on the unique aspects of their mission (e.g. instrument calibration, custom interfaces, user support).
- Adoption of public cloud would make academia and industry more aligned, thereby enabling more routine technology transfer (from industry) and easier hiring.
- Open source infrastructure raises the profile and prestige of mission-critical work.

Cloud + open infrastructure as a science accelerator (cont.)

- Public data staged in the cloud combined with open source infrastructure enables permissionless innovation by anyone in the global astronomical community including:
 - Ability to 'rent' vast computational resources by the the hour, minute, or second*.
 - Gain access to the latest hardware (e.g. GPUs for deep learning).
 - Easily leverage new computational paradigms in astronomy (e.g. serverless).
 - Vastly reduces barriers (financial & logistical) for those wishing to carry out joint analyses of key datasets (e.g. VRO/LSST + WFIRST).
 - Enable the community to build custom science interfaces.

Astronomy data commons

...co-locate data with cloud computing infrastructure and commonly used software services, tools & apps for managing, analyzing and sharing data to create an interoperable resource...

Unification ≠ Centralization

True centralization is a risk to science

- Some consolidation especially in a public cloud-hosted *data commons*, for low-level data management functions is a good idea.
- Archives preserve expertise: true centralization of archives puts science at major risk through loss of scientific expertise and domain knowledge.
- Experts housed at archives act as "product managers" interacting with users, and designing custom interfaces to enable their science (e.g. ExoMAST).
- Some duplication of effort is good. Existing archives in friendly competition, leading to increased innovation.
- Data calibration pipelines (and resulting products) are major intellectual
 contributions in their own right and this expertise often resides with a small number
 of individuals close to the mission/instrument team.

Conclusions & potential actions

Conclusions & potential actions

- Fund open infrastructure and their collaborations (e.g. Jupyter, Pangeo, Astropy).
- Fund cross-collaboration between existing centers (e.g. NASA ADCAR overguides).
- Enact existing federal mandates for open source and open data.
- Adopt an implementer-led process for developing open infrastructure.
- Engage with commercial cloud vendors to secure best possible pricing for cloud usage and egress waivers.

Resources

- Astronomy should be in the clouds: https://arxiv.org/abs/1907.06320
- Elevating the Role of Software as a Product of the Research Enterprise: https://arxiv.org/abs/1907.06981
- Public dataset programs: Amazon Web Services Google Cloud Microsoft Azure
- Data Lakes, Clouds, and Commons: A Review of Platforms for Analyzing and Sharing Genomic Data https://doi.org/10.1016/j.tig.2018.12.006
- Sustaining Community-Driven Software for Astronomy in the 2020s: https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.180T/abstract

Appendix

What do you see as the future of archives?

- Reliable, trusted sources of data and expertise.
- Facilitators of server-side analysis and critical infrastructure for joint analysis of peta-scale datasets and enabling any astronomer to work with them.
- Places to collaborate with peers.
- Heavily invested in open source, reusable infrastructure components.
- Taking a more unified, cross-mission approach to data management such as sharing Infrastructure as Code components to facilitate individual applications like Science Platforms.
- Support for long term storage of mission data.
- Making heavy use of the public/commercial cloud.

What are the challenges to enabling interoperability between archives?

- General siloing challenges (color of money). No funded mandate to collaborate.
- Infrastructure lifecycle/refresh cycle of missions (hard to get money to update old systems).
- Limited adoption of open source and open development 'mentality' of sharing technologies between centers.
- Use of physical (rather than virtual/cloud-based) data centers.

How can we facilitate interoperability between NASA and NSF-funded archives.

- Fund explicit collaborations between them (e.g. shared infrastructure projects, NASA overguides).
- Fully implement existing federal mandates for open source software.
- Require existing archives to development and *share* machine-readable infrastructure templates for their missions.

What are the advantages/disadvantages of a central archive?

Advantages

- Potential economies of scale through consolidation.
- Co-location of data permits more performant (and cheaper) cross-mission analyses.
- Potential increased technology synergies (if done right) between missions.
- More routine sharing of expertise between missions.
- Democratization of technology/collaborative model with community if done right (Infrastructure as Code technologies + public cloud).
- More seamless collaboration with industry, if implemented using industry-standard technologies such as the public cloud.

What are the advantages/disadvantages of a central archive?

Disadvantages

- Loss of expertise with missions and therefore science opportunities.
- Forcing heterogeneous datasets into common data models potentially risks losing nuance of individual mission data.
- Loss of innovation through 'competition' between centers.
- At extreme, if centralization included co-locating all staff then loss of key critical staff.
- Introducing a single point of failure into critical infrastructure.
- Fundamentally puts scientific productivity of archives at major risk.

How should we assure long-term access to data?

- Create organizations with permanent archiving as part of their mission.
- Keep some money aside (~5%) from construction/operations for long-term archiving (see <u>Szalay & Barish</u>).
- Identify organizations that can help astronomy achieve this mission (e.g. university libraries, cloud vendors).
- Ensure that negotiated deals with public cloud vendors include provisions for long term access and an exist clause should they stop participating in public cloud activities.

What information do we need to maintain from projects?

- People:
 - Context.
 - Nuance.
 - Expertise with data.
- Raw bits, catalogs, software, documentation.

Should we archive simulations?

- Should we store and serve simulations? YES
- Should we archive simulations in perpetuity? Probably not.

How do we enable astronomers to process some/all of the relevant data on local machines?

Depends what we mean by 'local'... Processing all VRO/LSST pixels on my laptop seems unrealistic. However, assuming we mean 'being able to use the mission tools locally then:

- Fund high-quality research software. Insist that it's open source.
- Adopt a tiered approach for infrastructure i.e. allow astronomers to use similar/same tools that are used at scale, just locally.
- Data management/data processing is pleasingly parallel, that is, a local machine can be one processing 'node' out of many. Frameworks such as Dask potentially allow for a hybrid data processing where command/control is on local machine but large clusters are being accessed for bulk of computing.

What should the relationship be between astronomical archiving and other national-scale archiving challenges? e.g. in geophysics, biology, physics, etc.

- Developing common business models, especially negotiated rates with e.g. commercial cloud vendors for storage and egress (distribution).
- Develop common 'people operation' models, i.e. what is the right balance between a core workforce component and key staff employed at distributed centers.
- Develop and fund common community models (e.g. see Pangeo right now in Earth science).