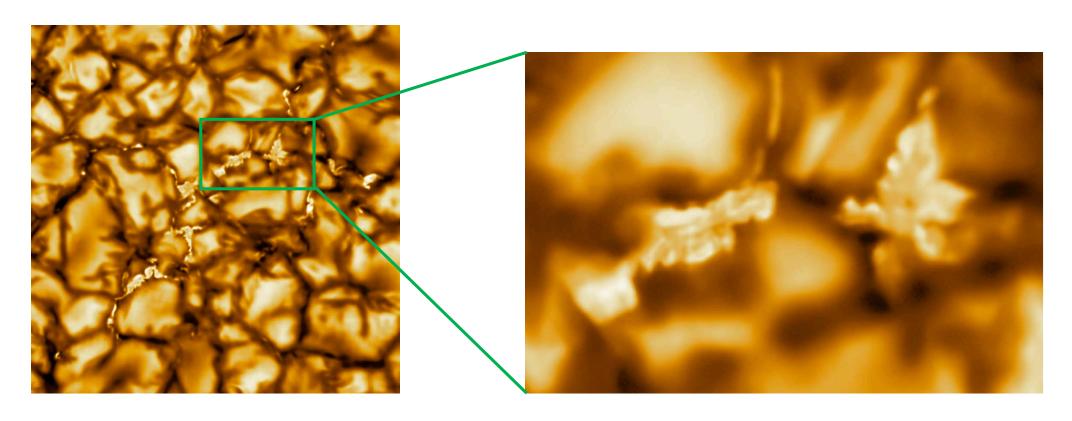
Priorities for ground-based heliophysics research in the coming decade Astro2020 Panel on Enabling Foundation for Research

Valentín M. Pillet National Solar Observatory


- 1. What are the plans for **DKIST operations** and analysis?
- What are the challenges to supporting the software necessary for the analysis. (Sunpy, IDL -> Python)
- 3. What do you see as the challenges for ground-based **heliophysics** in the coming decade?
- 4. What are the challenges to integrating space-based and ground-based archival data?
- 5. Are we supporting the necessary **laboratory astrophysics** work needed to interpret the observations?
- 6. What are the challenges in supporting the relevant theoretical work?
- 7. What are the challenges to training the next generation of solar astronomers?

Inouye solar telescope first light

- Telescope is <u>still under construction</u>: Operations start in July 2020
- Images obtained as part of the functional verification of the telescope & instruments (AO)
- Diffraction limited achieved

DKIST operations and analysis

- DKIST is first ground-based solar telescope that uses **Service Mode** as the basis for operations
- Access Mode restricted to new instruments, Target of Opportunities, etc.
- Level-1 (instrument calibrated) data is served from the DKIST Data Center
- Level-2 (physical parameters) 2-3 years funding pilot program available
- DKIST is open access and open data (2014 AAAC recommendations)
- DKIST policies establishes a six month proprietary period for observing proposals
- DKIST policies excludes **ToO**, **DDT**, and **synoptic data** from proprietary periods
- DKIST policies prioritize **US participation** in TAC rankings for same scientific merit
- Service mode is resource intensive: deficit \$1M/year
- Descopes: second generation instruments or upgrades to existing (MCAO is funded).

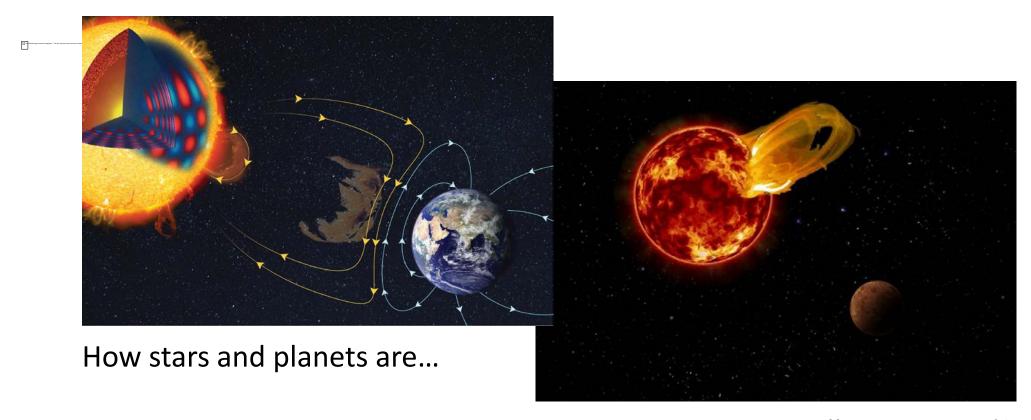
https://www.nso.edu/wp-content/uploads/2019/12/NSO_MidTerm_Report_and_Long_Range_Plan_FY20-FY24_FullDocument.pdf

Challenges to Support Software

- Solar astronomers heavily use IDL (which grew from the solar community)
- DKIST data center uses **Python**: SunPy (UK centric, voluntary): Pipelines, User tools, etc.
- Aligned with the younger generations, but a challenge.
- 'Best way to provide an enhanced user experience and a better way forward to work with DKIST data: might drive further adoption of Python as a solar data analysis tool.'
- Most likely will stay open and free.

SolarSoft/IDL
NASA

DKISTPy/SunPy/Python
NSF/NASA

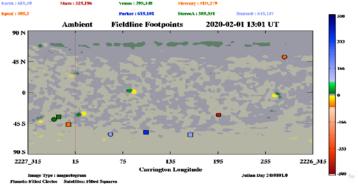

- Funding (SolarSoft, SunPy) available on a mission by mission basis (NASA).
- Only for development, not support (SolarSoft maintained at LMSAL; SunPy DKIST supported)
- Challenges: Funding, community adoption (inertia), coordination, future NASA missions.

Challenges for ground-based heliophysics

...magnetically connected?

A multi-messenger era for Solar & Heliospheric Physics

Challenges for ground-based heliophysics



Particles & fields vs. electromagnetic counterpart

Present judicion to registral interests and senting interests the senting interests and senting interests and

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 98, NO. A11, PAGES 18,937-18,949, NOVEMBER 1, 1992

The Solar Flare Myth

J. T. GOSLING

Los Alamos National Laboratory, Los Alamos, New Mexico

Many years of research have demonstrated that leags, nonrecurrent geomagnetic attents, botch was distribution in the isolar viola, and sengericip notifice events in interplantary species offens exceed to interplantary species offens exceed to the same and effort. "But retain a species and effort "But retain species and effort and exceed to the programmer species and exceeding state of the species promption of the programmer species and exceeding the species and exceeding species and effort that removes softer fixes from their exceeding species and effort that removes softer fixes from their exceeding species and effort that removes softer fixes from their exceeding species for the exceeding species and effort that removes softer fixes from their exceeding species and exceeding species and

Next Generation Synoptic Solar Physics Network

Challenges for ground-based heliophysics

Community engagement: Good News

- US community funded via NASA mission-specific Guest Investigator programs have "engaged" the solar community.
- Space-based solar community has actively participated in the DKIST Critical Science Plan workshops.

Community engagement: Concerns

- NSF funding model differs from that of NASA: for NSF, apply for grants & separately apply for observing time
- You might succeed in one, but not in the other
- Without targeted funding for DKIST observations, there is some risk of losing the participation of the community, particularly space-based solar scientists

Community engagement: More Good News

- NSF/AST AAG has provided good support in the recent years
- DKIST unique coronal capabilities align well with the NASA community

Space- and ground-based archival data?

- Space based ahead of ground based (exception of NSO's GONG)
- Ground based data: atomized in individuals and Observatories.
- Solarsoft/IDL has made space-based data seem far more integrated
- Will DKISTPy/SunPy serve as a catalyst?
- VSO helpful in trying to federate the data. NASA funded.
- VSO includes both ground and space based data. Historical series.
- Space based data NASA & ground based is NSF. Helio & Astro Decadal Surveys.
- 'There is a belief you shouldn't cross the (funding) streams'

NASA & NSF Coordination

Laboratory work to interpret observations

- DKIST will regularly observe the Solar Corona in the [0.5-5] μm range.
- Forbidden lines from highly ionized atoms (Fe XIII, Si IX, SiX,...).
- Laboratory determination of the Landé factors for coronal lines.
- Atomic and collisional parameters for ion excitation/ionization.
- Ionization/recombination rates
- Solar Orbiter connectivity studies relies on unreliable atomic data
- Synergies between the laboratory plasma physics and multi-messenger solar and heliospheric physics are evident
- Discussed at multidisciplinary opportunities (SHINE, others)

More opportunities for cross-fertilization (workshops)

More reasons to collaborate (funding opportunities)

Electron Beam Ion Trap (EBIT)

Laboratory work to interpret observations

SHINE 2019 Session on connecting Heliophysics and Laboratory Plasma Studies

 Experimental Characterization of Energy Transfer by Three-Wave Coupling in Mel Abler 2D Plasma Turbulence

Threshold for the torus instability of arched, line-tied flux ropes Andrew Alt How solar eruptions generate X-rays and energetic particles Paul Bellan

Effect of viscosity on propagation of MHD waves in astrophysical plasma Alemayehu Cherkos

• Plasma and Radio Wave Generation by an Electron Beam in a Laboratory Seth Dorfman

Plasma

Nonlinear Interactions of Alfven Waves in Multi-ion Plasmas

Laboratory measurements of Alfven wave propagation through a transverse Michael Hahn density gradient

Three-dimensional Evolution and Formation of Multiple Current-filaments in Kamil Krynski a Laboratory Arched Magnetized Plasma

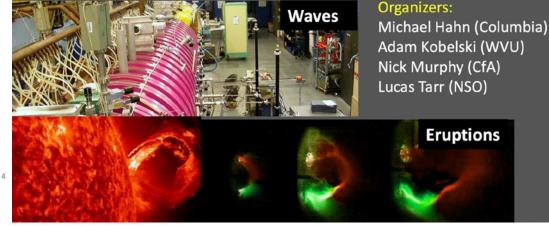
Direct Observations of Particle Dynamics in Magnetized Collisionless Shock

Precursors in Laser-Produced Plasmas

Sausage to kink instability transition-induced fast magnetic reconnection resulting in plasma jet eruption

Rayleigh Taylor instability in the solar corona loop experiment

Developing a PIN Photodiode Detector to Image **Transient X-ray Bursts** From Yi Zhou the Caltech Jet Experiment

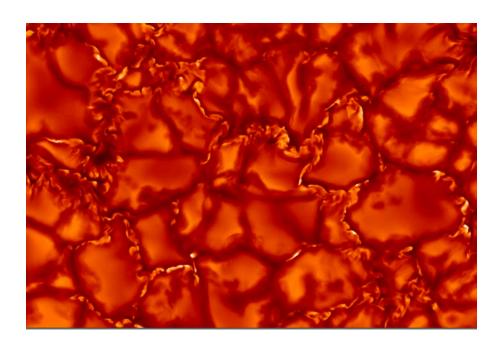

Xiangrong Fu

Derek B Schaeffer

Pakorn

Wongwaitayakornkul

Yang Zhang



Supporting the relevant theoretical work

- DKIST observations and state-of-the-art numerical simulations interplay
- Observations: High cadence imaging, multi-line spectroscopy, polarimetry \rightarrow inversion codes
- <u>Numerical Simulations</u>: dynamo, convection, turbulence, wave generation, partial ionization
- Compare observed (x,y,z,t) cubes with simulated (x,y,z,t) cubes is a formidable task

- Numerical codes are often proprietary
- Community access is limited at best
- Access by the community will require infrastructure, and funding...

How do we extend the open access, open data model to numerical simulations?

Training the next generation of solar astronomers

Solar Physics presence in the University system is low → access to students difficult

• Recent efforts: CU Boulder (2+2+1), NMSU (2+1), UH (1+1), GSU (1+1), NJIT (1)

MATHEMATICAL, STATISTICAL, STAT

WIA AT ND MN WI OR ID WY NE IA IL IN OH NA NE NS

NV UT United States CO KS MO WV VA OB WV VA OB TAX AL GA

TX LA GA

Mexico Cuba

Puerto Rico

12 #DKISTambassadors

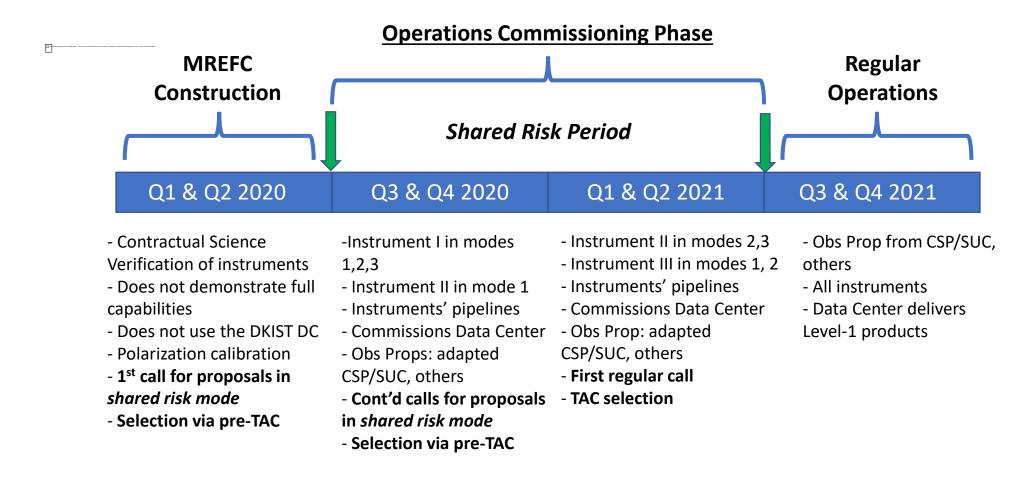
60% male, 40% female

#NSFfunded DKIST level-2
Harnessing the Data Revolution

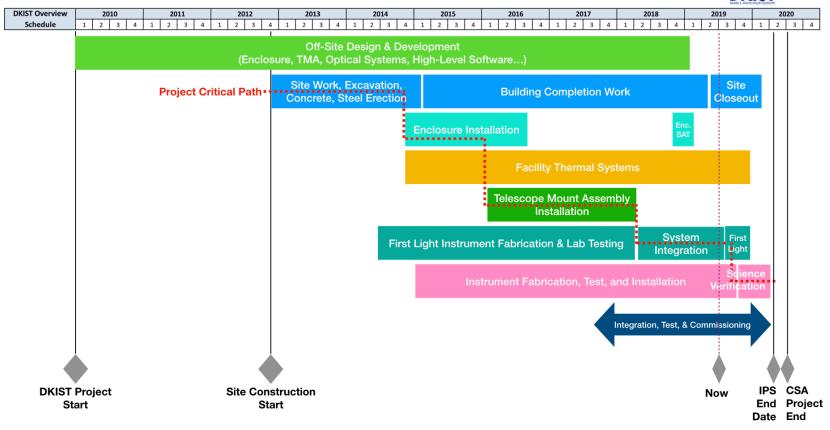
Summary

- DKIST incorporates modern operations and software approaches into solar physics.
- DKIST will start operations in 2020 and will produce unprecedented detail and sensitive observations of the Sun and the microphysics that occurs on our local stellar archetype.
- In combination with single point inner-heliospheric space missions, it will help us understand the fundamental processes that create the heliosphere.
- A complete understanding of the magnetic connectivity between starts and planets, requires to put this microphysics in the context of synoptic solar data.
- Synoptic data holds the key to advancing our understanding of the structure and dynamics of the solar magnetic field and interior, and to provide input data for heliospheric models
- We thus encourage Astro2020 to specifically endorse the need for a next-generation global solar monitoring system like ngGONG.

Description of the second section of the second second second second section of the second section of the second section of the second section section


THANKS

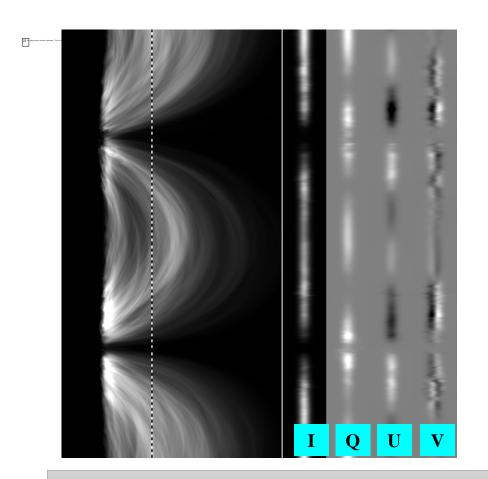
DKIST operations and analysis

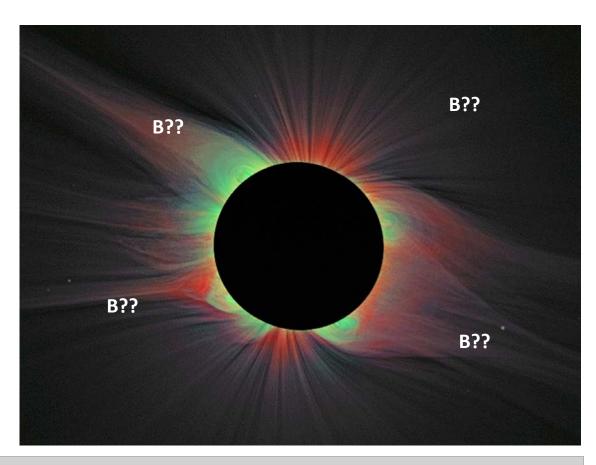


DKIST is on time & on budget (\$344M)

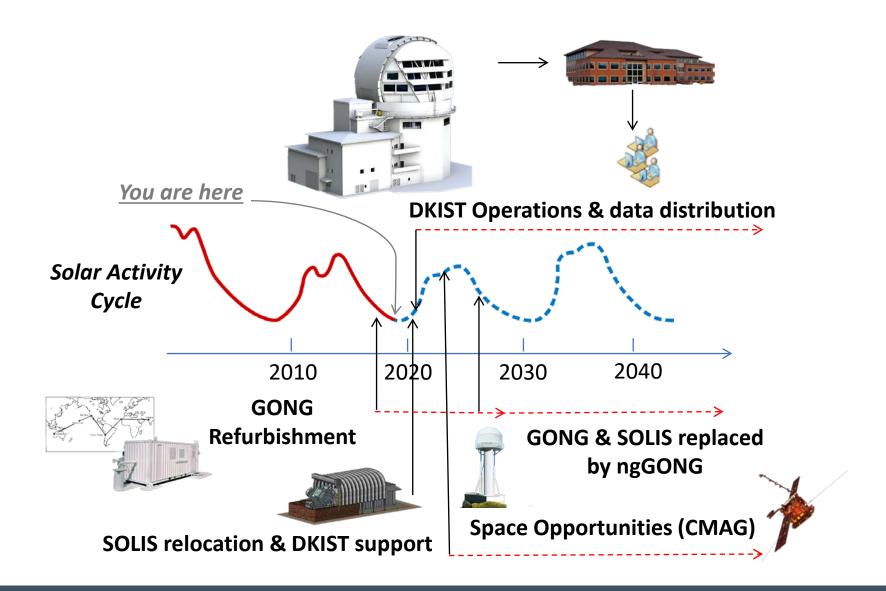
Daniel K. Inouye Solar Telescope (DKIST) Project Schedule

DKIST Construction 94% complete!


Thanks to the excellent team!



DKIST main focus is solar magnetism


Imaging, spectroscopy, and polarimetry of a faint object at unprecedented resolution and precision

The NSO's Vision

The detail traps current to displayed. The file may have been record, so would, or deleted Verly that the left point to the current file and incolor

The detail traps current to displayed. The file may have been record, so would, or deleted Verly that the left point to the current file and incolor

