## Probe White Paper #252 "Exo-C"

#### Dr. Karl Stapelfeldt

#### Today:

Chief Scientist in NASA Exoplanet Exploration Program Office Jet Propulsion Laboratory, California Institute of Technology During 2013-2015 Exo-C study:

Chief, Laboratory for Exoplanets & Stellar Astrophysics
NASA Goddard Space Flight Center

#### DISCLAIMER:

This presentation does not represent the official positions of the NASA Astrophysics Division

Copyright 2019 by California Institute of Technology. Government sponsorship acknowledged

# Exo-C coronagraph probe mission study







**Science & Technology Definition Team:** 

Karl Stapelfeldt (NASA/GSFC, Chair);

Rus Belikov & Mark Marley (NASA/Ames); Geoff Bryden, Gene Serabyn, & John Trauger (JPL/Caltech); Kerri Cahoy (MIT); Supriya Chakrabarti (UMass Lowell); Michael McElwain (NASA/GSFC); Vikki Meadows (U of Washington)

JPL Engineering Design Team:

Frank Dekens (lead), Keith Warfield, Michael Brenner, Paul Brugarolas, Serge Dubovitsky, Bobby Effinger, Casey Heeg, Brian Hirsch, Andy Kissil, John Krist, Jared Lang, Joel Nissen, Jeff Oseas, Chris Pong, Eric Sunada

**NASA Exoplanet Program Office:** 

Gary Blackwood, Steve Unwin





### Context for Exo-C Mission Study

- After Astro2010, NASA conducted five "probe" mission studies to investigate astrophysics science available at the ~\$1B cost level.
- *Kepler* mission results strongly motivated the idea of exoplanet direct imaging probes, particularly for mini-Neptunes & super Earths.
- Large mission for spectroscopy of ExoEarths requires 10<sup>-10</sup> contrast @ 60 mas IWA (> 10<sup>5</sup> times beyond HST performance) & aperture size ≥ 4 m.
   Smaller mission for spectroscopy of larger exoplanets and imaging of disks only needs 10<sup>-9</sup> contrast & ~1.5 m telescope. A natural first step.
- Coronagraph "Exo-C" and starshade "Exo-S" probe studies initiated in spring 2013 as potential backups to WFIRST, with 2017 readiness required
- There is a rich heritage for small coronagraph mission concepts, with more than a dozen proposed by various PIs since 1999.



#### Modest-aperture coronagraph mission concepts, 1988-2011

Table F-1. Historic proposals/studies of dedicated internal coronagraph space missions.

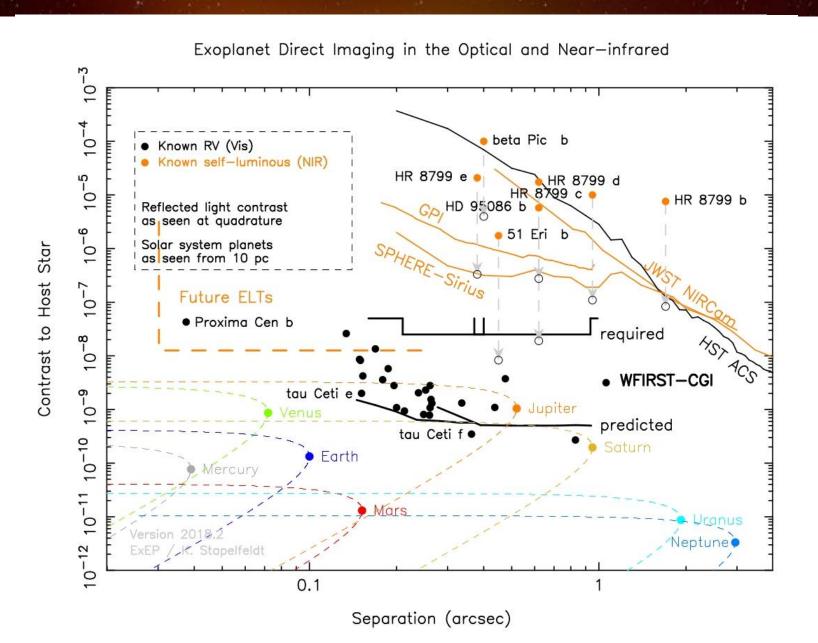
| Mission   | Aperture | Year and AO                                     | Proposal/Study Lead |
|-----------|----------|-------------------------------------------------|---------------------|
| CIT       | 1.5 m    | 1988 JPL study                                  | R. Terrile          |
| CODEX     | 2.4 m    | 1997 <i>Hubble</i> instrument proposal R. Brown |                     |
| ECLIPSE   | 1.65 m   | 1998 MidEx                                      | J. Trauger          |
| ECLIPSE   | 1.8 m    | 2000 Discovery                                  | J. Trauger          |
| ESPI      | 1.5 m    | 2002 MidEx                                      | G. Melnick          |
| JPF       | 1.5 m    | 2002 MidEx                                      | M. Clampin          |
| ECLIPSE   | 1.5 m    | 2004 Discovery                                  | J. Trauger          |
| EPIC      | 1.5 m    | 2004 Discovery                                  | M. Clampin          |
| ECLIPSE   | 1.5 m    | 2006 Discovery                                  | J. Trauger          |
| EPIC      | 1.5 m    | 2006 Discovery                                  | M. Clampin          |
| TOPS      | 1.2 m    | 2006 Discovery                                  | O. Guyon            |
| SEE-COAST | 1.5 m    | 2007 ESA M1/M2                                  | J. Schneider        |
| ACCESS    | 1.5 m    | 2008 ASMCS                                      | J. Trauger          |
| EPIC      | 1.65 m   | 2008 ASMCS                                      | M. Clampin          |
| PECO      | 1.4 m    | 2008 ASMCS                                      | O. Guyon            |
| SPICES    | 1.5 m    | 2010 ESA M3                                     | A. Boccaletti       |
| EXCEDE    | 0.7 m    | 2011 MidEx                                      | G. Schneider        |



## Exoplanet Science Landscape in the late 2020s: (1)

- <u>Indirect detections</u>: Around stars mid-F and later, RV surveys will have found 10 yr period planets ≥ Saturn mass; 1 yr period planets ≥ Neptune mass; and in the quiet stars, perhaps some HZ rocky planets. Gaia detects Jupiters with orbital periods of a few yrs around potentially thousands of stars, including ones unsuitable for sensitive RV measurements. A rich set of targets with known ephemerides for direct spectroscopic follow-up.
- <u>Transits</u>: TESS has extended Kepler results to brighter stars, defining the planet mass-radius relationship. JWST+ELTs get transmission & eclipse spectra for some of these. PLATO mission is returning results. ARIEL mission will be taking spectra of a large sample of hot giant planets. Transiting planets themselves will not be amenable to direct imaging, but mark good target systems for outer planet imaging searches.




## Exoplanet Science Landscape in the late 2020s: (2)

Exoplanet Direct Imaging: Ground AO coronagraphy will have obtained spectra of a few dozen self-luminous giant planets in near-IR or mid-IR thermal emission. Contrast limit of  $> 10^{-8}$  set by atmospheric turbulence. A few HZ rocky planets could be detected around red dwarfs when ELTs deploy their extreme AO systems. JWST may image cold/wide giant planets of nearby M stars (mid-IR contrast ~10<sup>-6</sup>). Disk Imaging: ALMA has redefined knowledge of protoplanetary disks, but lacks the sensitivity to study exozodi or map tenuous debris disks at subarcsecond resolution. Ground AO imaging polarimetry of brighter disks; JWST imaging informs on disk composition.

The unique domain for small-aperture, space-based high contrast imaging would be contrasts < 10<sup>-8</sup> at visible wavelengths, studying cool exoplanets & debris disks are seen in reflected light around sun-



## Domain of High Contrast Imaging



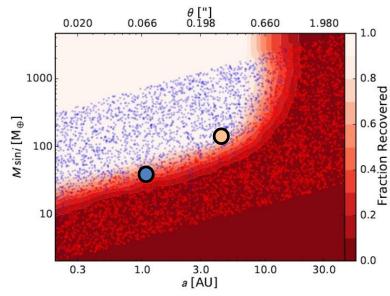


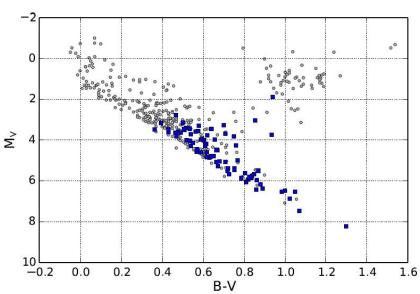
### **Exo-C Key Science Questions**

- How does the atmospheric composition of gas and ice giant planets vary with planet mass, orbit, stellar mass & metallicity?
- How do clouds affect giant planet atmospheres and vary with the atmospheric temperature and other planetary parameters?
- What is the composition of mini-Neptune & super-Earth atmospheres?
- Is the Solar System's architecture of 2 debris belts normal?
- How is dust produced and transported in debris disks?
- What planets exist in the outer reaches of nearby planetary systems?
- How much dust will obscure future images of Earth analogs?
- How does the dust component of planetary systems evolve?



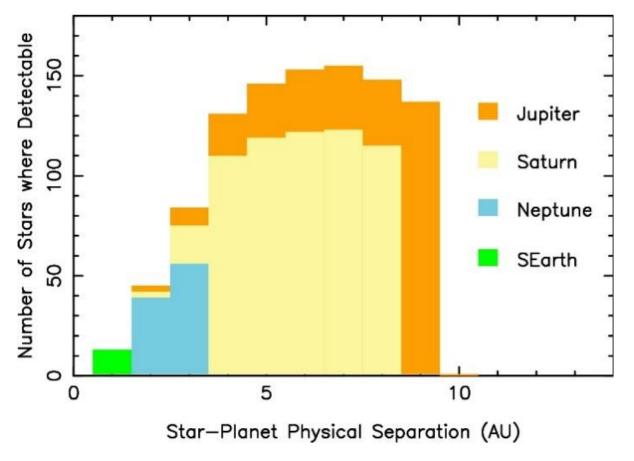
## **Exo-C Mission Science Objectives**

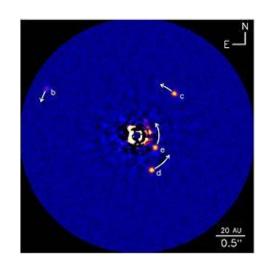

- 1. Discover new planets in the Solar neighborhood: Exo-C's multi-epoch imaging will search for giant planets beyond the limits of other detection techniques around 150 nearby stars including  $\alpha$  Centauri. In subsets of these, mini-Neptune, super-Earth, and perhaps Earth-sized planets will be detectable
- 2. Characterize known and mission-discovered planets: Exo-C will measure the colors and spectra of at least a dozen known RV and Gaia planets orbiting nearby stars, and of the brightest new planets it discovers measuring primary atmospheric constituents such as CH<sub>4</sub> and H<sub>2</sub>O.
- 3. Structure and evolution of circumstellar disks: Exo-C will resolve the structure of dust clouds orbiting nearby stars, tracing the gravitational effects of planets too small and remote to detect by any other means, in a sample of hundreds of exo-Kuiper belts around stars of different types and ages.
- **4. Survey of dust in habitable zones:** Exo-C's inner working angle of 0.16" at 550 nm will access the habitable zones of around 100 nearby stars.


Astro 2020 EOS-1 panel



### Science Objective 1: Discover new planets


- Search for planets beyond RV limits in a nearby star sample, measure their orbits
  - Mid-F to K stars: New planets would be either small ones (mini Neptunes, super-Earths) unknown in our solar system, or long-period giant planets
  - A to mid-F stars: Any planets would be new vs. today, but Gaia should find some
- Right: HR diagram of the most suitable targets. RV-monitored stars shown in blue. <u>2/3 of best imaging targets not</u> <u>monitored by RV</u> due to Teff > 6000 K Figures from Howard & Fulton 2016

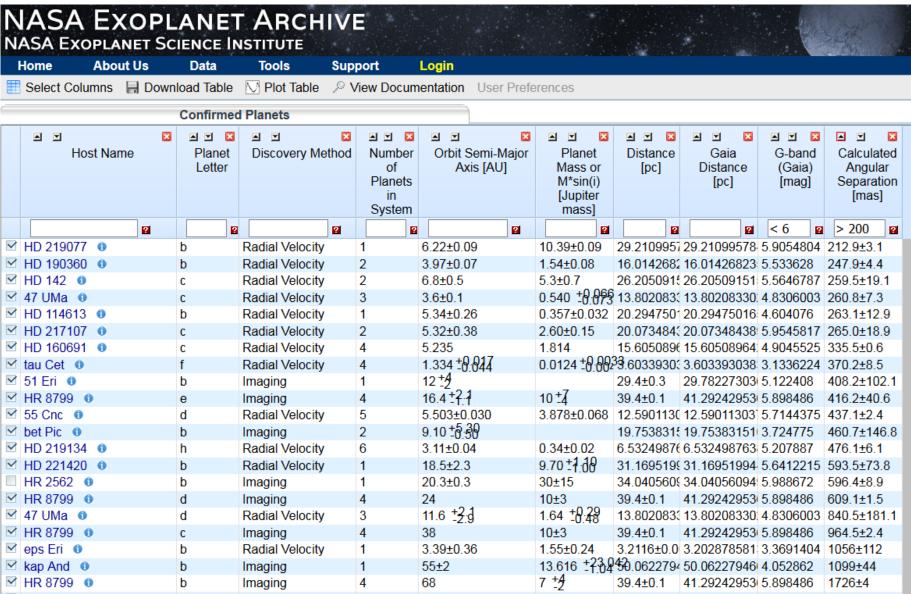







#### Exo-C discovery space for new exoplanets






Histogram of detectable planets around nearby stars in total of 1 year of observing time. A search yield of ~> 15 planets is expected.

Probes a region not explored by GPI/SPHERE AO imaging surveys.



# Today's known exoplanets potentially accessible to Exo-C

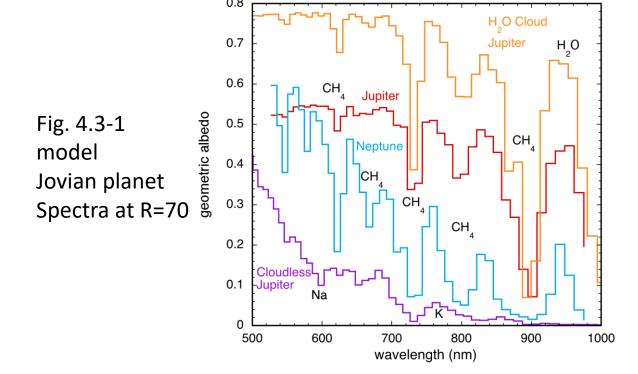




## Nearby HZs where Exo-C could attempt detection of an Earth-size planet

| Star        | V mag | HZ inner<br>radius<br>(AU) | Elongation<br>(arcsec) | Contrast            | Integration<br>time for V band<br>detection (hrs) |
|-------------|-------|----------------------------|------------------------|---------------------|---------------------------------------------------|
| alpha Cen A | 0.1   | 1.2                        | 0.93                   | 9x10 <sup>-11</sup> | 51                                                |
| alpha Cen B | 1.2   | 0.8                        | 0.60                   | 2x10 <sup>-10</sup> | 99                                                |
| tau Ceti    | 3.6   | 0.7                        | 0.20                   | 3x10 <sup>-10</sup> | 99                                                |
| epsilon Eri | 3.7   | 0.6                        | 0.18                   | 4x10 <sup>-10</sup> | 80                                                |
| eta Cas A   | 3.6   | 1.2                        | 0.21                   | 9x10 <sup>-11</sup> | 109                                               |

For the two components of the alpha Centauri system, scattered light from the companion at 8" has been in included as a noise source. eta Cas is a 12" binary. Exozodiacal light at the minimal 1 zodi level is assumed.


epsilon Eridani has an LBTI excess indicating a dusty habitable zone; this is not taken into account for the integration time given here.

Finally, detection of an exo-Earth would require that Exo-C exceed its telescope stability requirements (but see chart 34).



#### Science Objective 2: Exoplanet spectra

- Obtain optical spectra: detect gas absorbers CH<sub>4</sub>, H<sub>2</sub>O, constrain abundances and depth of cloud deck.
- Timeseries photometry and astrometry to measure phase curves. Can also determine orbit inclination, resolve sin*i* ambiguity in planet mass (but Gaia might do this).






Fig. 4.2-4
Mass-temperature
span of likely
Exo-C targets



### Objective 2: Exoplanet spectroscopy requirements

- Spectral resolution R= 70 required
  - Measures strong & weak CH₄ bands
  - Measures  $O_2$  0.76  $\mu m$  feature in Earth-like atmospheres
  - Provides clean inter-band continuum
- Wavelength coverage spans optical
  - 0.45 μm short wavelength cutoff provides access to Rayleigh scattering continuum
  - 1.0  $\mu m$  long wavelength cutoff covers strong 0.94  $\mu m$  H<sub>2</sub>O line & continuum
- S/N = 5 detects the stronger features, 10 detects the weaker ones, 20 needed for abundances.

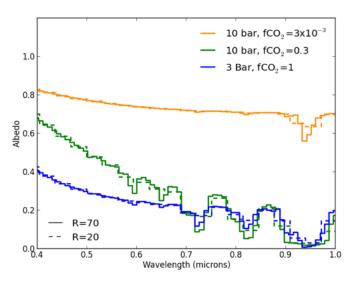
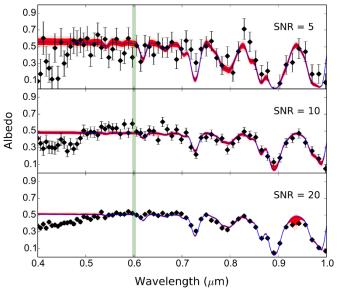
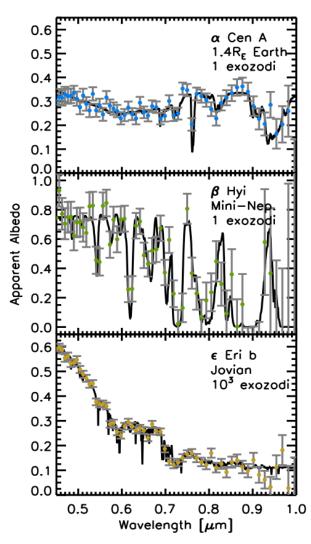
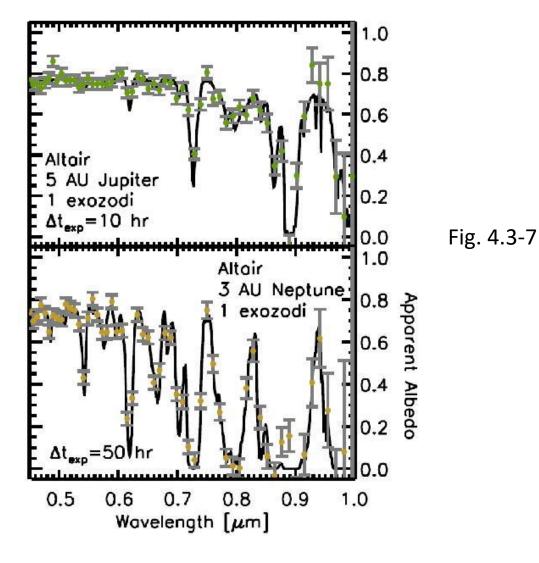




Fig. 4.3-4 model super-Earth spectrum



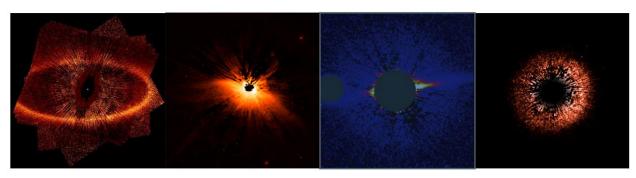

Jupiter spectrum measured at different S/N ratios




#### Science Objective 2: Simulated Exo-C spectra

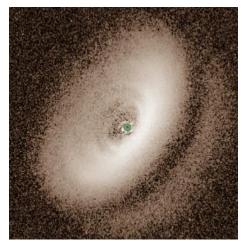
Work by Ty Robinson (at NASA Ames in 2015, now at NAU)



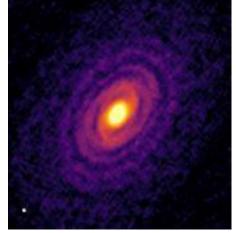








#### Science Objective 3: Circumstellar Disk Imaging

- Debris disks detectable with today's instruments are ~1000 times dustier than the solar system with dynamics dominated by dust-dust collisions.
- Exo-C will image debris dust down to levels near that of the Kuiper Belt, where radiative forces drive dust transport and sort grains.
- Resolved structures in tenuous debris disks will indicate where planets sculpt parent body belts & block the inward flow of grains: indirect planet detections.
- Exo-C will detect the faint scattered light counterparts of protoplanetary disks mapped by ALMA (right).




**Figure 4.2-10.** Optical imaging of debris disks by Hubble reveals a variety of disk structures—from smooth belts to eccentric rings, bow shocks, warps, and other asymmetric structure (Fomalhaut, Kalas et al. 2005; HD 61005, Hines et al. 2007; HD 15115, Kalas et al. 2007; HD 107149, Ardila et al. 2004).

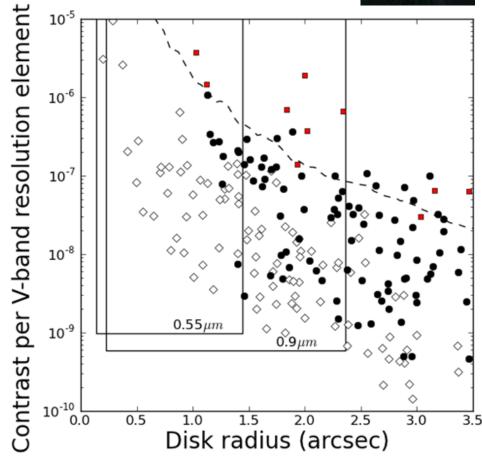
#### Young star IM Lupi



Avenhaus et al. 2018 VLT SPHERE 1.6 μm



Andrews et al. 2018
ALMA 1.3 mm continuum

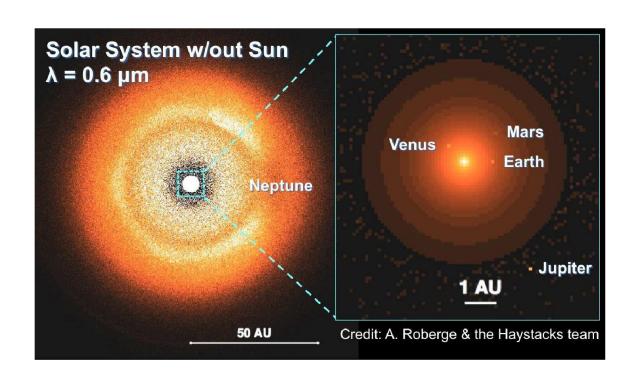



#### Science objective 3: debris disk targets are abundant

Predicted disk sizes and contrasts for Herscheldetected disks within 40 pc

- Boxes show Exo-C dark hole region for imaging detections
- Red points: The small number of debris disks imaged in scattered light up to 2015
- Black points: Disks with sizes known from Herschel data (measured at 5" resolution)
- Hollow points: Disks whose sizes can be estimated from far-Infrared spectrum and assumed dust properties.

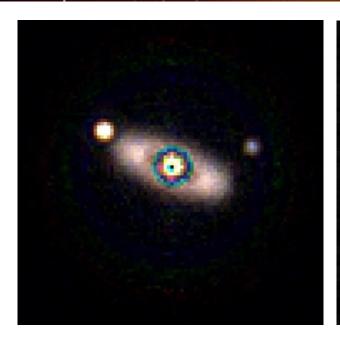


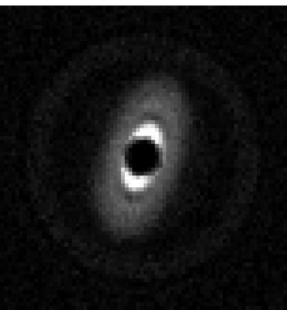


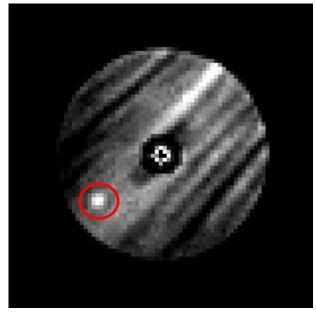

Exo-C Study Astro 2020 EOS-1 panel



#### Science Objective 4: Imaging dust near the HZ, "exozodi"


- LBTI "HOSTS" survey of 38 stars has constrained the median level of HZ dust to be 4 +10 / -3 times the solar system level (Ertel et al. submitted), with the faintest thermal IR detection being 30 zodis.
- Exo-C could detect a few zodis of dust in the outer HZ around roughly 100 nearby stars, in scattered light as for the future flagship.
- For a subset of these exozodi structure might be resolved: gaps & asymmetries that trace presence of planets near the HZ.





Simulation of structure in the Kuiper Belt and local Zodiacal cloud, with respect to locations of solar system planets



#### Exo-C Simulated Imagery: Disks & a Centauri







Altair 12 hrs each in V, R, I bands. Jupiter & Saturn analogs detected, 1 zodi dust ring from 2-4 AU

12 hr V band exposure of HIP 85790, a V= 5.6 star at 80 pc with WISE infrared excess. A 50 zodi debris disk extended to 80 AU radius is assumed.

5 day V band exposure of an Earth analog in the HZ of  $\alpha$  Cen A (occulted at center). Scattered light from  $\alpha$  Cen B is the primary noise source; shown is a 3% residual after calibration. Requires better-than-nominal system stability (but see chart 34)

All simulations use Hybrid Lyot Coronagraph optical models by John Krist

Exo-C Study Astro 2020 EOS-1 panel



### Exo-C Design Reference Mission

- Planet characterizations: roughly 1 year of mission time
  - Take spectra of ~20 exoplanets (both known and mission-discovered)
  - Take multi-color photometry of 20 known RV planets plus an additional
     ~15 mission-discovered exoplanets
- Planet discovery surveys: roughly 1.2 years of mission time
  - Survey **15** nearby stars for super-Earths in the HZ, 6 visits each
  - Survey 135 nearby stars for giant planets, 2-3 visits each
     Provisionally assume 10% yield, or ~15 mission-discovered planets
- Disk imaging surveys: roughly 0.6 years of mission time
  - Survey for dust near the habitable zone in 150 A-K stars
  - Deep search for disks in 60 RV planet systems
  - Resolve structure in 150 known debris disks from Spitzer/Herschel/WISE
  - Resolve structure in 40 protoplanetary disks in nearby molecular clouds
     A wide range of science, containing characterizations and surveys



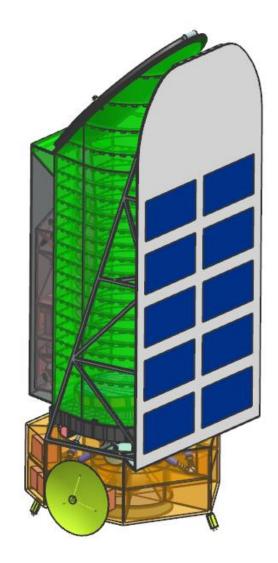
## **Exo-C Observing Capabilities**

| Exo-C Working Filter Set |                               |  |
|--------------------------|-------------------------------|--|
| V band 20%               | Photom & blocking             |  |
| R band 20%               | Photom & blocking             |  |
| I band 20%               | Photom & blocking             |  |
| z band 20%               | Photom & blocking             |  |
| B band 10%               | Rayleigh scattering           |  |
| 650 nm 5%                | Weak CH <sub>4</sub> band     |  |
| 793 nm 3%                | Moderate CH <sub>4</sub> band |  |
| 835 nm 6%                | CH <sub>4</sub> continuum     |  |
| 885 nm 6%                | Strong CH <sub>4</sub>        |  |
| 940 nm 6%                | H <sub>2</sub> 0              |  |

| Target Category                   | #<br>Stars | Median<br>V mag |
|-----------------------------------|------------|-----------------|
| Known RV planets                  | 12         | 5.7             |
| Search for HZ planets             | 15         | 3.7             |
| Searches for larger planets       | 135        | 3.8             |
| Survey for HZ dust                | 150        | 3.7             |
| Debris disks in RV planet systems | 60         | 5.3             |
| Debris disks detected in far-IR   | 150        | 5.3             |
| Protoplanetary disks              | 40         | 11.4            |

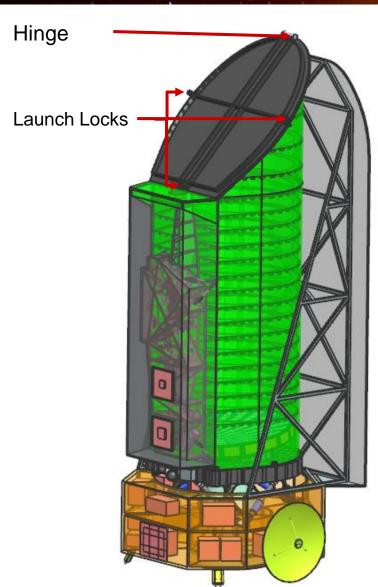
Brightest (best) spectroscopy targets will be the planets discovered through the mission searches

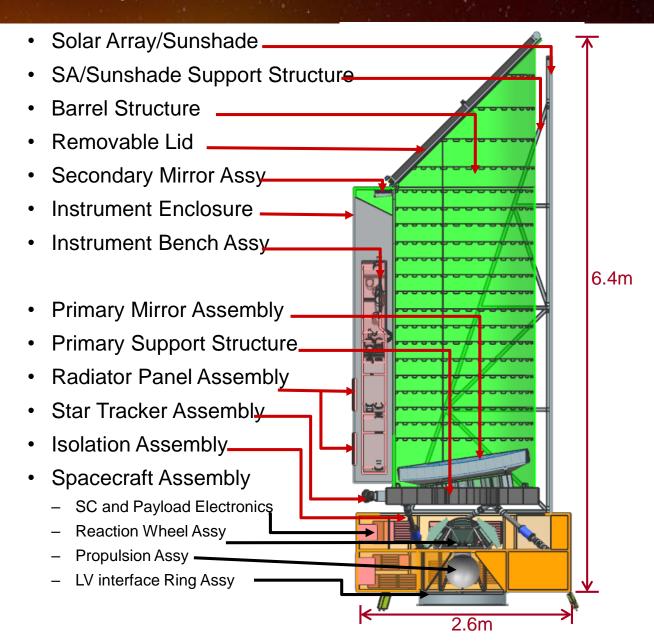



## Exo-C Technical Specifications

| Telescope primary mirror                 | 1.4 m diameter                                  |
|------------------------------------------|-------------------------------------------------|
| Speckle contrast residuals               | 10 <sup>-9</sup> raw at IWA, better further out |
| Contrast disturbance due to pitch/roll   | 10 <sup>-11</sup> @ IWA after 2 hours           |
| Spectral coverage                        | 450–1000 nm                                     |
| Spectral resolution $\lambda > 500$ nm   | R = 70                                          |
| Inner Working Angle (IWA) 2 $\lambda$ /D | 0.16" @ 500 nm, 0.24" @ 800 nm                  |
| Outer Working Angle $\sim 20  \lambda/D$ | 2.6" @ 800 nm                                   |
| Spillover light from binary              | 3×10 <sup>-8</sup> raw @ 8", TBD additional     |
| companion                                | reduction from wavefront control                |
| Astrometric precision                    | < 30 milliarcsec (limited by SNR)               |
| Fields of view                           | 42" imager, 2.2" spectrograph                   |
| Launch Mass / Vehicle                    | 1656 kg / Falcon 9 or Atlas 501                 |
| Mission lifetime                         | 3 years in Earth-trailing orbit                 |




#### **Exo-C Architecture Overview**


- Earth-trailing orbit as for Kepler
  - Good thermal stability & sky visibility, no propulsion needed
- Unobscured 1.4m Cassegrain telescope
  - Better throughput, spatial resolution, stiffness, coronagraph technical readiness vs. obscured
  - Same aperture as Kepler's spherical primary
- Hybrid Lyot coronagraph was the 2015 baseline due to best technical readiness
- Active thermal control of telescope & instrument
- Bright science target star is reference for precision pointing and for following low-order wavefront drifts.
- ~1000 kg observatory mass, Kepler-like spacecraft bus, Falcon 9 class launch vehicle





### **Exo-C Subsystem Description**



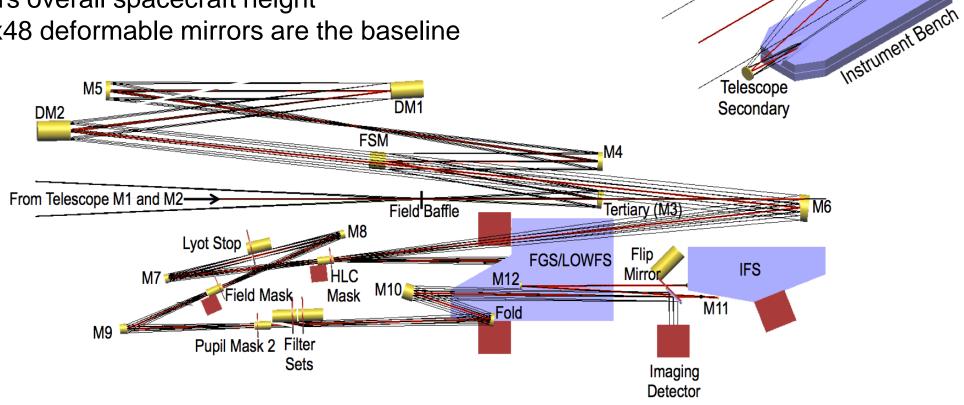




## Optical Design Overview

Telescope

**Primary** 


Lateral instrument bench – instead of aft of primary mirror:

Allows for lower angle of incidence reflections which reduce induced polarization aberrations on the wavefront

Large available volume minimizes the number of fold mirrors needed

Lowers overall spacecraft height

Two 48x48 deformable mirrors are the baseline

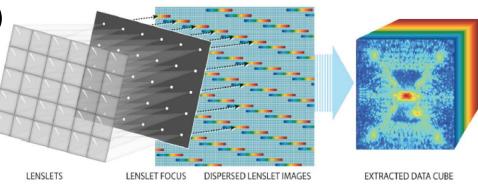




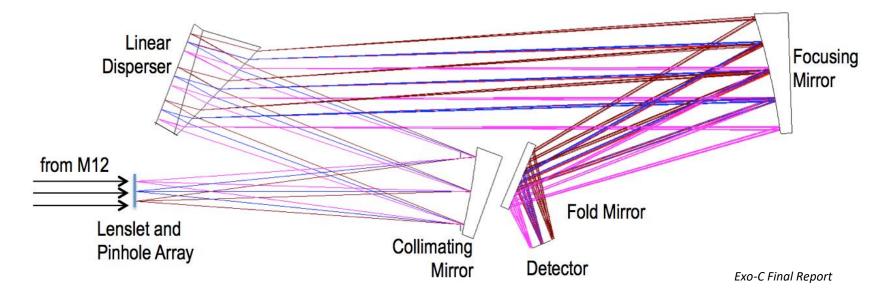
## Integral Field Spectrograph (IFS)

1k x 1k EMCCD and 48 x 48 actuator DM

• Exo-C: 71 x 71 lenslets with 2.3" x 2.3" FOV


does not cover OWA (3.5" FOV @ 1  $\mu$ m)

• 2k x 2k EMCCD for Exo-C:


143 x 143 lenslets, 4.6" x 4.6" FOV

Compact IFS optical layout with no moving parts

IFS Conceptual Design



McElwain et al, 2012





# Observatory stability: Effect of residual pointing jitter on contrast

- Exo-C's benign Earth trailing orbit and lack of articulated or deployable structures minimize environmental and spacecraft disturbances.
- Two stages of passive isolation suppress reaction-wheel disturbance.
- Light from the central star is reflected by the coronagraph mask and used to by the fine-guidance sensor in closed loop with the fast-steering mirror loop to reject LOS jitter.
- Spacecraft body pointing stability 16 mas

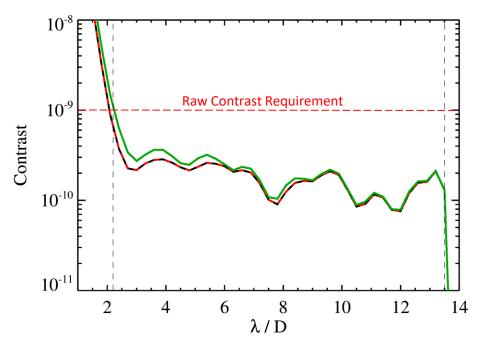



Image contrast achieved by Exo-C using a Hybrid Lyot Coronagraph, including the effects of pointing jitter. The black and red lines show the indistinguishable effects of 0 and 0.4 mas of jitter, while the green line is the Exo-C 0.8 mas performance requirement.

Changes in the reaction wheel speed due to spacecraft maneuvers should not cause excessive jitter induced contrast degradation nor changes in the speckle background.



## Observatory stability: Features of thermal design

The secondary mirror and optical bench are highly isolated from solar heating so that the PM-SM de-space is not perturbed by a changing solar load on the sunshade.

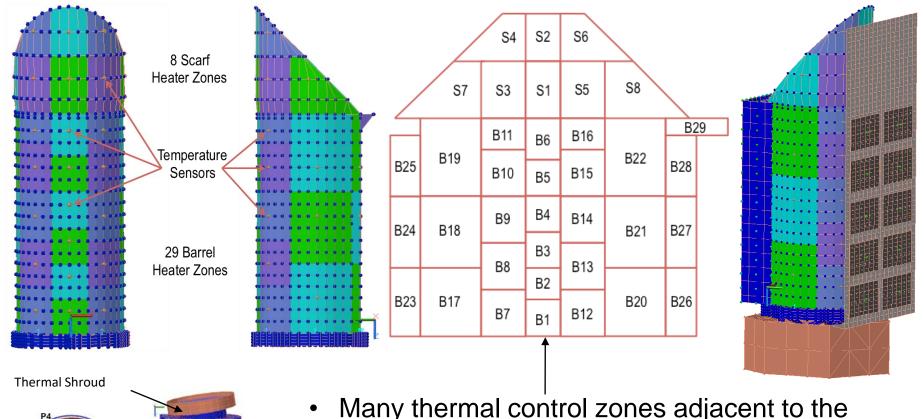
MLI isolates optical barrel from space and from the sunshade.

Primary sits in a thermal bath formed by the actively heated barrel, PM shroud, and thermally controlled bipods.

Benign Earth trailing environment

The sunshade ensures that sunlight never illuminates the barrel.

The backside of the sunshade has a large view angle to space.

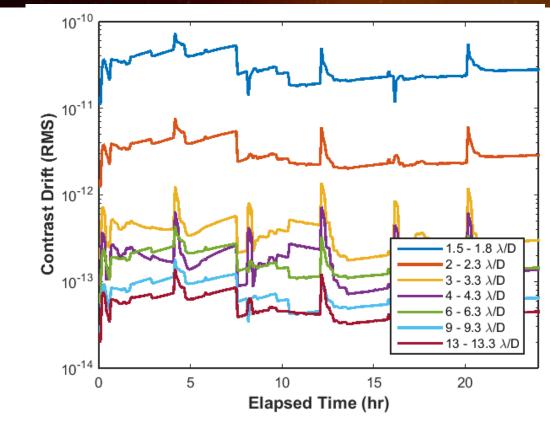

The structure is composed of low CTE high conductivity composite.

The instrument is thermally isolated from the bus both passively and actively by thermal control of the isolator struts.

29



## Observatory stability: Structural and control nodes for Exo-C thermal model




- Many thermal control zones adjacent to the sunshade minimize distortion of the optical barrel from pitch maneuvers.
- Requires temperature drift in the milli-Kelvin range at the control points.

The control zone density is highest where the solar heat load is the most variable.

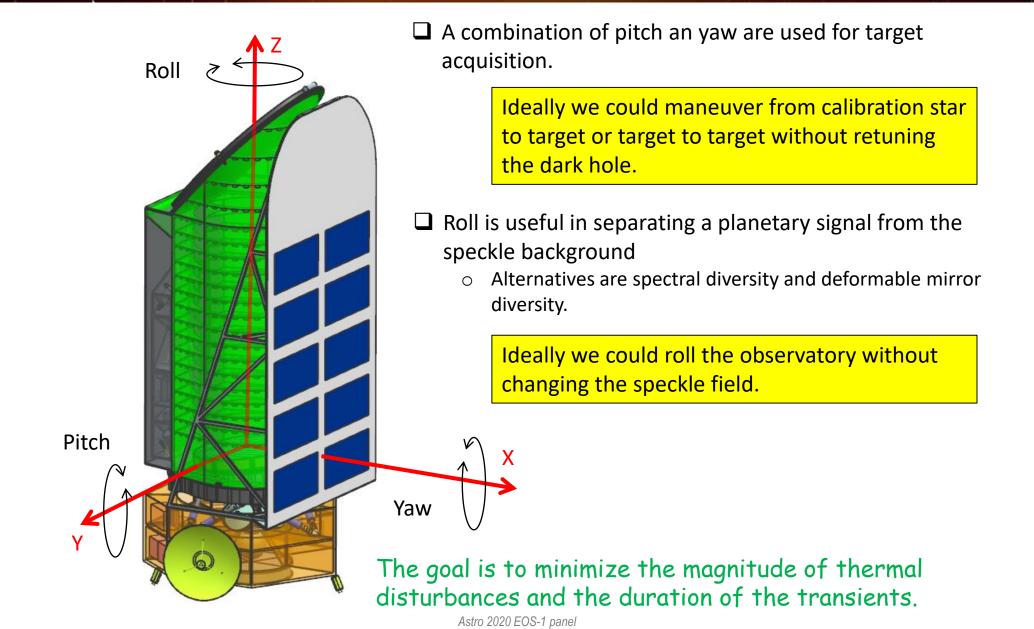


#### Observatory stability: Effect of spacecraft thermal drift



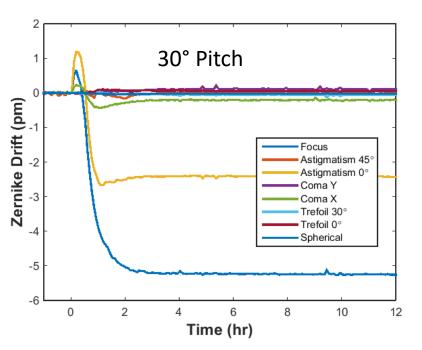
The spacecraft bus thermal disturbance was modeled as a square wave with an eight hour period and a 1°C peak-to-peak temperature variation of the entire bus.

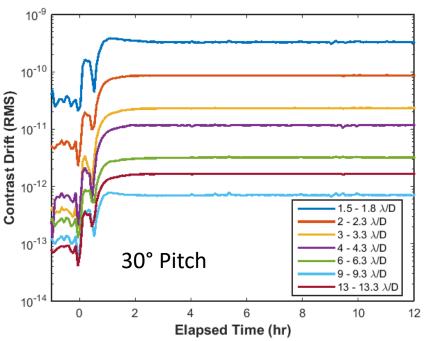
From Kepler's lessons-learned the Exo-C observatory was designed to be thermally isolated from the spacecraft bus. Thermal blankets, low conductivity struts and active thermal control of bipod interfaces nearly eliminate variations in heat transfer across the spacecraft bus / instrument interface.


Simulations by Joel Nissen

The contrast drift is an order of magnitude below the requirement at  $2\lambda/D$ .

Astro 2020 EOS-1 panel

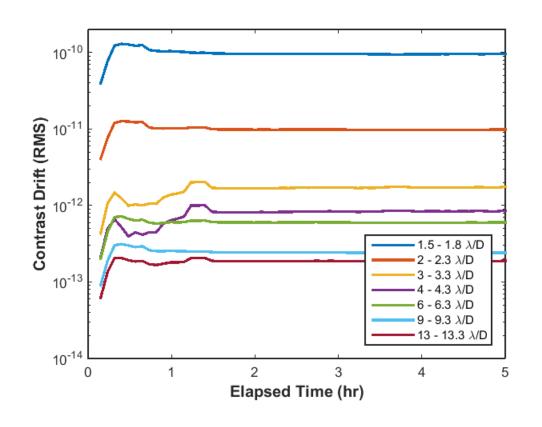


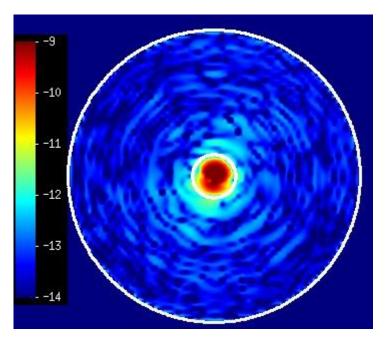


#### Observatory stability: reference maneuvers





# Observatory stability: Hybrid Lyot coronagraph Contrast drift from a 30° pitch maneuver




- Pitch maneuver starting at  $\beta = 90^{\circ}$  and ending at  $\beta = 120^{\circ}$ .
- picometer WF stability achieves  $10^{-10}$  drift requirement at the IWA =  $2\lambda/D$ .
- The model suggests that when the dark hole is tuned on a bright calibration star near  $\beta = 90^\circ$ , the observatory can pitch to a target between  $\beta = 60^\circ$  and  $\beta = 120^\circ$  without retuning the dark hole.



## Observatory stability: Hybrid Lyot coronagraph Contrast drift from a 30° roll maneuver





Contrast drift from rolling the observatory. The small white circle is at IWA =  $2\lambda/D$ 

Rolling the spacecraft from -15° to +15° from the Sun induces very little drift due to symmetric solar loads. This maneuver is a powerful tool in distinguishing a planet from the speckle background.

Simulations by Joel Nissen

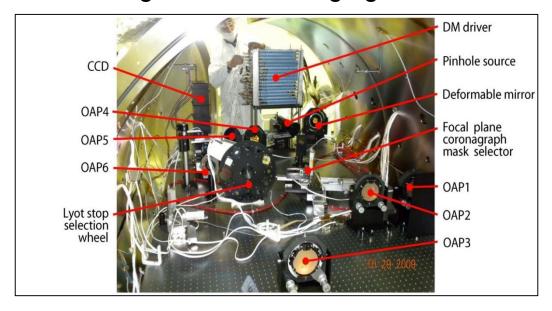
Contrast drift meets the  $10^{-10}$  requirement even at  $1.5\lambda/D$ .

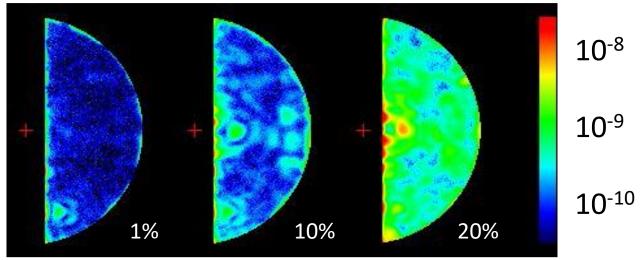
34



## Exo-C coronagraph technology is nearly ready

 Since 2002 NASA has been testing and developing coronagraphs with wavefront control


48x48 Xinetics deformable mirror has been shake tested




 State of the art: Contrast versus spectral bandwidth

Unobscured pupil, single DM, Trauger et al. 2012 with linear version of hybrid Lyot coronagraph

#### NASA High Contrast Imaging Testbed







## Project cost estimate as updated in 2017

|                                               | EXO-C    |      |                                                                |
|-----------------------------------------------|----------|------|----------------------------------------------------------------|
|                                               | Update   |      |                                                                |
| WBS                                           | Estimate |      | BOE                                                            |
| Total Project Cost                            | \$ 97    | 71.5 |                                                                |
| Technology Development                        | \$       | 4.5  |                                                                |
| LOWFS                                         |          | 1.0  | Expert judgment                                                |
| IFS                                           |          |      | Expert judgment                                                |
| Coronagraph                                   |          | 3.5  | Expert judgment                                                |
| Phase A-D Total                               | \$ 88    | 39.2 |                                                                |
| 01.0 Project Management                       |          |      | Team X percentages of the total development costs (less L/V    |
| 02.0 Project Systems Engineering              |          | 54.7 | and reserves) were used for WBS 1.0, 2.0 and 3.0.              |
| (incl. Mission Design) 03.0 Mission Assurance |          |      |                                                                |
| 04.0 Science                                  | 1        | 12.7 | Kepler actual costs                                            |
|                                               |          |      | NICM V for coronagraph (\$165M), Stahl 2013 Telescope Model    |
| 05.0 Payload System                           | 28       |      | (\$104M), Grass roots for vibration isolation (\$5M).          |
|                                               |          |      | Based on Kepler actual costs with adjustments for: 1) better   |
|                                               |          |      | reaction wheels (\$0M), 2) improved IRU (\$1.7M), and 3)       |
| 06.0 Flight System                            |          |      | vibration isolation on reaction wheels (\$1M). Adjustment were |
|                                               |          |      | estimated using Team X design tools. Procurement burden        |
|                                               | 18       | 36.8 | included.                                                      |
| 07.0 Pre-Launch Mission Operations            | 3        | 32.8 | Kepler actual costs                                            |
| 08.0 Launch Vehicle                           | 11       | 10.0 | Specified in guidelines. Based on Team X data                  |
| 09.0 Ground Data Systems                      | 1        | 14.5 | Kepler actual costs                                            |
| 10.0 ATLO                                     | inc      |      | Included in WBS 6.0                                            |
| 11.0 Education and Public Outreach            |          | -    | Kepler actual costs                                            |
| Development Reserves                          | 17       | 79.8 | 30% of development costs less launch services (WBS 8.0)        |
| Phase E-F Total                               | \$ 7     | 77.7 |                                                                |
| Science and Flight Operations                 | 5        | 59.8 | Kepler operating costs scaled down to 3 years                  |
| Development Reserves                          | 1        | 17.9 | 30% of operations costs                                        |

All costs are in \$ FY 15

Further updating to reflect CGI experience up to 2019 would be beneficial

The cost information shown here is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

36



## Highlights of Exo-C 2015 Aerospace CATE analysis

- Overall technical risk rating was "Medium". Remaining risks:
  - System engineering development to achieve 0.8 mas pointing
  - Demonstrate 2  $\lambda$ /D IWA performance with 10<sup>-9</sup> raw contrast
- Mass margin ample, power margin adequate
- Low operational risk: Kepler and Spitzer operations experience in Earth-trailing orbit is applicable
- Cost very close to JPL estimate but adds margin for "design threats"
- Inquire at Aerospace Corporation for a copy of the Exo-C CATE report

Astro 2020 EOS-1 panel



#### Exo-C technical readiness has advanced since 2015

- Mass, power, and cost estimates for WFIRST CGI informed a 2017 update to the corresponding estimates for Exo-C's coronagraph
- WFIRST CGI Project technical work directly applicable to Exo-C:
  - Detailed characterization of EMCCD detectors (operating modes, radiation tolerance)
  - Detailed characterization of deformable mirrors (stability & environmental testing)
  - Dynamic laboratory contrast demonstrations with a low-order wavefront sensor driving active tip/tilt and focus correction
  - Progress toward ASIC controllers for the DMs (reduces mass, power, volume required)
  - Improved system throughput budget & understanding of operational overheads
  - Detailed science requirements flowdown up to 2017
- Prototype integral field spectrograph built, tested in HCIT at relevant contrast levels
- Coronagraph mask developments funded by NASA SAT program:
  - Hybrid Lyot (prime) and Vortex, PIAA (backups) all funded over the last few years

Astro 2020 EOS-1 panel



#### Exo-C technical updates for future consideration:

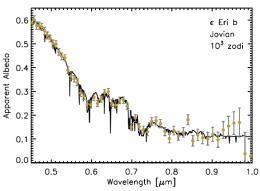
- Coronagraph architecture: Hybrid Lyot was the 2015 baseline
  - Vector vortex charge 6 offers better aberration sensitivity but at the price of a larger inner working angle and operation in only one polarization at a time
  - PIAA offers much higher throughput but with worse aberration sensitivity
  - Should revisit this trade to see if Hybrid Lyot is still the best option
- Assess readiness of larger 2048x2048 detectors for IFS
- Tech demo instrumentation and telemetry needs are better understood now and would need to be incorporated into the Exo-C design
- HabEx's microthruster approach to fine pointing should be evaluated for possible inclusion on Exo-C
- Potential for using Exo-C with a starshade

Astro 2020 EOS-1 panel



## Programmatic niches for Exo-C

- If cost or schedule issues forced WFIRST to drop its CGI instrument, Exo-C is a backup option that would recover the needed tech demo.
- If Astro2020 prioritizes a large direct imaging mission (e.g. LUVOIR or HabEx) for development in the 2020s & flight in the 2030s, Exo-C might be a distraction. A flagship could do all the Exo-C science, and WFIRST CGI must remain on-track to preserve technical & programmatic momentum.
- If Astro2020 does <u>not</u> prioritize a large direct imaging mission, then it could mean no space-based high contrast science mission until the 2040s.
  - In that scenario, the Exo-C mission would offer an extensive and robust direct imaging science program & technology demonstration during the long wait for a flagship mission




## Summary of Exo-C Probe Mission Study

- Exo-C is a study of a Kepler-class space observatory optimized for very high contrast optical imaging and spectroscopy with an internal coronagraph
- The 3 year Design Reference Mission could observe > 400 unique targets to discover and characterize exoplanets and circumstellar disks. Spectra or colors for ~2 dozen planets could be obtained
- Baseline design has excellent modeled contrast stability of  $< 10^{-10}$  at its 2  $\lambda/D$  inner working angle
- Exo-C's aperture, orbit, spacecraft, & lifetime are virtually the same as those of the Kepler mission
- Launch would be 7 years after Project start
- Exo-C study cost estimate was \$972 M FY 15, independent estimate is only slightly higher
- This is an executable probe mission option for the 2020s



Planet discovery - Altair



RV planet spectrum - ε Eridani b





https://exoplanets.nasa.gov/exep/studies/probe-scale-stdt/

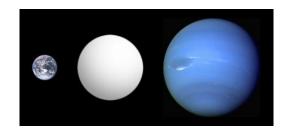
186 page final report with extensive details, plus Extended Study results

11/20/20**19** Exo-C Study



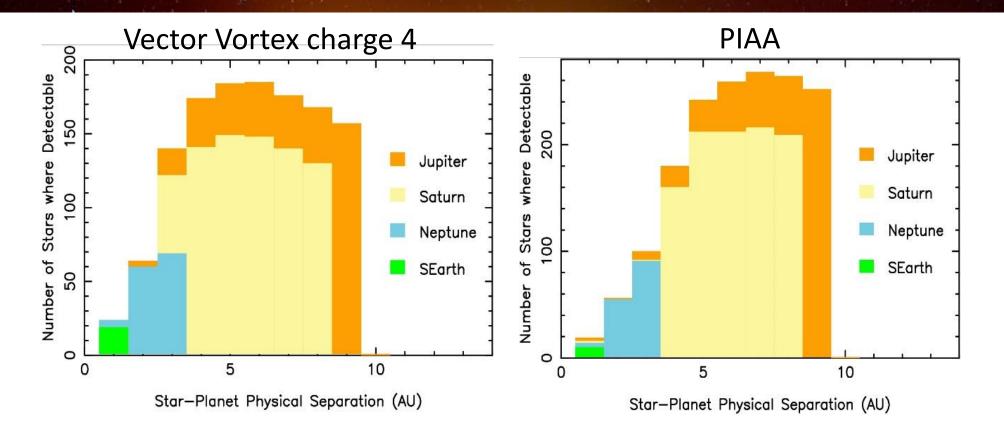
# BACKUP




#### Astro 2010 language on a coronagraph probe mission

"The (EOS) panel did evaluate, and found appealing, several "probe-class" concepts employing ~1.5-m primary mirrors and internal star-light suppression systems, often coronagraphs with advanced wavefront control. Each was judged to be technically feasible after completion of a several year technology development program, and could cost significantly less than a precision astrometry mission like SIM Lite. Such a mission could image about a dozen known (RV) giant planets and search hundreds of other nearby stars for giant planets. Importantly, it could also measure the distribution and amount of exozodiacal disk emission to levels below that in our own solar system (1 zodi) and detect super-Earth planets in the habitable zones of up to two dozen nearby stars. These would be extremely important steps, both technically and scientifically, toward a mission that could find and characterize an Earth-twin."

Science frontier discovery areas:


Identification and characterization of nearby habitable exoplanets How diverse are planetary systems? How do circumstellar disks evolve and form planetary systems?

"... a critical element of the committee's exoplanet strategy is to continue to build the inventory of planetary systems around specific nearby stars"





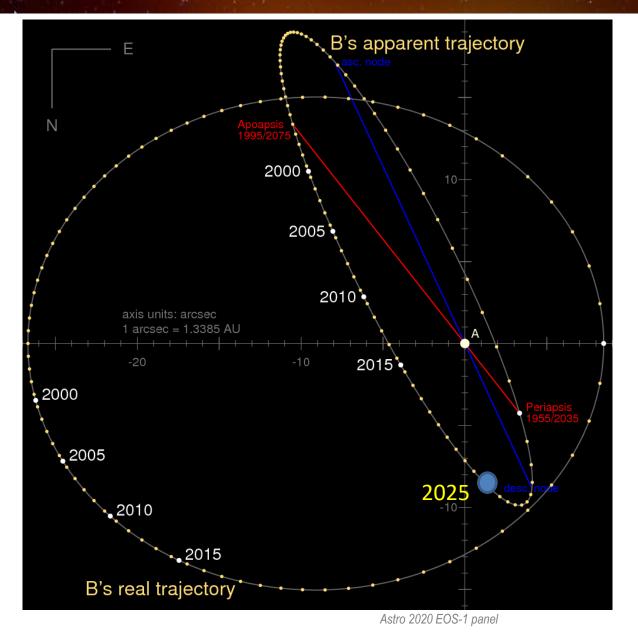
#### Alternate coronagraph architectures expand Exo-C search space



Improved throughputs and inner working angles enable larger exoplanet search space. However, the Vector Vortex and PIAA technologies would need more tech development. Compare to slide 10.



#### Details of Exo-C Pointing Control System


A robust pointing architecture that leverages flight-proven technologies.

| Pointing Requirements                                  |                                          |  |  |  |  |  |
|--------------------------------------------------------|------------------------------------------|--|--|--|--|--|
| Telescope Pointing (Angle in the sky, RMS per axis)    |                                          |  |  |  |  |  |
| Accuracy                                               | 2 milliarcsec (Line-of-sight tip/tilt)   |  |  |  |  |  |
|                                                        | 10 arcsec (Line-of-sight roll)           |  |  |  |  |  |
| Stability (1000s)                                      | 16 milliarcsec (Line-of-sight tip/tilt)  |  |  |  |  |  |
|                                                        | 10 arcsec (Line-of-sight roll)           |  |  |  |  |  |
| Coronagraph Pointing (Angle in the sky, RMS per axis): |                                          |  |  |  |  |  |
| Accuracy                                               | 0.2 milliarcsec (Line-of-sight tip/tilt) |  |  |  |  |  |
| Stability (1000s)                                      | 0.8 milliarcsec (Line-of-sight tip/tilt) |  |  |  |  |  |

| Key Features of the Pointing System                       | Exo-C | IRIS<br>SmEx<br>(2013)                   | PICTURE<br>Sounding<br>Rocket<br>(2011) | Kepler<br>Discovery<br>(2009)                         | Spitzer<br>(2003) | Chandra<br>(1999) | Hubble<br>(1990) | TRACE<br>SmEx<br>(1990)                 |
|-----------------------------------------------------------|-------|------------------------------------------|-----------------------------------------|-------------------------------------------------------|-------------------|-------------------|------------------|-----------------------------------------|
| Fine-guidance sensor (FGS)                                | Χ     | Χ                                        | X                                       | X                                                     | X                 | Χ                 | Χ                | X                                       |
| High-bandwidth fast-steering mirror (FSM)                 | X     | Х                                        | Х                                       |                                                       |                   |                   |                  | Χ                                       |
| Enhanced attitude control system (ACS) using FGS          | X     | Х                                        |                                         | X                                                     |                   | Х                 | X                | X                                       |
| Passive isolation                                         | Χ     |                                          |                                         |                                                       |                   | Χ                 | X                |                                         |
| Low-disturbance Earth-trailing orbit                      | X     |                                          |                                         | Χ                                                     | X                 |                   |                  | 00                                      |
| High-stiffness observatory (no deployables/articulations) | X     |                                          |                                         | Х                                                     | X                 |                   |                  |                                         |
| In-flight pointing stability performance (RMS)            |       | ACS:<br>250 mas<br>Instrument:<br>50 mas | ACS:<br>600 mas<br>Instrument: 5<br>mas | ACS:<br>25 mas (<5<br>Hz)<br>3 mas<br>(<0.0001<br>Hz) | ACS:<br>40 mas    | ACS: 250<br>mas   | ACS:<br>5 mas    | ACS:<br>5 mas<br>Instrument:<br>100 mas |



### α Centauri orbit sets stray light requirement



8.5" separation in 2025, increasing to 10.5" in 2028.

# STEPS FOR CONTROL OF SPILLOVER LIGHT:

- Primary mirror surface quality specifications at 100 cycles/aperture
- Agile dark hole using deformable mirrors
- Careful baffling and control of internal reflections

47



## Breakdown of Mission Observing Time

| Number<br>of Targets | Mission Time<br>(days with<br>overhead) | Design Reference Mission                                                            |
|----------------------|-----------------------------------------|-------------------------------------------------------------------------------------|
| 35                   | 166                                     | Exoplanet astrometry & multicolor photometry (known and mission-discovered planets) |
| 20                   | 215                                     | Exoplanet spectra (known and mission-discovered planets)                            |
| 15                   | 113                                     | Search for small exoplanets in nearest star Habitable Zones                         |
| 150                  | 69                                      | Survey of Habitable Zone dust in A-K stars                                          |
| 135                  | 323                                     | Search for giant planets around nearby stars                                        |
| 60                   | 36                                      | Survey for debris dust in RV planet systems                                         |
| 150                  | 91                                      | Imaging the structure of debris disks identified by Spitzer, Herschel, and WISE     |
| 40                   | 24                                      | Structure of nearby protoplanetary disks                                            |
|                      | 2.8 years                               | Total Science Observations (0.2 years are reserved for in-orbit checkout)           |

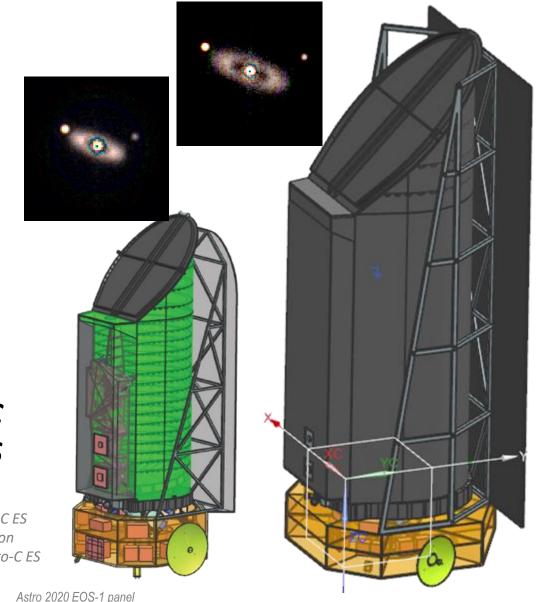


## Exo-C Design Trades made

| Trade                                                                                                     | Outcome                                                                                 |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Telescope obscured vs. non-obscured                                                                       | Unobscured aka "off-axis"                                                               |
| Telescope design                                                                                          | Cassegrain                                                                              |
| Telescope material: Glass vs. silicon carbide (SiC)                                                       | Low CTE glass                                                                           |
| Orbit                                                                                                     | Earth-trailing                                                                          |
| Aperture size                                                                                             | 1.4 m                                                                                   |
| High-gain antenna (HGA)                                                                                   | Fixed                                                                                   |
| Isolators: between reaction wheel assembly (RWA) and spacecraft, and again between spacecraft and payload | Two passive layers                                                                      |
| Deformable mirrors                                                                                        | Two $48 \times 48$ devices for 2017, investigate larger formats for later launch        |
| Instrument configuration: Lateral vs. behind primary mirror                                               | Lateral                                                                                 |
| Mission design                                                                                            | Baseline configuration in §6                                                            |
| Low-order wavefront sensor (LOWFS) design                                                                 | Zernike WFS, spectral splitting                                                         |
| Spacecraft bus                                                                                            | Kepler type                                                                             |
| Solar array configuration                                                                                 | Fixed                                                                                   |
| Field of regard                                                                                           | Boresight angles of 45-135 degrees w.r.t. the Sun                                       |
| Mission lifetime                                                                                          | 3 years, consumables for 5 years                                                        |
| Pointing architecture                                                                                     | Isolation, flight management system (FMS), payload, and spacecraft interface            |
| Spectrometer architecture                                                                                 | Integrated field spectrometer (IFS): 76x76 lenslet array, R= 70                         |
| Telescope stability—thermal architecture                                                                  | Multizone heater control of telescope barrel and primary mirror; sunshade for telescope |
| Secondary mirror configuration                                                                            | Actuated secondary                                                                      |
| Telescope metering structure configuration                                                                | Integrated with barrel assembly                                                         |
| Instrument architecture                                                                                   | Coronagraph, imaging camera, IFS, fine-guidance sensor (FGS)                            |
| Coronagraph architecture                                                                                  | Hybrid Lyot baseline for 2017, Vector Vortex and PIAA still considered for later launch |
| Science detectors                                                                                         | Science camera and IFS both use 1K x 1K EMCCD for 2017, 2K x 2K for later launch        |



## Exo-C Extended Study of 2.4m version


Kerri Cahoy (MIT), Chair

& the Exo-C study teams

Extended study presentation available at ExEP website

> Comparison of 1.4-m Exo-C with 2.4-m Exo-C ES

Drawings, K. Tan and K. Warfield for Exo-C (left) and Exo-C ES (right) [15]. Altair 12 hour composite V, R, I band simulation detecting a Jupiter and Saturn, K. Stapelfeldt for Exo-C, Exo-C ES





### Comparing Exo-C & WFIRST CGI

# N.B. this reflects the author's current understanding of WFIRST CGI The CGI Team should be consulted to verify these statements

- Exo-C's coronagraph-optimized mission architecture has numerous advantages vs. WFIRST CGI:
  - Optimal telescope allows for simpler, more efficient coronagraph design
  - 3-4 times <u>better PSF core throughput</u> for planet searches from larger spectral bandwidth, better pupil throughput, fewer reflections in the instrument
  - Raw contrast is ~3x better than CGI best estimates, 50 times better than CGI requirement
  - Full IFS for imaging spectroscopy vs. CGI slit spectrograph
  - Relaxed pointing requirements due to reduced aberration sensitivity
- 3 year high contrast science program vs. < 0.25 yr CGI tech demo</li>
- WFIRST's tighter PSF provides a 25% smaller IWA
- WFIRST CGI is substantially less costly (~\$350M vs. ~\$1B)