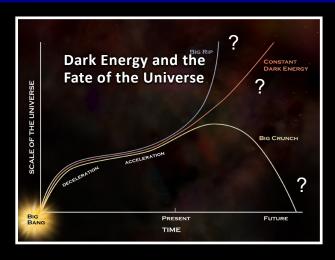


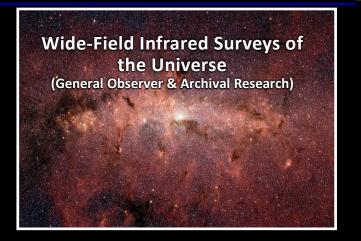


# WFIRST Project Status

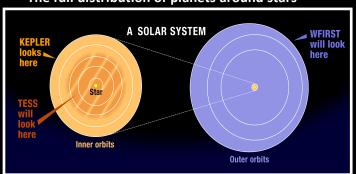
March 17th, 2020


Jeffrey Kruk WFIRST Project Scientist

NASA GODDARD STACE FLIGHT CENTER • JET PROPULSION LABORATORY •
 HARRIS • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER •
 SPACE TELESCOPE SCIENCE INSTITUTE • INFRARED PROCESSING AND ANALYSIS CENTER•




# Science Program










#### The full distribution of planets around stars





3/17/20 Kruk - EOS1

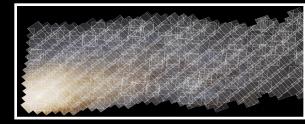


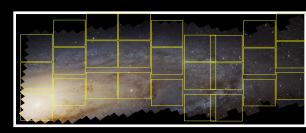
#### Wide area surveys enable wide range of science



- Assembly and star-formation histories of galaxies
  - Nearby galaxies & globular clusters out to high redshift
  - Compare high & low density environments, including voids
- Probing the epoch of reionization
- Milky Way kinematics and formation history
- EM counterparts of GW events; multi-messenger astronomy
- Transiting planets in MW disk and bulge
- Astrometric planet detection around nearby stars
- Census of free-floating planets, neutron stars, black holes in MW disk
- Growth & evolution of galaxy clusters (+ X-ray, SZ, LSST, ELTs...)
- Cosmic infrared background
- Discovery of high-z quasars
- Stellar IMF in different environments

Sample from WFIRST-related white papers submitted to Astro-2020





#### WFIRST as a Survey Facility



- The power of WFIRST is not just that it has a large field of view: it is also very efficient
  - Rapid slew & settle, no Earth occultations, no South Atlantic Anomaly
- Comparisons of total elapsed time for large HST surveys with WFIRST for equivalent area+depth:
  - 3-D HST: 1400 ksec grism spectroscopy over 0.17 sq deg
    - -> WFIRST: 1.9 ksec or 730x faster
  - COSMOS: 3300 ksec imaging over 2 sq deg
    - -> WFIRST: 26 ksec or 125x faster
  - CANDELS Wide NIR: 0.22 sq deg in 1790 ksec
    - -> WFIRST: 1.7ksec or 1050x faster
  - PHAT: 2360 ksec multi-band imaging over 0.5 sq deg
    - -> WFIRST: 1.6 ksec or 1475x faster

HST PHAT survey: 438 pointings





WFIRST PHAT survey: 2 pointings

For details, see Akeson et al 2019 https://arxiv.org/abs/1902.05569



## **Science Program**



# Wide-Field Infrared Surveys of the Universe

Large legacy surveys, smaller focused surveys

All data to be public immediately

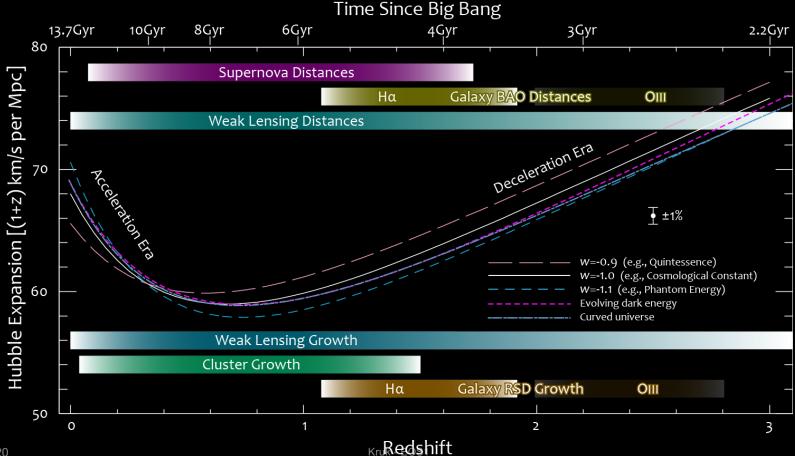
## Legacy Surveys under consideration:

High-latitude imaging and spectroscopic surveys

Enables WL and GRS cosmology investigations

High-latitude time-domain survey

Enables SNIa cosmology investigations

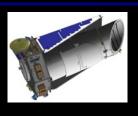

Galactic Bulge time-domain survey
Enables exoplanet microlensing investigations

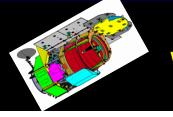
Each has a core set of requirements, but potential scope is far broader and design can be adjusted to maximize total science return



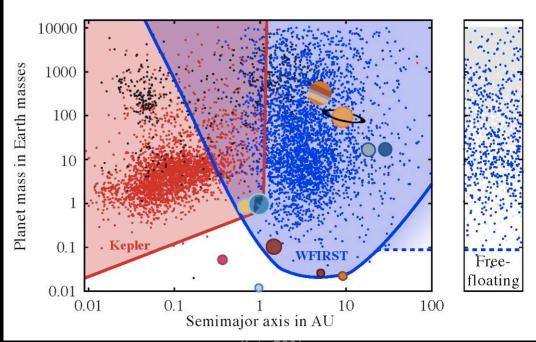
## **WFIRST Cosmology Program**






## **Compete the Census of Exoplanets - Microlensing**




Kepler





**WFIRST** 





# Representative Surveys



(from the design reference mission)

Cumulative point-source depth in wide-area surveys:

High Latitude Survey Wide 2000 deg<sup>2</sup> Deep 20 deg<sup>2</sup>

- Imagining in 4 filters (5 $\sigma$ ) AB ~26.5 AB ~28.2

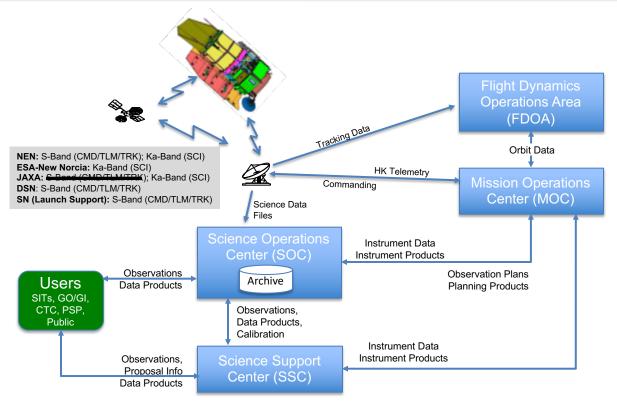
- Grism (6.5σ line flux 1.8 $\mu$  0.2" $r_{eff}$ ) 8·10<sup>-17</sup> 3·10<sup>-17</sup>

SN la Survey (5-day cadence) Wide: 29 deg<sup>2</sup>
 Deep 12 deg<sup>2</sup>

- Imaging  $(5\sigma)$  AB ~27.8 AB ~29.5

- Prism (10  $\sigma$  continuum) AB ~23.8 AB ~26.4

– There are many possible SN survey implementations!

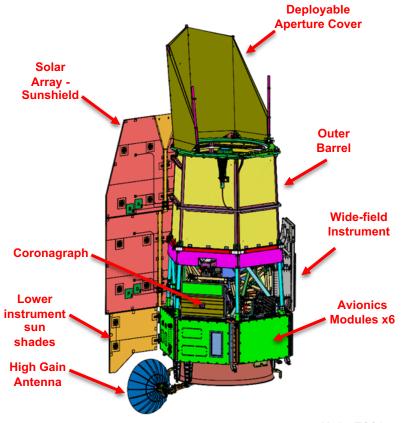

#### Microlensing:

- Monitor 2+ deg<sup>2,</sup> 15 minute cadence over 72-days, S/N=100 @ AB=21.4 per visit
- Exoplanet detections by microlensing, other time-domain astronomy,
- Precision astrometry (tens of micro-arcsec)



## **Ground System Architecture**






CMD – Command; TLM – Telemetry; TRK – Tracking; HK – Housekeeping; SCI – Science; SIT – Science Investigation Teams; GO/GI – General Observer/Guest Investigator; CTC – Coronagraph Technology Center; PSP – Participating Scientist Program;



#### **Observatory Layout**





#### **Key Features**

**Telescope**: 2.4m aperture

**Instruments:** 

Wide Field Imager / Slitless

Spectrometer

Coronagraph w/ prism Spectroscopy

**Data Downlink**: 275 – 500 Mbps

Data Volume: 11 - 16 Tb/day

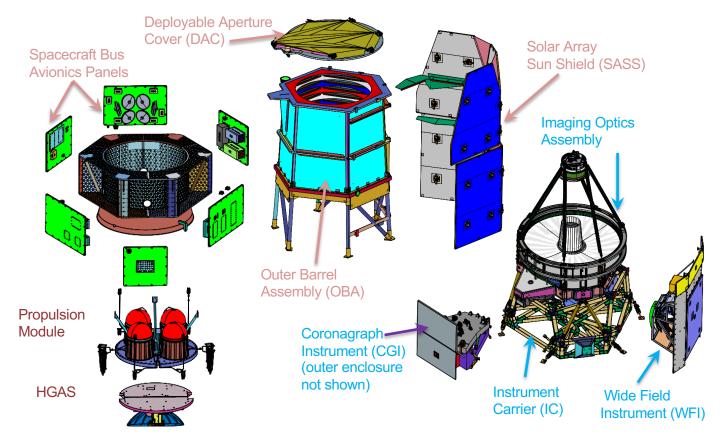
**Orbit**: Sun-Earth L2

**Launch Vehicle**: 3 options

Mission Duration: 5 yr, 10yr goal

Serviceability:

Observatory designed to be


robotically serviceable

Starshade compatible



#### **Observatory Expanded View**

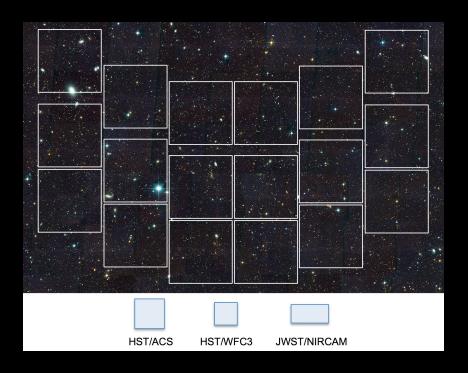






## **OTA** high-level view







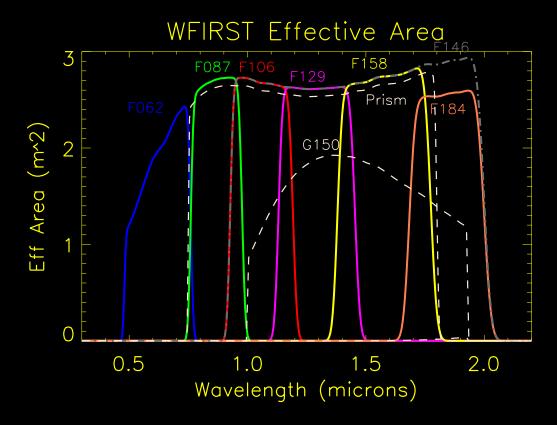

## **Wide-Field Instrument**



#### WFIRST Field of View



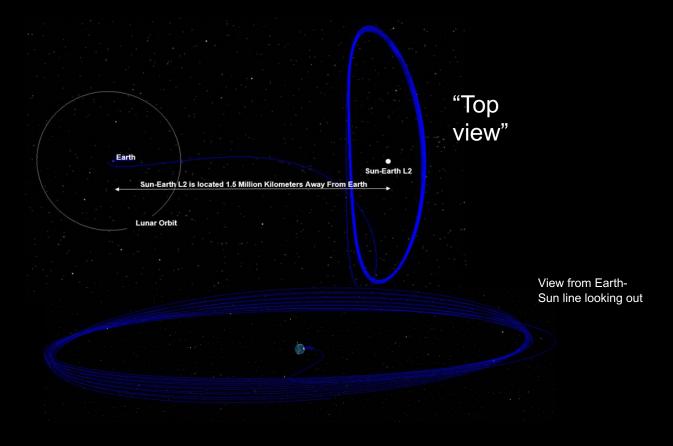
Diffraction-limited imaging 0.28 square degree FoV 0.11" pixels 18 4kx4k NIR detectors R~4 filters spanning 0.48-2.0 μm Sensitivity: 27.8 H(AB) @5σ in1hr


Slitless grism: 1.0-1.93 μm R: 435-865

Slitless prism:  $0.75-1.8 \mu m$  R: 80-170



## **Effective Area & Filters**








## **L2 Orbit**







#### Field of Regard

+126

G)

Galactic Bulge

(Available `twice yea<u>rly)</u> Keep-Out



#### **Observing Zone:**

• 54°-126° off Sun Line

• 360° about Sun Line

 ±15° about line of sight (LOS) off max power roll angle

HLS/GO/Coronagraph observations can be optimized within the full Observing Zone

SNe fixed fields located in continuous viewing zone

Earth/Moon LOS avoidance angles are a minor sporadic constraint

Microlensing can observe inertially fixed fields in the Galactic Bulge (GB) for 72 days twice a year

Observing Zone

+54°7

Keep-Out



#### **Project Status**



#### Milestones to date:

- Mission Concept Review: December 8-9, 2015
- KDP-A: February 17, 2016
- SRR/MDR: February 27 March 2, 2018
- KDP-B: May 22, 2018
- Mission PDR: October 28 November 1, 2019
- KDP-C: February 28, 2020 ← Confirmation Review!

#### Upcoming Milestones:

- Mission CDR: July 2021
- System Integration Review: July 2023
- KDP-D: September 2023
- Launch Planning Date: October 2025



#### **PDR Process**



# Preliminary Design Reviews :

- Instrument Carrier: May 29, 2019
- Wide Field Instrument: June 18, 2019
- Telescope: August 22, 2019
- CGI: September 17, 2019
- Ground System part 1 (MOC): September 24, 2019
- Mission/Spacecraft: Oct 28-Nov 1, 2019
- –~130 internal reviews in 2019 in preparation for element PDRs
- Ground System part 2 (SOC): July 21, 2020

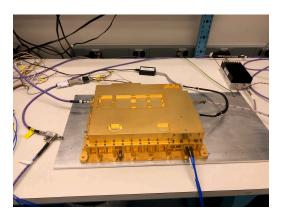


#### **KDP-C Process**



- Engineering Peer Reviews and Element PDRs throughout 2019
  - GSFC and JPL internal review boards
  - A number of SRB members participated in the lower level reviews
- MPDR October 28 November 1, 2019
  - SRB concerns led to creation of CGI Tiger Team by Program Office
- Center Management Council December 20, 2019
  - SRB presents findings
- DPMC January 31, 2020
  - SRB presents findings
  - By this point, CGI Tiger Team recommendations had been largely implemented (or implementation plan agreed-upon)
  - Other SRB concerns likewise addressed
- APMC February 28, 2020
  - SRB presents updated findings
  - No actions
  - Plans had been pre-briefed to stakeholders in advance
  - All concerns had been addressed by time of the meeting




# **Spacecraft Progress**



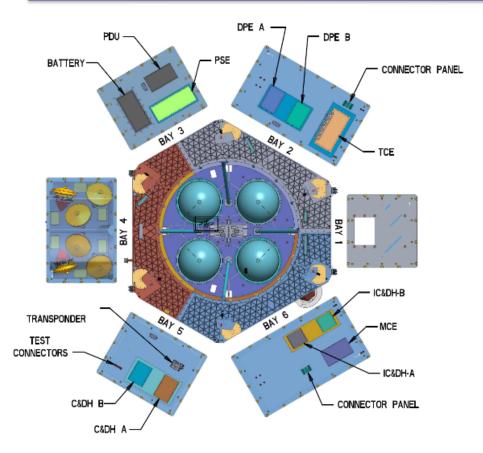
- Design complete for PDR; most subsystems ready for prototyping
- Procurement activities:
  - Awarded or in process: high-gain antenna (HGA) gimbal actuators, TWTA and S-band transponder, propulsion latch valves & tanks, reaction wheels (RW), RW isolator, gyros, solar array substrate, Outer Barrel Assembly structure, Ka-band antenna, HGA boom damper, spacecraft primary structure, printed wiring boards, much more

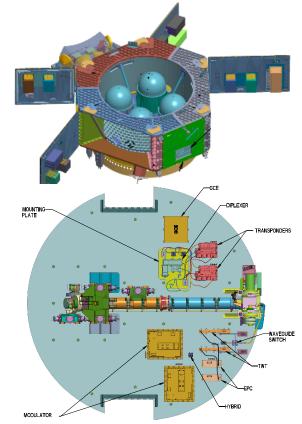


Solid State Recorder prototype board is complete and in testing



Ka-band ETU is complete and in testing with PACE (shared development)





Full-scale mock-up of Spacecraft Avionics Panel (Bay #2 and #6)



# **Spacecraft Layout**







Communications panel – bottom of S/C 1.7m antenna not shown



# **Telescope Progress**



- Work is progressing on plan
- Primary mirror figuring is on track: completed full tool polishing, ion figuring run #4, and cold surface figure test
  - Total of 6 ion figuring runs planned may only need 5
- Disassembly of all inherited hardware is complete
- Secondary mirror ready for final ion figuring run
- Thermal zones & control approaches defined (nearly all optical and baffle surfaces ≤ 267K)
- Engineering models of new & modified components being built
- Flight models of build-to-print items being fabricated
  - Alignment drive mechanisms, focus drive mechanisms



## **Inherited hardware progress (1)**





Primary Mirror Assembly + Forward Metering Structure At SRR/Pedigree Review



Removal of PM Scraper 7/2018



Forward Metering Shell Removal 7/2018



Forward Metering Structure June 2019



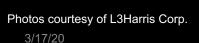
Removal of PM Baffle Adaptor 7/2018



Removal of Spare PM from Aft Metering
Kruk - EOS1 Structure May 2019



Aft Metering
Structure June 2019





#### **Inherited hardware progress (2)**

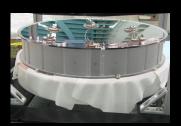




Secondary
Mirror Assembly
at SRR/Pedigree
Review






Disassembly of support structure from mirror



Removal of thermalelectric hardware



Secondary
Mirror Support
Structure
(SMSS) ready
for re-use



Secondary Mirror E removed from E support structure EOS1



Back Pad Removal



In process shaping of SM to WFIRST prescription



## Inherited hardware progress (3)





Flight Primary Mirror As received Ion Figuring
- Ongoing



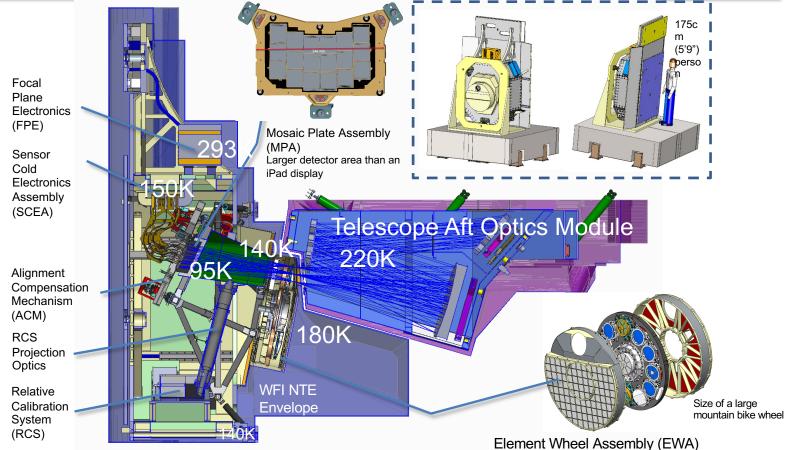
Photos courtesy of L3Harris Corp.



## **Instrument Carrier Progress**



- Interface Control Documents released or will be very soon
- Structure procurement activities are on track
  - Contract awarded for composite components
  - Titanium forgings for nodes procured
    - Fabrication to begin passed Manufacturing Readiness Review


- Launch lock & vibration isolation system contract awarded
  - Trade in progress on cutoff frequency
  - Launch lock design qualified





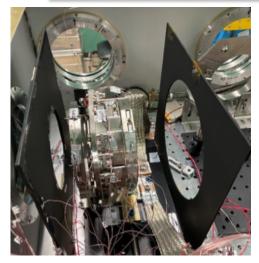
## **WFI Cold Sensing Module**

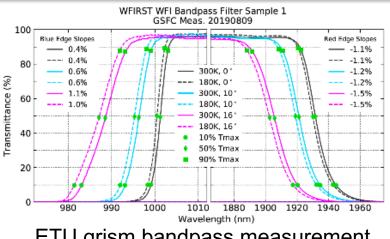






# **Wide-Field Instrument Progress**





- Overall WFI design has converged: still a few tweaks on the way to CDR
- Grism assembly engineering unit undergoing tests & characterization
  - Diffraction efficiency close to model prediction
  - Thermal tests in progress to verify alignment through cooldown
- Prism EDU under construction to verify mounting approach
  - Thermal tests to follow the grism tests
- ETU filters for wide-field instrument being characterized
  - Meet specs; one has slight exceedance of ripple spec, but deviation is very small.



# Wide-Field Instrument components







ETU grism bandpass measurement

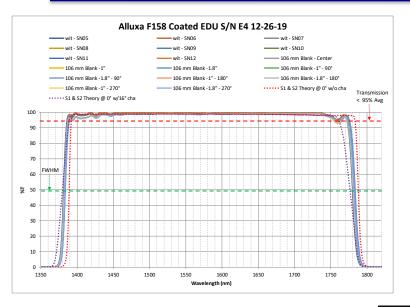
EDU prism assembly

ETU grism thermal gradient test

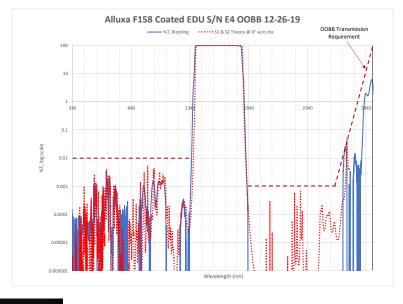


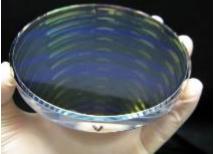
**ETU Mosaic** Plate




**ACADIA ASIC EDU** 

Kruk - EOS1





# **Wide-Field Instrument components**





#### **F158 EDU**





Log scale to show out of band transmission



# **Wide-Field Instrument Progress**



- 5 SCAs have passed acceptance testing in the DCL and appear to be good flight candidates.
- SCA characterization testing has started.
  - Intra-Pixel response showed similar results to test program SCAs (meets expectations)
  - Flux Dependent Non-linearity testing on first detector has started
  - Accelerated life testing almost completed.
- If the flight yield continues to meet expectations, we should receive our 18<sup>th</sup> flight SCA in January 2021, meeting FPS schedule needs for an on-time delivery.
  - Current yield is slightly higher than the yield assumption.
  - Yield projection is based on the use of only high Zn substrate material
- The first flight SCAs will need to be selected in June 2020 in order to support the start of triplet testing (SCA + cable + SCE) in late summer 2020
- SCA alignment (5 SCAs used) has been demonstrated to meet requirements on an EDU Mosaic Plate
  - 18 SCAs to be aligned this summer 2020 during ETU FPA build and test
- SCE development: 2<sup>nd</sup> generation ACADIA passed ambient tests; now testing cold
  - ACADIA performance thus far exceeds expectations! Radiation testing in EDU package this month



## WFI Detector Status continued

Spec

SCA

20829

20833

**Total Noise** 

<6.5 e

Median (e)

5.73

4.97



Persistence (300 ke)\*

<0.8 e/s/pix

99.96

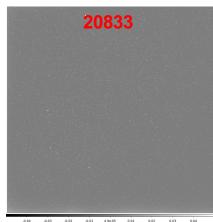
99.93

99.90

99.88

99.90

<0.50 e/s


0.207

0.074

Median (e/s) | Median (e/s) | (%) Pixels passing

- First 5 flight candidate detectors identified. See properties in table.
- Total SCAs tested at DCL passing Teledyne Cold Functional: 14
- Flight candidate SCAs are being delivered and tested at a rate of 1/week.

|      | 20833         |    |
|------|---------------|----|
|      |               |    |
|      |               |    |
|      |               |    |
|      |               |    |
|      |               |    |
|      |               |    |
| Tota | al Noise (e-) | 11 |



20828 5.34 0.000 0.144 20663 5.48 0.000 0.100 20849 5.41 0.001 0.173 \*10 min after stimulus

Dark Current

<0.05 e/s

0.000

0.000

Dark Current (e-)



# **Ground System Progress**



- Mission Operations Center (MOC) and ground station design is on track
  - Technical interchanges on ground stations w/ international partners continuing
    - Both JAXA and ESA to provide Ka-band antennas
  - Planning & scheduling system architecture work has begun
  - Data processing system architecture work beginning
  - Calibration plan close to being baselined
  - MOC PDR held, Science Operations PDR early next Summer



#### **Launch Vehicle Status**



- Launch Vehicle Certification
  - NASA's Launch Service Program (LSP) is beginning the process of certifying the SpaceX Falcon Heavy. They expect that to be completed in 2021.
  - LSP typically waits for a mission to be awarded on a vehicle *before* starting the certification effort. A typical certification effort takes ~2 years. In those cases, LSP's goal is to certify the vehicle no later than L-6 months. LSP expects any other LV candidate to follow this approach.
- WFIRST is pursuing an early acquisition of the launch vehicle. The expected award is ~L-56 months (as opposed to a typical L-30 months).
- Coupled Loads Analysis (CLA) cycle 2 was completed prior to Mission PDR for SpaceX Falcon Heavy launch vehicle.
- CLA cycle 3 will be moved forward (ahead of Mission CDR) to accommodate element testing.
- Design environments have enveloped all candidate launch vehicles through PDR.



**SpaceX Falcon Heavy** 



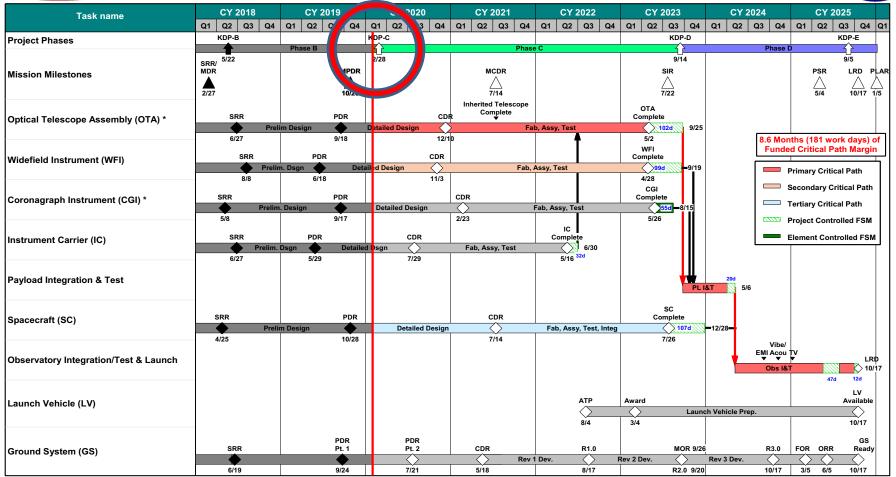
**Blue Origin New Glenn** 



United Launch Alliance



#### **Risk Retirement Approaches**




- Early development of all new items (detectors, ACADIA ASIC, Ka-band modulator)
- Extensive engineering peer reviews (EPRs)
- Engineering units built for electronics, mechanisms, optics, etc. that aren't build-to-print
- Integrated modeling began pre-Phase A and continually updated
  - WFE and pointing budgets established early and tracked through every design iteration
  - Used for trades on thermal control approaches, opto-mechanical tolerances, vibration isolation, etc.
- Early coupled-loads analysis with launch vehicle provider(s)
- Aggressive schedule management
  - Worked with HQ to develop an efficient budget profile
  - Work closely w/ GSFC management on lifecycle plans for optimizing staffing profile, access to facilities, etc.
  - Work closely with vendors on process reviews/inspections, provide help with procurements, provide technical help as-needed
  - For challenging procurements, carry multiple vendors through initial phases



## **WFIRST Project Master Schedule**







# **Budget Profile**



Budget profile assumed for cost commitment; subject to annual appropriate process. Administration proposes no funding and termination starting in FY21.

|                                         | Prior    | Cost phasing by year |          |          |          |          | To       |              |          |            |
|-----------------------------------------|----------|----------------------|----------|----------|----------|----------|----------|--------------|----------|------------|
|                                         | Years    | FY20                 | FY21     | FY22     | FY23     | FY24     | FY25     | To<br>Launch | Ops      | Total      |
| WFIRST KDP-C<br>Management<br>Agreement | \$540.3M | \$445.7M             | \$400.6M | \$323.2M | \$287.8M | \$298.0M | \$282.7M | \$53.7M      | \$367.9M | \$3,000.0M |
| CGI KDP-C<br>Management<br>Agreement    | \$112.5M | \$65.0M              | \$83.3M  | \$35.6M  | \$24.2M  | \$7.1M   | \$5.8M   | \$0.0M       | \$9.3M   | \$342.7M   |
| Agency-held<br>Reserve                  |          |                      | \$21.3M  | \$95.0M  | \$85.0M  | \$85.0M  | \$85.0M  | \$197.7M     | \$22.3M  | \$591.3M   |
| Agency Baseline<br>Commitment           | \$652.8M | \$510.7M             | \$505.2M | \$453.8M | \$397.0M | \$390.1M | \$373.5M | \$251.5M     | \$399.5M | \$3,934.0M |

Development cost excluding coronagraph (sum lines 1 & 3 through launch): \$3.2B Launch no later than October 2026. Present Project planning date for launch is October 2025



## **Status Summary**



- Have just completed "Preliminary Design"
- The flight mission elements have been in Phase C since their respective PDRs
  - Instrument Carrier, WFI are half-way to their CDRs
- The SOC/SSC work is still effectively in Phase B, until Ground System PDR part 2
- Engineering development units of many hardware items already built, more in progress
- For much of observatory, design today is what will be built and what will fly
- PDR & KDP processes include extensive management and cost reviews
  - Plan to execute the mission is as big a part of the reviews as the engineering design
- FY2020 and FY2021 are the peak budget years
  - Approaching 1000 people working on WFIRST!
- FY21 White House Budget proposes termination of WFIRST
  - Direction is to proceed according to plan while Congress deliberates

We are on track for a launch "no later than 2026" Project planning date is October 2025





# **QUESTIONS?**

For more information, see:

https://wfirst.gsfc.nasa.gov/

https://wfirst.gsfc.nasa.gov/science/WFIRST\_Reference\_Information.html



# **Acronym list**



| ABC    | Agency Baseline Commitment                                 |
|--------|------------------------------------------------------------|
| ACADIA | ASIC for Control and Digitization of Imagers for Astronomy |
| CDR    | Critical Design Review                                     |
| CGI    | Coronagraph instrument                                     |
| CLA    | Coupled Loads Analysis                                     |
| EDU    | Engineering Development Unit                               |
| ETU    | Engineering Test Unit                                      |
| KDP    | Key Decision Point                                         |
| LSP    | Launch Services Program                                    |
| МОС    | Mission Operations Center                                  |
| PDR    | Preliminary Design Review                                  |

| PM     | Primary Mirror                       |
|--------|--------------------------------------|
| SCA    | Sensor Chip Assembly                 |
| SCE    | Sensor Cold Electronics              |
| SOC    | Science Operations Center            |
| SSC    | Science Support Center               |
| SRB    | Standing Review Board                |
| SRR    | System Requirements Review           |
| WFI    | Wide-Field Instrument                |
| WFIRST | Wide-Field Infrared Survey Telescope |

Kruk - EOS1 40



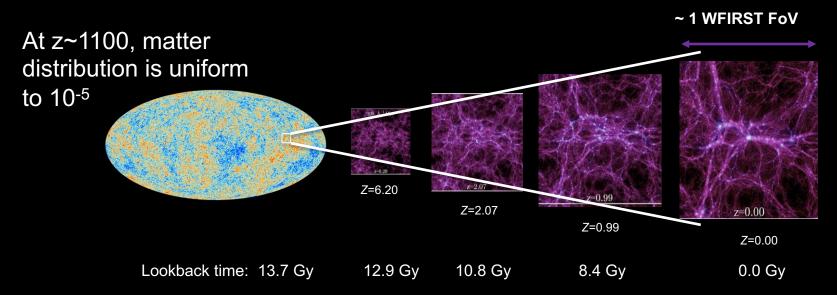
## **Representative Continuum Sensitivity**



Limiting point-source sensitivity (AB mag) in 1 hour of exposure time, Zodiacal light set at twice minimum.

| Imaging, 5σ |      |      |      |      |      |      |
|-------------|------|------|------|------|------|------|
| R062        | Z087 | Y106 | J129 | H158 | F184 | W149 |
| 28.5        | 28.2 | 28.1 | 28.0 | 28.0 | 27.5 | 28.3 |

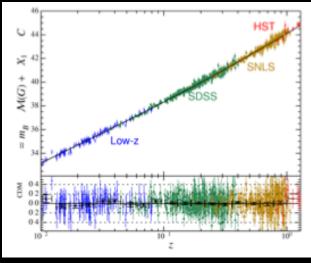
| Spectroscopy, 10σ per pixel in continuum |                      |       |       |  |  |  |  |
|------------------------------------------|----------------------|-------|-------|--|--|--|--|
|                                          | 0.8 μm 1.1 μm 1.5 μm |       |       |  |  |  |  |
| Grism                                    | N/A                  | 20.78 | 20.48 |  |  |  |  |
| Prism                                    | 22.87                | 23.45 | 23.54 |  |  |  |  |




## Wide FoV enables study of evolution of the Universe

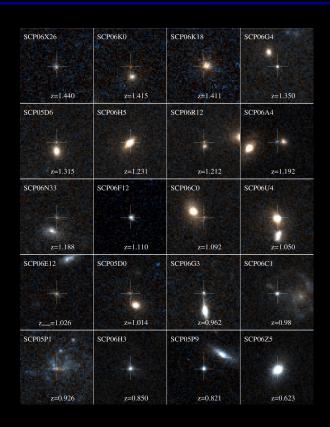


WFIRST will measure expansion history and growth of structure


- If results discrepant -> breakdown of general relativity
- If results agree -> learn about nature of dark energy WFIRST provides multiple probes, enabling cross-checks for astrophysical and instrumental systematics



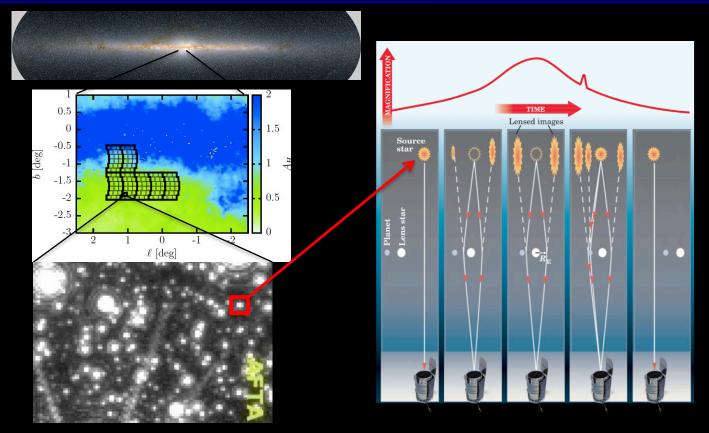



## **Luminosity distance from SNIa**





Hubble diagram from Betoule et al 2014, w/best-fit Λ-CDM model


Key next steps are to reduce systematic uncertainties, increase sample at redshift > 1



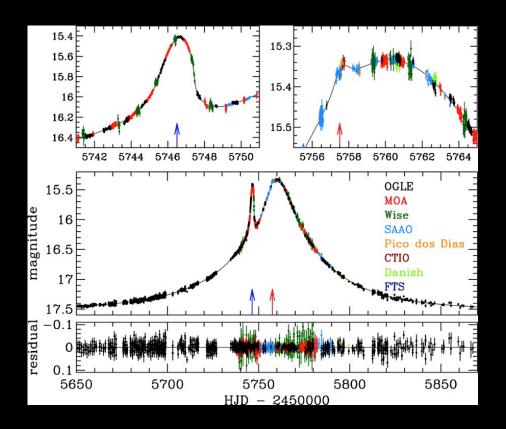


## **Microlensing Observation Concept**





Great benefit of space observations in the crowded galactic bulge field




## Microlensing example



Microlensing event from Jupitermass planet around an M-dwarf (Skowron et al 2015)

Shape of light curve is governed by changing geometry of source & host stars & planet; motion of Earth about Sun affects shape of star-star light curve.





## **WFI Filters & dispersers**



| Band | Element<br>name | Min (μm) | Max (μm) | Center<br>(µm) | Width<br>(μm) | R             |
|------|-----------------|----------|----------|----------------|---------------|---------------|
| R    | F062            | 0.48     | 0.76     | 0.620          | 0.280         | 2.2           |
| Z    | F087            | 0.76     | 0.977    | 0.869          | 0.217         | 4             |
| Y    | F106            | 0.927    | 1.192    | 1.060          | 0.265         | 4             |
| J    | F129            | 1.131    | 1.454    | 1.293          | 0.323         | 4             |
| Н    | F158            | 1.380    | 1.774    | 1.577          | 0.394         | 4             |
|      | F184            | 1.683    | 2.000    | 1.842          | 0.317         | 5.81          |
| Wide | F146            | 0.927    | 2.000    | 1.464          | 1.070         | 1.37          |
| GRS  | G150            | 1.0      | 1.93     | 1.465          | 0.930         | 461λ(2pix)    |
| PRS  | P127            | 0.75     | 1.80     | 1.275          | 1.05          | 80-170 (2pix) |



# Representative Emission Line Sensitivity (grism)



Emission line flux detected at  $6.5\sigma$  in one hour, with zodiacal light set at twice minimum. Units are  $10^{-17}$  ergs/cm<sup>2</sup>/sec

| Wavelength | Source half-light radius |       |  |  |  |
|------------|--------------------------|-------|--|--|--|
| μm         | 0.0"                     | 0.2"  |  |  |  |
| 1.05       | 7.8                      | 17.0  |  |  |  |
| 1.15       | 5.6                      | 12.25 |  |  |  |
| 1.25       | 5.0                      | 10.5  |  |  |  |
| 1.35       | 4.8                      | 9.7   |  |  |  |
| 1.45       | 4.8                      | 9.6   |  |  |  |
| 1.55       | 5.0                      | 9.8   |  |  |  |
| 1.65       | 5.5                      | 10.5  |  |  |  |
| 1.75       | 5.9                      | 11.3  |  |  |  |
| 1.85       | 6.7                      | 12.3  |  |  |  |

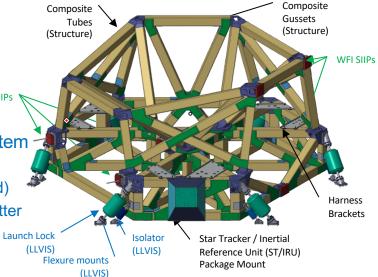


### **IC Architecture**



### Structure

- Provides stiff, strong, and stable support for WFIRST Payload
- Similar construction to JWST ISIM
  - Leveraging lessons learned
- Includes:
  - Composite tubes and gussets
  - Ti nodes and clips; Harness brackets | SIIPs
  - ST/IRU mount


Launch Lock and Vibration Isolation System (LLVIS)

- Mounts Payload to SC for launch (locked)
- Isolates the WFIRST Payload from SC jitter (unlocked)
- Includes:
  - Launch lock; Vibration isolator; Flexure mounts to IC and SC

### Science Instrument Interface Plates (SIIPs)

- Align instruments to telescope pupils
- Similar to ISIM SIIPs
  - Leveraging lessons learned

#### IC = Structure + LLVIS + SIIPs





# The Design Reference Mission



# What the Design Reference Mission is:

- A required product at major mission reviews
- An existence proof that mission objectives can be met in required lifetime
- A tool for exercising the ground system
  - Does proposal system support all the observing modes?
  - Can planning/scheduling tools build the timeline & command loads?
  - Will command loads execute on the spacecraft & instrument simulators?
  - Does observing efficiency in simulator match expectations?
  - Does telemetry support data processing of all observing modes?
  - Are pipeline products properly ingested into the archive?



# The Design Reference Mission



## What the DRM is:

- A required product at major mission reviews
- An existence proof that mission objectives can be met in required lifetime
- A tool for exercising the ground system
  - Does proposal system support all the observing modes?
  - Can planning/scheduling tools build the timeline & command loads?
  - Will command loads execute on the spacecraft & instrument simulators?
  - Does observing efficiency in simulator match expectations?
  - Does telemetry support data processing of all observing modes?
  - Are pipeline products properly ingested into the archive?

## What the DRM is not:

- The actual observing plan