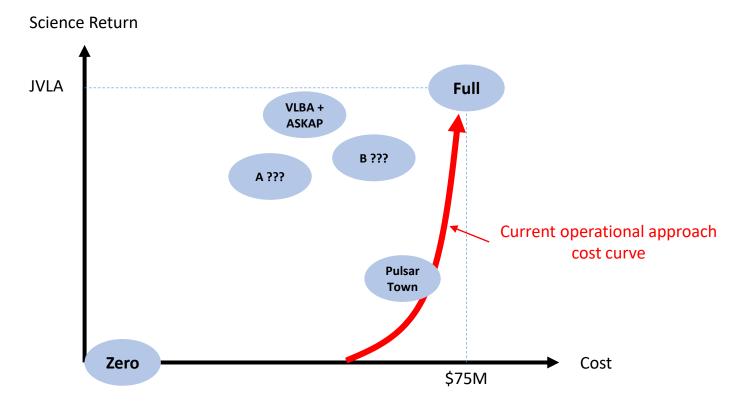


Supplementary Topics

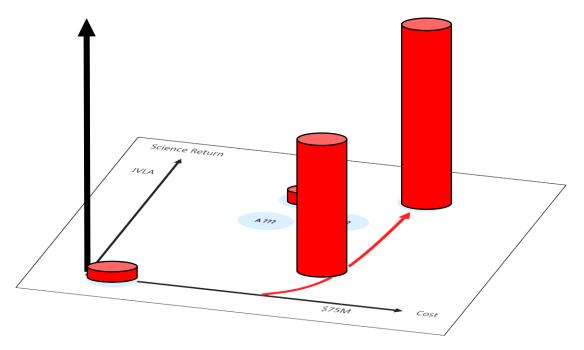
ngVLA Project Team (NRAO)

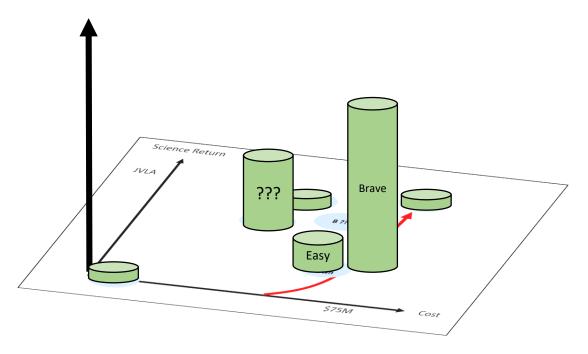
- JVLA-ngVLA Transition
- SKA Complementarity & Alliance
- ngVLA Human Resources
- Environmental
- RFI
- Programmatics

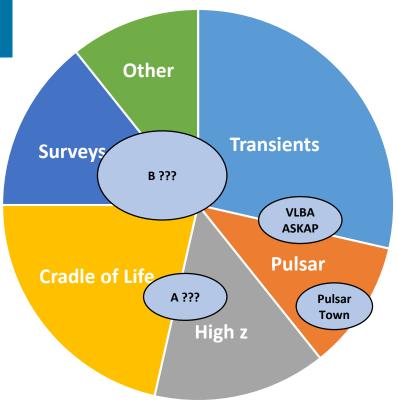
JVLA-ngVLA Transition


Transition

- Getting from JVLA (2023) to ngVLA (2028) challenging.
- Preliminary analysis (NM) current operations ~incompressible.
- Parameters to consider:
 - Science capability loss to community 2020s
 - Resources (\$\$, human capital)
 - Impacts on construction project
 - Brittle vs fluid planning complexities
 - Delineating stakeholder requirements vs desirements
 - ...


Analysis: 2024-2028


Human Capital Challenge – Workforce, recruiting etc.



New Technology – Near-term Work

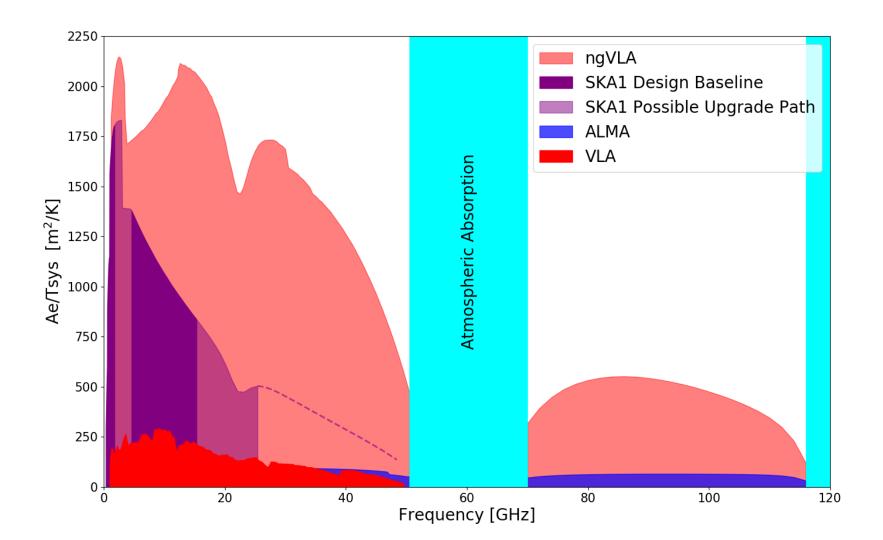
Science Modes

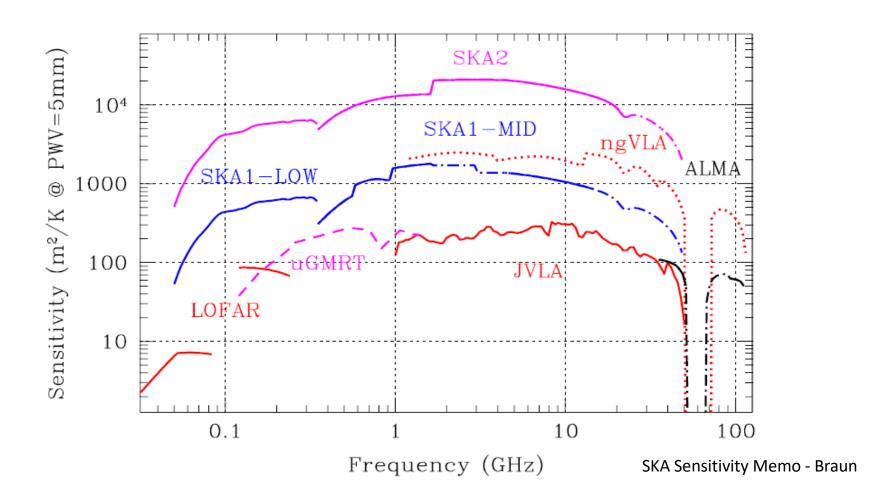
- Period = 2024-2028
- Transients, ngVLA-related
- High-z
- Pulsars
- ...
- Different modes satisfy different science communities
- 1:1 mode (EVLA)?
- Other telescopes?

Transition Process

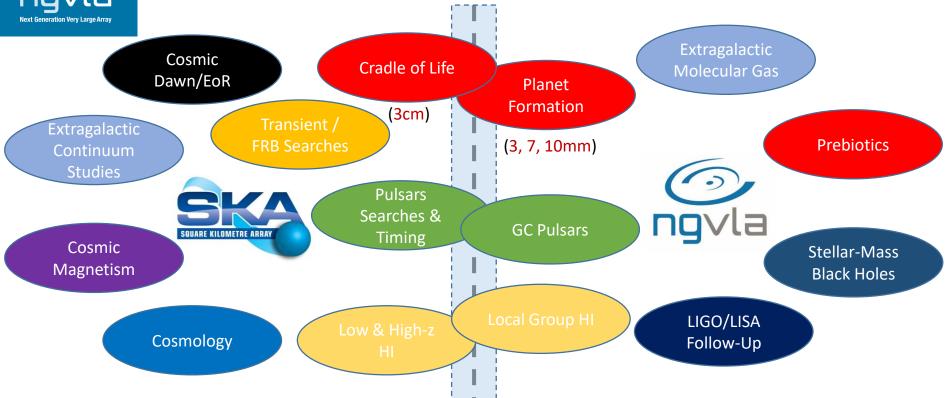

- Define Working Group (NRAO + SAC + TAC + UC + ??)
- WG: Define stakeholders, parameters of interest, metrics.
- Define environment, assumptions, initial mode options (+ NRAO quantitatively analyze)
- Preliminary review/analysis of process, modes // iterate →
 "Transition Options Plan" (TOP)
- NRC Blue-ribbon panel review TOP mode options, technical evaluations, science promise prioritize TOP options.
- Deliverable: Recommendations to Project baseline.
- Timing: Define WG post-ASTRO2020 activity.

SKA Complementarity & Alliance





- Long history together... parted ways ~2010.
- Currently: external participation in SKAPO, ongoing sw initiative, some technology investments benefits going both ways.
- Anticipated: CASA software will be integral part of early SKA.
- No obvious path to SKA1 participation for US community.
- US science environment, culture... different drivers, expectations.
- SKA, ngVLA, ALMA complementary research instruments...
- June: Summit meeting between NRAO & SKAPO discussed formation of a "Future Radio Alliance" – SKA and ngVLA communities accessing each others facilities when completed.
- Outcome sought: preservation of open skies; US access to SKA1 (pulsar, EOR community benefits).



ngvla Next Generation Very Large Array

SKA and ngVLA Key Science Drivers

		y Science Number		Frequency	Observing Area		Integr	ngVLA					
Science Objective	SWG	High Priori Objective	Mode	Range Low - High	Total Area	Angular Resolution Min:Max	Total (hr)	Band	SKA and ngVLA Key Science				
EoR - Imaging AASKA14:001	CD/EoR	1	Imaging	50 - 200 MHz	100 deg2	10:1000 arcsec	5000		Sivialia ligital titely science				
EoR - Power Spectra	CD/EoR	2	imaging/Power Spectrum	50 - 200 MHz	1000 deg2	10:1000 arcsec	5000		 13 SKA high-priority science objectives 				
AASKA14:001			imaging/Power Spectrum	50 - 200 MHz	10000 deg2	10:1000 arcsec	5000		, ,				
			Non-Imaging	150 - 350 MHz	30000 deg2	320 arcsec	12750		(HPSOs) requiring ~21 observations				
Pulsar Searching AASKA14:040	Pulsars	4	Non-Imaging	650 - 950 MHz	2400 deg2	105 arcsec	800		 Of these, 12 overlap with (non-optimized) ngVL/ 				
			Non-Imaging	1250 - 1550 MHz	2400 deg2	60 arcsec	2400	1	frequency Bands (i.e., 9 at L-band, 3 at X-band)				
Pulsar Timing	Pulsars	5	Non-Imaging	150 - 350 MHz	0.9 arcmin2	8 arcsec	4300		requeriey barras (ne., 5 at 2 barra, 5 at 7 barra,				
AASKA14:037			Non-Imaging	950 - 1760 MHz	0.7 arcmin2	7 arcsec	1600	1					
HI - High z AASKA14:128	HI	13	Imaging	790 - 950 MHz	5.4 deg2	3:5 arcsec	5000		 U.S. Community focused on higher frequencies 				
HI - Low z AASKA14:129	HI	14	Imaging	1300 - 1400 MHz	3.8 deg2	3:5 arcsec	2000	1	 Strong bridge to ALMA science 				
HI - Galaxy AASKA14:130	HI	15	Imaging	1415 - 1425 MHz	1080 deg2	5:60 arcsec	12600	1	 25% of 2019B GBT proposals asked for 3mm obs! 				
Transients - FRB AASKA14:055	Transients	18	Non-imaging/ Commensal	650 - 950 MHz	30000 deg2	105 arcsec	10000		25% of 2019B GBT proposals asked for Sillin obs:				
CoL - Planet formation AASKA14:117	Cradle of Life	22	Imaging	8 - 12 GHz	0.05 deg2	0.04:1 arcsec	6000	2					
Magnetism - RM-grid AASKA14:092	Magnetism	27	Imaging	1000 - 1700 MHz	31000 deg2	2 arcsec	10000	1	 Most are survey driven, requiring 10's to 10's of 				
Cosmology - High z IM AASKA14:019	Cosmology	32	Auto-Correl/ Commensal	350 - 1050 MHz	30000 deg2	1.7 deg	10000		thousand deg ² mapped and >1000 hr on sky.				
Cosmology - ISW, Dipole AASKA14:018, 032	Cosmology	33	Imaging	1000 - 1700 MHz	31000 deg2	2 arcsec	10000	1	,				
			Imaging	1000 - 1700 MHz	1000 deg2	0.5:1 arcsec	10000	1	 TBD is a set of KSPs – ~50% of first 5yr science 				
		37 + 38	Imaging	1000 - 1700 MHz	7.8 deg2	0.5:1 arcsec	2000	1	 Large area maps not major part of ngVLA Key Science 				
Continuum - SFR(z) AASKA14:067	Continuum		Imaging	1000 - 1700 MHz	0.38 deg2	0.5:1 arcsec	2000	1	 Highly complimentary to ngVLA for follow-up 				
			Imaging	Imaging 7-11 GHz 0.5 deg2 0.05:1 arcsec 1000 2		2							
			Imaging	7 - 11 GHz	30 arcmin2	0.05:1 arcsec	1000	2					

Global Alliance Options

- Meeting in Iceland NRAU/AUI, NSF, SKAO Board + Project Office - June 2019.
- Presentation of project statuses, areas of collaboration.
- Scientific opportunities & technical synergies apparent.
- Planned: meeting late 2020/early 2021.
- Alliance complexities:
 - Key issue: Open-skies policy differences ngVLA vs SKA.
 - Access to NRAO (NSF US) instruments "Reciprocity" as per AAAC
 - Value of anticipated NRAO technical deliverables to SKA?
 - Open-skies vs Value-based time allocation schemes.
 - SKA: compression of minor partner time allocations (beyond 5%).

AAAC 2014

2014 Astronomy and Astrophysics Advisory Committee recommendations on Principles for Access to Large Federally Funded Astrophysics Projects and Facilities¹

In its 2013 annual report², the Astronomy and Astrophysics Advisory Committee (AAAC) recommended that "Negotiations towards the coordination of projects or the development of partnerships should proceed on the basis of the principles of reciprocal participation and mutually agreed sharing of costs and responsibilities." In the current environment of complex partnerships there is a need to articulate the principles that enable the best science within constrained resources in order to realize large astrophysics projects and facilities for the benefit of the global astrophysics community.

The AAAC recommends that the Office of Science and Technology Policy (OSTP) Division of Science, the NASA Astrophysics Division, NSF Division of Astronomical Sciences, and DOE Office of High Energy Physics, in regards to large astrophysics projects and facilities:

 apply the following principles to all projects and facilities that are funded by these organizations. mean jointly developing an astrophysics project as a partnership or choosing unique astrophysics projects that are complementary.

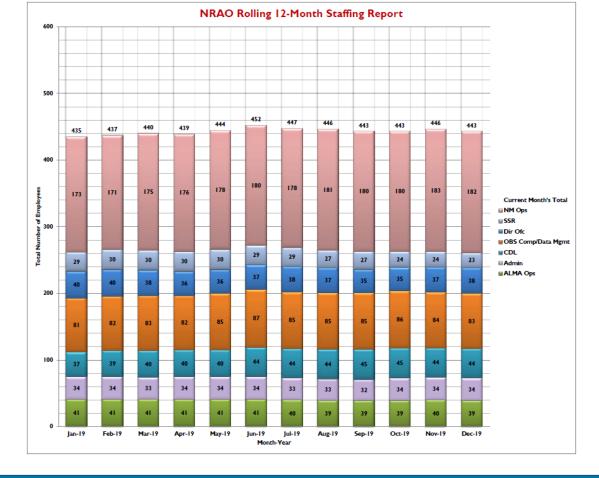
- 3. OPEN DATA: The best science occurs when an open data policy enables the global astrophysics community, the broader science community, and the public to extend the science outcomes of the project. A period of limited access to data for the implementing consortium or the funding partners to reap the benefits of their investment is reasonable. However, policies and funding should ensure that large projects make standard data products and analysis tools sublictly available in a timely and useable manner.
- 4. OPEN ACCESS: The best science relies upon selecting the most compelling astrophysics investigations. Access to a large astrophysics project or facility (typically observing time) should be allocated through an open, merit-based process, recognizing that some level of preferred access may be reasonable for the implementing consortium and the funding partners to reap the benefits of their telescope investments. Calls for proposals extending beyond the implementing consortium should be open to the global astrophysics
- 6. RECIPROCITY: The best science occurs when nations and other funding partners of large astrophysics projects and facilities practice reciprocity with the wider scientific community. Nations and funding partners whose scientists expect access to external resources (for example, funding, data, access, observing time, or consortium membership) should offer access to their own resources
 - THE PRIMARY GOAL OF THE ASTROPHYSICS COMMUNITY IS TO PRODUCE THE BEST UNDERSTANDING OF OUR UNIVERSE: Implementation of large astrophysics projects and facilities should be organized so as to enable the best use of their resources. A balance must be struck between preserving the opportunity for the implementing consortium and the funding partners to reap the benefits of the resulting data, and participation by the wider community, to ensure the best science possible.
 - GLOBAL COORDINATION: Nations and funding partners will achieve greater advances in astrophysics when community-wide coordination and collaboration allow resources to be used efficiently. effectively, and without unnecessary duolication. Coordination could

1

The AAAC ceneves that addressing these principles will reduce the most productive scientifications of large astrophysics projects and facilities. We understand that there may be grounds for justifiable deviations from these principles, such as treaty obligations or statutory restrictions. However, by formulating these principles, and recommending that any rational for deviation must be explicitly articulated, we hope to create a climate in which the best possible science can be achieved.

- 2

¹ These principles are presented in the 2014 AAAC report. The full report can be found at: http://www.nsf.gov/mps/ast/aaac/reports/annual/aaac_2014_report.pdf


² http://www.nsf.gov/mps/ast/aaac/reports/annual/aaac 2013 130308finalreport.pdf

ngVLA Human Resources

WBS#	WBS	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	Grand Total
1.1	Project Management & Administration	-	-	-	-	-	-	-	-	-	-	-
1.2	Systems Engineering	-	-	-	-	-	-	-	-	-	-	-
1.3	Assembly, Integration & Verification		-	-	-	-	-	-	-	-	-	-
1.4	Commissioning & Scientific Validation	-	-	-	-	-	-	-	-	-	-	-
1.8.1	Antenna SEIT/PM	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	22.5
1.8.2	Main Array Antenna		-	-	-	-	-	-	-	-		-
1.8.3	Long Baseline Antenna							-	-	-	-	-
1.8.4	Short Baseline Antenna				-	-	-					-
1.9.1	Antenna Electronics SEIT/PM	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	30.0
1.9.2	Front End	3.9	3.6	4.8	6.6	6.4	6.4	6.4	4.5	4.5	4.5	51.7
1.9.3	Cryogenic System	2.1	2.1	2.1	2.1	2.0	2.0	2.0	2.0	2.0	2.0	20.4
1.9.4	Integrated Receiver Digitizer	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	30.0
1.9.5	Monitor & Control System	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	29.0
1.9.6	Power Supply System	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	17.5
1.9.7	Bins, Modules & Racks	2.8	2.8	2.9	2.9	2.9	2.9	2.9	3.0	2.8	2.8	28.7
1.9.8	Environmental Control	1.4	1.4	2.6	2.7	2.7	2.7	2.7	2.7	1.3	3.0	23.4
1.9.9	Water Vapor Radiometer	2.2	2.8	2.9	2.9	2.9	2.9	2.9	3.0	2.8	2.8	28.2
1.10.1	LORT SEIT/PM	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	10.0
1.10.2	Central Time & Frequency References	3.2	1.7									4.9
1.10.3	Reference Distribution	1.7	1.7	2.7	2.7	1.6	-	-	-	-		10.3
1.10.4	Antenna Time & Frequency References	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	22.0
1.11.1	CSP SEIT/PM	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	30.0
1.11.2	Correlator and Beamformer	-	-	-	-	-	-	-				-
1.11.3	Pulsar Engine					-	-	-				-
1.11.4	Digital Back End	3.5	3.5	3.5	3.5	3.2	3.1	3.1	3.1	3.1	3.1	32.7
1.12.1	CSW SEIT/PM	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	20.0
1.12.2	Proposal Management System	0.9	2.1	2.5	2.4	2.1	1.8	1.5	1.2	0.9	0.4	15.8
1.12.3	Online Sytem	14.6	32.9	39.2	38.4	33.9	28.6	23.6	19.2	14.0	5.9	250.3
1.12.4	Offline System	7.4	16.7	19.8	19.4	17.2	14.5	12.0	9.7	7.1	3.0	126.8
1.12.5	Maintenance Support & Development	1.4	3.1	3.7	3.6	3.2	2.7	2.2	1.8	1.3	0.6	23.8
1.12.6	Processing Center		-	-	-							-
1.12.7	Data Archives			-	-	-	-	-	-	-	-	-
1.13	IT Infrastructure							-	-	-	-	-
1.14	Array Infrastructure	8.0	8.0	12.0	12.0	12.0	8.0	7.0	5.0	5.0	5.0	82.0
1.15	Ops Buildings	-	-	-	-			-		-		-
1.16	Land Acquisition & Regulatory Compliance	5.0	7.0	8.0	10.0	10.0	10.0	10.0	10.0	8.0	6.0	84.0
1.18	Safety	-	-	-	-	-	-	-	-	-	-	-
	Grand Total	79.1	111.4	127.6	130.4	121.4	106.7	97.5	86.2	73.7	59.9	993.9

WBS#	WBS	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	Grand Total
	,											
Grand Total			111.4	127.6	130.4	121.4	106.7	97.5	86.2	73.7	59.9	993.9

- Figures do not include indirect staffing (+30%)
- NM Ops currently ~200
- Two-year ramp to recruit

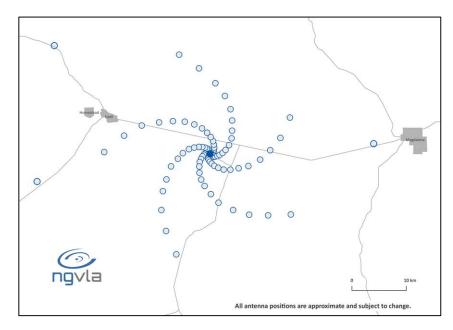
Steady State Operations

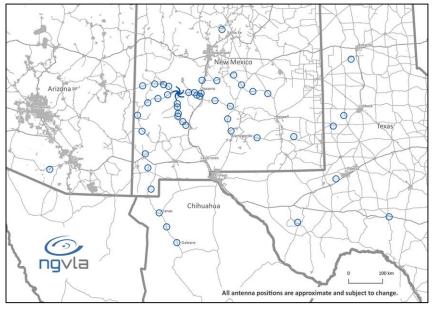
WBS #	ELEMENT	СО	ST (BY2018\$)	FTE
1	ngVLA Operations	\$	92,655,156	398
1.1	Administration Ops	\$	7,406,823	6
1.2	Science Ops	\$	9,835,102	57
1.3	Array Ops	\$	1,779,355	17
1.4	Maintenance Center	\$	16,069,529	144
1.5	Repair Center	\$	18,814,310	122
1.6	SoftwareOps	\$	8,701,953	52
1.7	IT Ops	\$	22,029,311	0
1.8	Development Ops	\$	8,018,774	0

Human Resources Issues

- Recruiting & retention increasingly difficult in certain job families – engineers(hw, sw), project management, IT.
- Strategies
 - ngVLA Project Office Albuquerque
 - Distributed effort across NRAO sites (ALMA approach)
 - Amalgamation of key activities e.g. Science Operations
 - Comparisons of Salaries/Benefits w/ industry
- Issues can be amplified by Transition option.

Environmental/Regulatory


ngVLA Deployment


- Project will require EIS covering activities at core site (Plains of San Agustin) plus 30-50 other locations.
- Core site
 - Est: Approximately twice the current disturbance (pads, roads vs rail)
 - Cattle ranches, privately-owned properties.
 - Outreach with local community underway.
- Remote sites
 - Typically 1-3 acre sites, located near power/fiber.
 - Considerable flexibility in placement (configuration process)
 - Minimal environmental impacts (by design)

ngVLA – Physical Layout

EIS

- Standard areas to be considered
 - Archaeological/Historical
 - Endangered Species
 - Air/Water Quality
 - Visual
 - Social
 - Resource impacts
- Reexamined 1970s EIS report. Initial analyses completed. OK.
- NSF interactions begin this spring.
- Positive expression of support from local community.

Radio Frequency Interference Concerns

UNITED

STATES

FREQUENCY

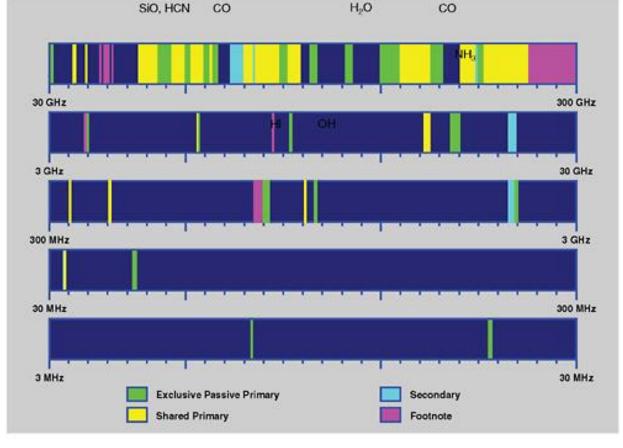
ALLOCATIONS

THE RADIO SPECTRUM

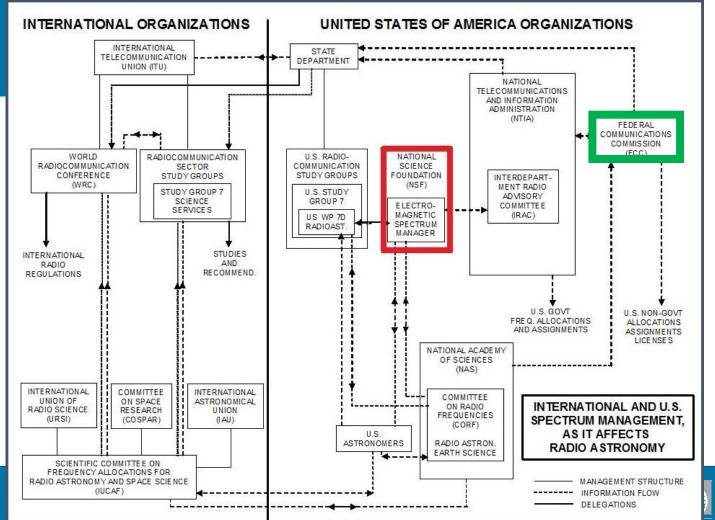
Fraction of the Control of the Contr

TABLE 1.1 Scientifically Relevant Services

Service	Abbreviation	n Description of Service
Earth Exploration Satellite Service	EESS	Remote sensing from orbit, both active and passive, and the data downlinks from these satellites
International Global Navigation Satellite System (GNSS) Service	IGS	Accurate position and timing data
Meteorological Aids Service	MetAids	Radio communications for meteorology, e.g., weather balloons
Meteorological Satellite Service	MetSat	Weather satellites
Radio Astronomy Service	RAS	Passive ground-based observations for the reception of radio waves of cosmic origin
Space Operations Service	SOS	Radio communications concerned exclusively with the operation of spacecraft—in particular, space tracking, space telemetry, and space telecommand
Space Research Service	SRS	Science satellite telemetry and data downlinks, space-based radio astronomy, and other services

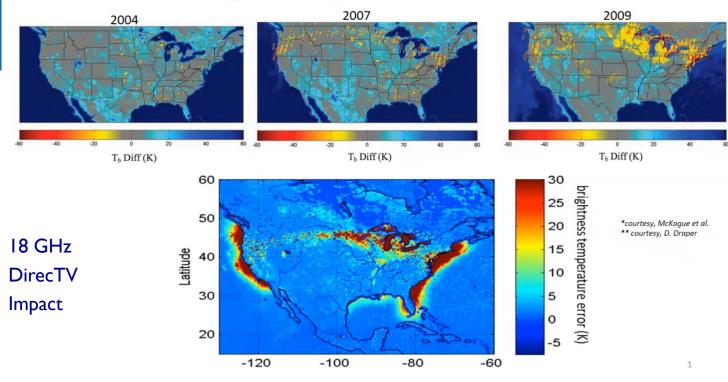


Radio Astronomy Frequency Allocations in the United States

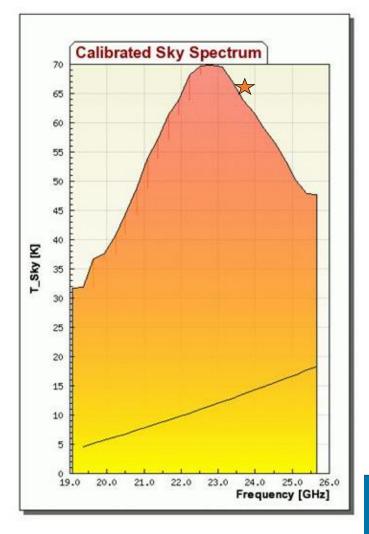


Scientific Use of Spectrum

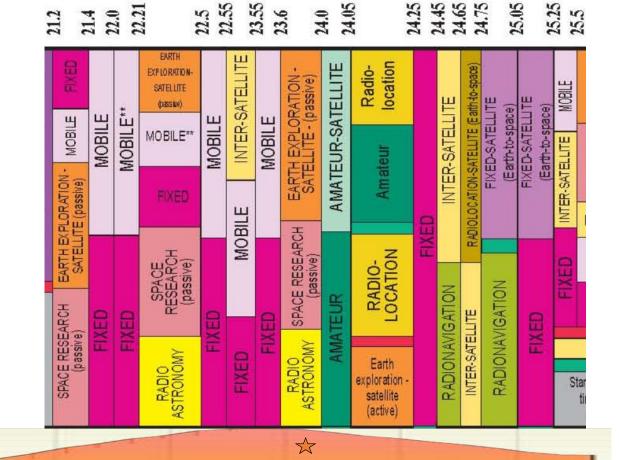
- Management responsibility of the National Science Foundation (Ashley Zauderer/Jonathan Williams NSF/ESM), alongside other bodies, committees – CORF and equivalents internationally.
- Several profound changes approaching:
 - 5G
 - ngso constellations SpaceX, OneWeb, etc.
 - IOT
 - Data Revolution
- Impacts and collisions inevitable strong recommendations by NSF/other committees & stakeholders to examines issues, predictable actions by FCC to implement.
- Radio astronomy next generation of projects under threat.



Passive Remote Sensing and Interference

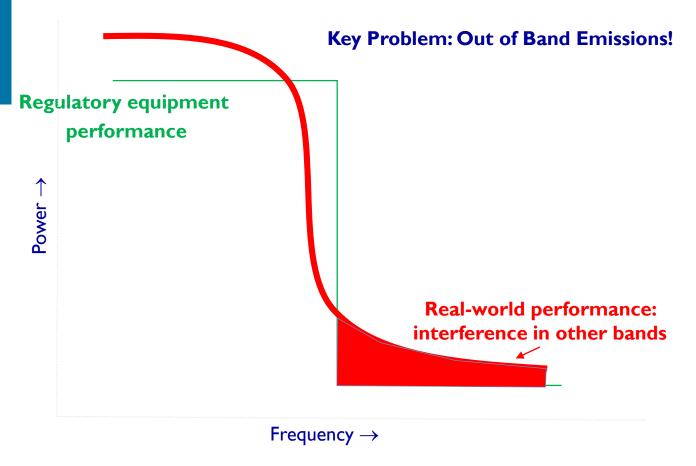


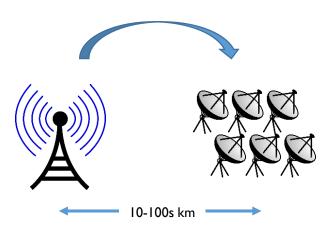
Reflections from DTV satellites can effectively blind microwave radiometers. Source: AMS meeting panel discussion, "The Wizard Behind the Curtain?—The Important, Diverse, and Often Hidden Role of Spectrum Allocation for Current and Future Environmental Satellites and Water, Weather, and Climate"



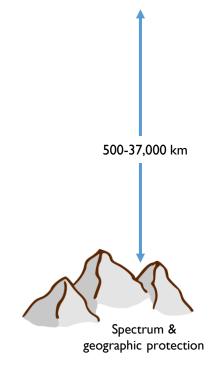
Recent FCC 5G allocation - 24 GHz

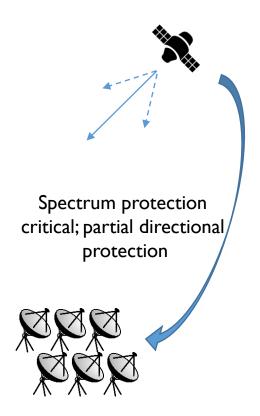
Water Observations at 23.8 GHz
Used by Earth-sensing satellites to
detect water in Earth's
atmosphere: critical for weather
predictions

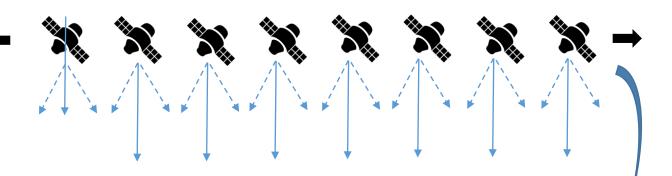


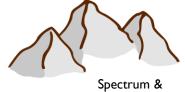


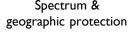
Spectrum protection critical


Spectrum & geographic protection

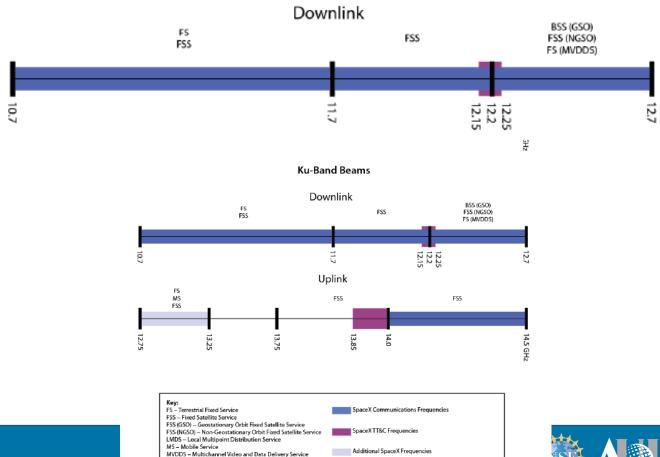








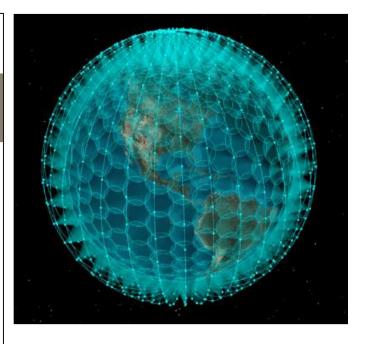
Spectrum protection MORE critical given loss of directional filtering spatial summation in sidelobes is complex & variable



SpaceX Downlink

Ku-Band Beams

7.6	5.6 5.0	G 9	10.0	10.45	10.43	10.55 10.55	10.6	0.01	10.08	10.7) i	12.2	/.71	67:51	13.4	6.5	0. 1	7.41	÷ :	14 7145	14./140	14.8
Radiolocation	Aids Radiolocation	Earth exploration - sale life (actue) Radio- location Space	Radiolocation	Amateur	eur Amateur-satellite			LITE (passive) FIXED	EARTH EXPLORATION SATELLITE (passive)	FIXED-SATELLITE (space-to-Earth)	irth)	FIXED	FIXED	explosible exture) Space research (active)	EARTH EXPLORATION SATELLITE (actue) RADIO- LOCATION SPACE RESEARCH	RADIO- LOCATION Space research FIXED- SATELLITE	FIXED-SATELLITE (Earth-to-space)	FIX ED-SATELLITE (Earth-to-space)	space) (Earth-to-space)	Space research	Space research	MOBILE
MARITIME RADIONAVIGATION	Meteorological	research (active) EARTH EXPLORATION		Radiolocation	cation Amateur	RADIOLOCATION	FIXED	SPACE RESEARCH (passive) EARTH EXPLORATION SAFELLITE (passive)	RADIO ASTRONOM Y SPACE RESEARCH (passive) FARTH	FIXED FIXED-S	FIXED-SATELLITE (space-to-Earth)	BROADCASTING-SATELLITE	HXED-SATELLITE (Earth-to-space) MOBILE	EARTH EXPLORATION - SATELLITE (active) SPACE	Earth exploration - satelifie (active)	(Earth-to-space) Space research		FIXED-SATI	Mobile-satellite (Earth-to-space)	Mobile	Fixed	SPACE RESEARCH
	RADIONAVIGATION	SATELLITE (active) RADIO- LOCATION	RADIOLOCATION		N Radiolocation	RADIC								RESEARCH (active)	Radio- location Space research	Radio - location	Mobile-satellite (Earth-to-space)	pace-to-Earth)	Mobile	M	11	SPACE
		SPACE RESEARCH (active)	RADIC	RADIOLOCATION	RADIOLOCATION									Aeronatuioal Radionavigation	Standard and tin sa (Earth-	d frequency ne signal tellite to-space)	Space Mol	Mobile-satellite (space-to-Earth)	Fixed	FIXED	MOBILE	Fixed



ECC Report 271

Compatibility and sharing studies related to NGSO satellite systems operating in the FSS bands 10.7-12.75 GHz (space-to-Earth) and 14-14.5 GHz (Earth-to-space)

approved 26 January 2018

Solutions

- Sophisticated quantitative discussion of problems, impacts.
- Policy strength: domestic & international planning & accountability ITU, FCC
- Place high priority on the critical needs of scientific spectrum passive users astronomy, weather, Earth observation, etc. Reinforce roles of NSF, CORF, Congress in this situation.
- We must consider new paradigms
 - Dynamic spectrum allocation
 - Spectrum sharing
 - Zone/regional exclusions e.g. NSF/DoD National Radio Dynamic zone proposal
- Needed: investment in new tech at all levels (companies thru Congress).

ngVLA

- Interferometers natural fringe rate assistance, separate environments.
- Hardware & algorithmic approaches to mitigating RFI modest attention over two decades.
- ngVLA receivers (saturation), # bits, correlator blanking, imaging algorithms – active areas of consideration.
- SpaceX NRAO Fellow investigate SpaceX impacts on NRAO/ngVLA, identify promising research areas.
- NGSOs negotiation & Congressional action restrict ngVLA core, other keys sites ↔ remove restrictions in urban areas.
- 5G more directional, less critical in rural regions? 4G max.

- NRAO-led inter-Observatory telecon last summer US, SKA
- NRAO Advanced Spectrum Research Division /CDL
- NSF proposing Dynamic Radio Quiet Zone NM

- This is a special moment in history... need to find a mutual win.
- Significant opportunities and threats visible.

