

The Simons Observatory

United States

- Arizona State University
- Carnegie Mellon University
- Center for Computational Astrophysics
- Cornell University
- Florida State
- Haverford College
- Lawrence Berkeley National Laboratory
- NASA/GSFC
- NIST
- Princeton University
- Rutgers University
- Stanford University/SLAC
- Stony Brook
- University of California Berkeley
- University of California San Diego
- University of Michigan
- University of Pennsylvania
- University of Pittsburgh
- University of Southern California
- West Chester University
- Yale University

Japan

- KEK
- IPMU
- Tohoku
- Tokyo
- Kyoto

- 10 Countries
- 40+ Institutions
- 306 Researchers

Canada

- CITA/Toronto
- Dunlap Institute/Toronto
- McGill University
- Perimeter Institute
- University of British Columbia

Chile

- Pontificia Universidad Catolica
- University of Chile

Europe

- APC France
- Cambridge University
- Cardiff University
- Imperial College
- Manchester University
- Oxford University
- SISSA Italy
- University of Sussex

South Africa

Kwazulu-Natal, SA

Australia

Melbourne

Middle East

Tel Aviv

Simons Observatory Mission

Measure CMB anisotropies in temperature and polarization across a wide range of frequencies and angular scales in pursuit of new information about the universe and its evolution, in two operational phases: SO-Nominal and SO-Enhanced.

SO-Nominal construction is fully funded privately and has already begun.

SO Addresses Key Astrophysics Questions

Origin of the universe

- Gravitational waves, shape of primordial spectrum, non-Gaussianity
- Cosmological model

Dark matter

- CMB lensing probes large-scale distribution of mass in the universe
- CMB fluctuations sensitive to many possible dark matter properties

Feedback and IGM

- KSZ and TSZ measures distribution of electron momentum and pressure. In combination with LSS surveys can be a novel probe of the inter cluster medium and feedback
- Variable radio sky
- Search for Planet 9
- Galactic Science
 - Legacy arcmin-resolution millimeter-wave sky maps
 - Map of large-scale distribution of magnetic fields in the Galaxy through measurements of synchrotron and polarized dust

SO Members are Committed to Outreach and Engagement

Education

- Undergraduate Summer Research (~30 students/summer)
- Mentorship Program (~50 mentees, half from URM)
- •Work with schools
 - ■Cosmology webinar for teachers (~100 teachers so far)
 - ■Skype a Scientist (>50 classrooms)

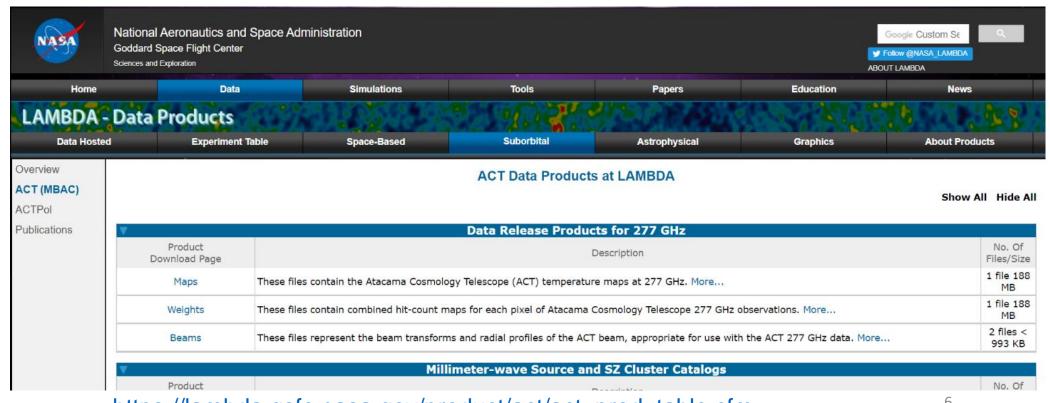
Outreach

- O Average 75 events per year reaching 10s of thousands
- Organized three Science/Astro on Tap Series
- Recent event connecting 8th graders to Jessica Meir aboard Shutt

Engagement

Multiple "hack-a-thons" to transfer skills

Art and Science Book

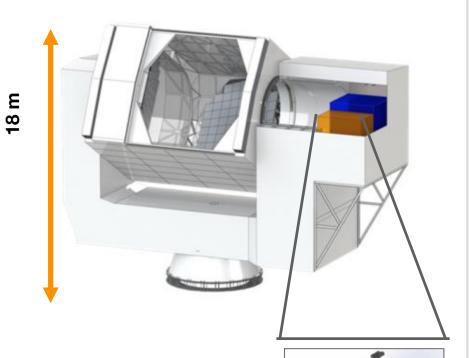


STEM Camp in Trenton, NJ

Community Engagement Builds on a Proven Track Record

- Timely release of the data products
 - Calibrated maps
 - Cluster and source lists
- Source code for data pipeline
- Community schools for data usage; online software tutorials

Like ACT, SO data products will be publicly available

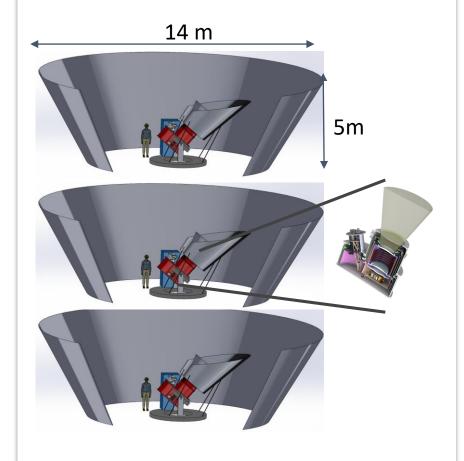


SO-Nominal and SO-Enhanced Configurations

SO-Nominal Instrumentation Suite

Large Aperture Telescope

6 m crossed Dragone coupled to 13 optics tubes,

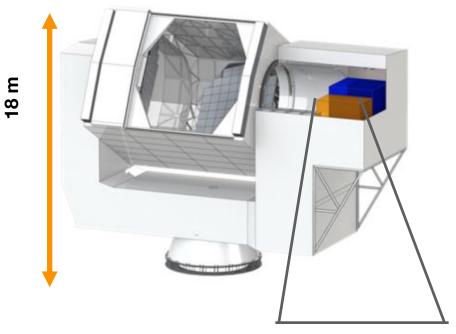

SO-Nominal uses 7 tubes, with dichroic pixels:

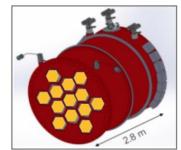
One tube: 30/40 GHz

• Four tubes: 90/150 GHz

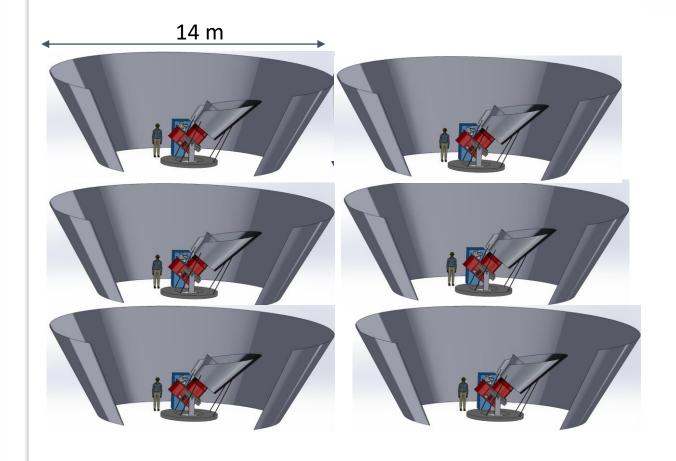
Two tubes: 220/270 GHz

in diameter, rotating half-wave plate. Dichroic pixels:

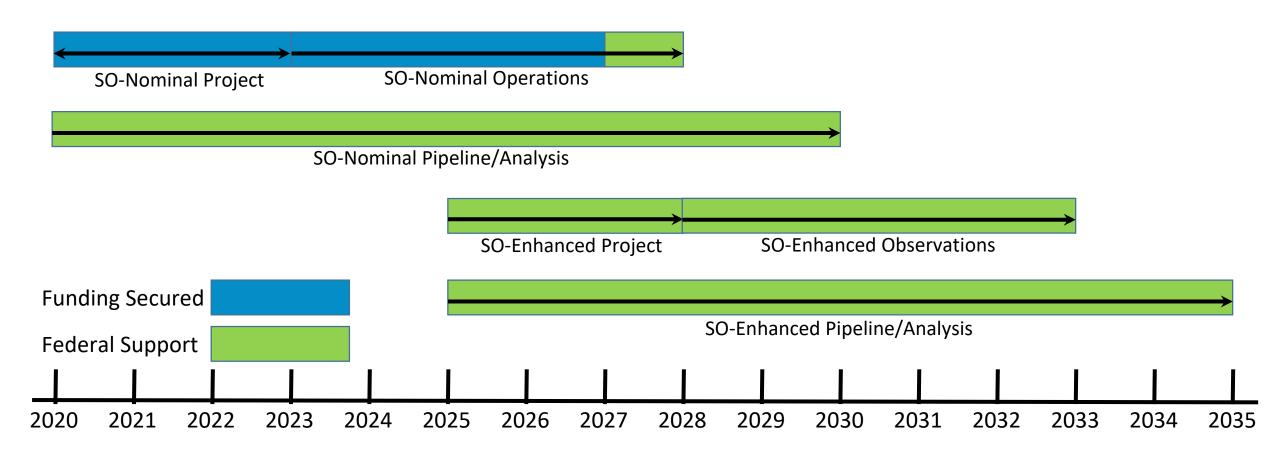

SO-Nominal deploys three refractors 42 cm 30/40 | 90/150 | 220/270 GHz


SO uses two types of optical systems to provide a large dynamic range of angular scales.

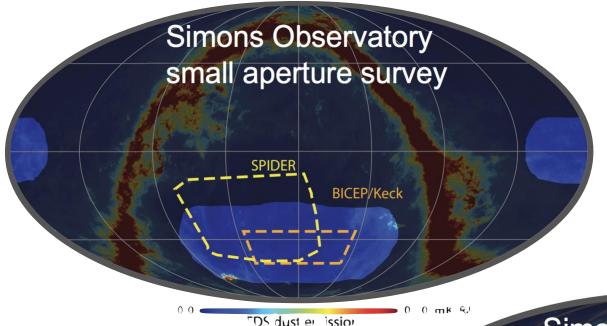
SO-Enhanced Doubles the Mapping Speed


Large Aperture Telescope

SO-Enhanced fills all 13 tubes on the LAT.

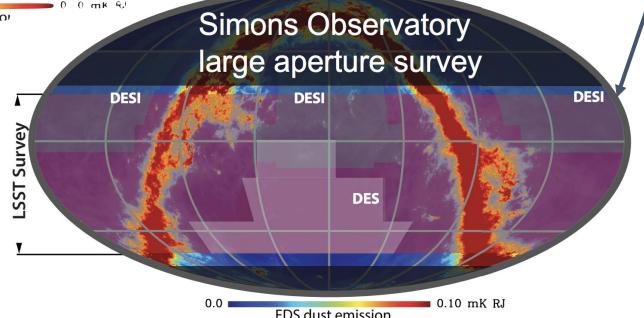


Small Aperture Telescopes


SO-Enhanced adds 3 SATs to SO-Nominal

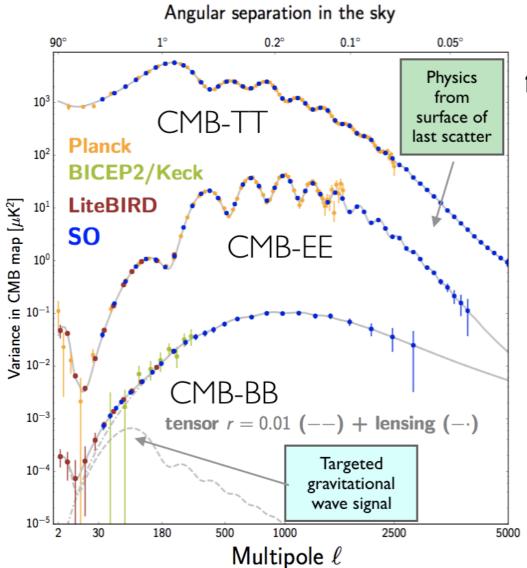
SO-Nominal and SO-Enhanced Schedule

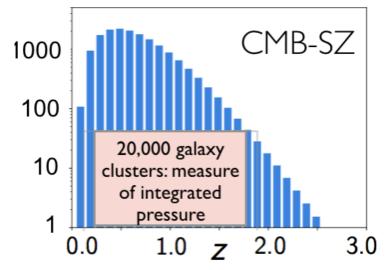
Two Surveys to Maximize the Science Return

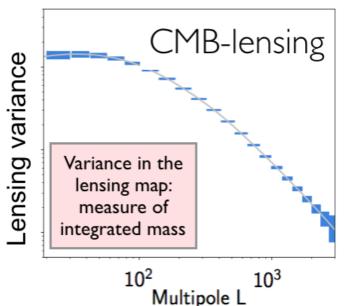


Effective $f_{sky} \sim 10\%$ Optimised for Primordial B-modes

All SO science goals, except tensors, drive us to wide area, with maximum optical overlap


11


- Baseline f_{sky} ~0.4, Potentially as large as 0.7
- Overlap with Rubin-LSST, DESI, Euclid
- Observing cadence being refined for both cosmology and transient/Planet 9 searches



SO Observables Enable a Wide Range of Science

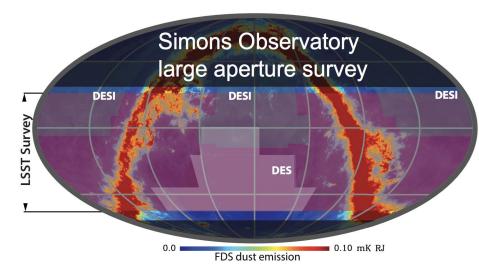
ALSO:

- kSZ
- Y-maps
- Millimeter sources and transients
- Planet 9
- Legacy arcminresolution mm-wave sky maps

Sensitive Maps in Six Frequency Bands

SO-N	Iominal		SATs $(f_{\rm sky} = 0.1)$			LAT $(f_{\rm sky} = 0.4)$	
$\overline{\mathrm{Fr}}\epsilon$	eq. [GHz]	FWHM (')	Noise (baseline)	Noise (goal)	FWHM (')	_ ,	Noise (goal)
			$[\mu ext{K-arcmin}]$	$[\mu ext{K-arcmin}]$		$[\mu ext{K-arcmin}]$	$[\mu ext{K-arcmin}]$
IF	27	91	35	25	7.4	71	52
"	39	63	21	17	5.1	36	27
NAE	93	30	2.6	1.9	2.2	$\begin{vmatrix} 8.0 \\ 10 \end{vmatrix}$ 6 μ K-amin	5.8
MF	145	17	$\left. rac{2.6}{3.3} ight $ 2 μ K-amin	2.1	1.4	10 δ μκ-анни	6.3
l	225	11	6.3	4.2	1.0	22	15
#F	280	9	16	10	0.9	54	37

White noise levels for 5-yr survey; also include atmospheric noise model and combine with Planck


More details in the SO Forecast Paper: Journal of Cosmology and Astroparticle Physics, Issue 02 (2019) (cited 160+ times)

SO Science Targets

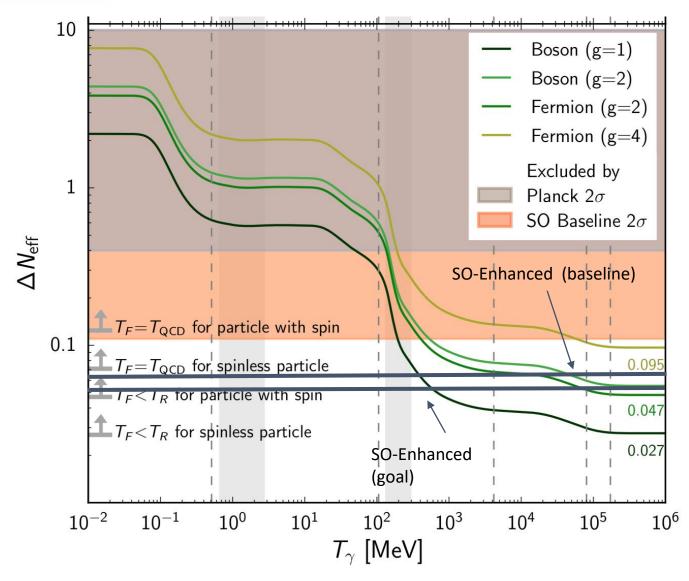
SO-Nominal Key Science Goals

	Current ^b	SO-Nominal (2022-27)		Method ^d	
		Baseline	Goal		
Primordial					
perturbations (§2.1)					
$r \left(A_L = 0.5 \right)$	0.03	0.003	0.002 ^e	BB + external delensing	
n_s	0.004	0.002	0.002	TT/TE/EE	
$e^{-2\tau} \mathcal{P}(k = 0.2/\text{Mpc})$	3%	0.5%	0.4%	TT/TE/EE	
$f_{ m NL}^{ m local}$	5	3	1	$\kappa\kappa \times \text{LSST-LSS}$	
		2	1	kSZ + LSST-LSS	
Relativistic species (§2.2)					
$N_{ m eff}$	0.2	0.07	0.05	TT/TE/EE + $\kappa\kappa$	
Neutrino mass (§2.3)					
$\Sigma m_{\nu} \text{ (eV, } \sigma(\tau) = 0.01)$	0.1	0.04	0.03	$\kappa\kappa$ + DESI-BAO	
		0.04	0.03	$tSZ-N \times LSST-WL$	
Σm_{ν} (eV, $\sigma(\tau) = 0.002$)		0.03^{f}	0.02	$\kappa\kappa$ + DESI-BAO + LB	
		0.03	0.02	$tSZ-N \times LSST-WL + LB$	
Beyond standard					
model (§2.4)					
$\sigma_8(z=1-2)$	7%	2%	1%	$\kappa\kappa$ + LSST-LSS	
		2%	1%	$tSZ-N \times LSST-WL$	
H_0 (Λ CDM)	0.5	0.4	0.3	TT/TE/EE + $\kappa\kappa$	
Galaxy evolution (§2.5)					
$\eta_{ m feedback}$	50-100%	3%	2%	kSZ + tSZ + DESI	
$p_{ m nt}$	50-100%	8%	5%	kSZ + tSZ + DESI	
Reionization (§2.6)					
Δz	1.4	0.4	0.3	TT (kSZ)	

The mid-latitude location enables overlap with optical surveys greatly expanding the scientific return.

Plus:

- Transients
- AGN, mm sources
- Planet 9
- Galactic Science


SO-Enhanced Science Highlights

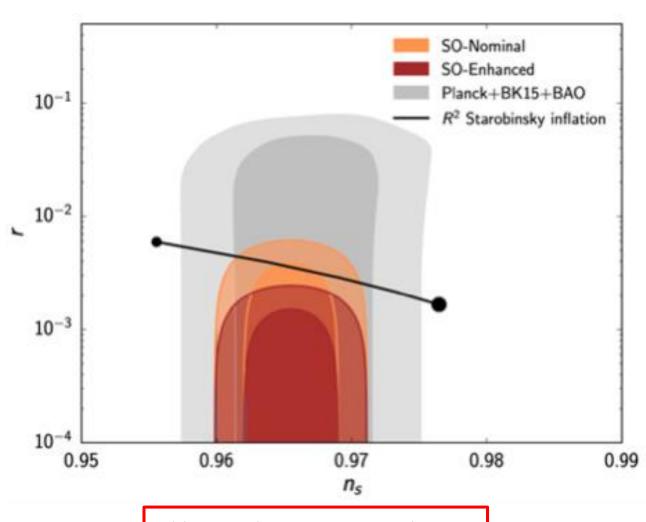
	SO-Nominal	SO-Enhanced
	(Goal)	(Goal)
Lensing and SZ (LAT)		
Minimal neutrino mass detection (Σm_{ν} =0.06 eV) ^a	3σ	4σ
Lensing detection (polarization-only)	$160\sigma (110\sigma)$	$220\sigma (180\sigma)$
Number of SZ clusters	20000	33000
Kinematic SZ detection (DESI cross-correlation)	190σ	240σ
Measurement of Optical Depth from kSZ, $\sigma(\tau)$ b	0.007	0.003
Primordial polarization (SATs)		
Tensor-to-scalar ratio	$\sigma(r) = 0.002$	$\sigma(r) = 0.001^{c}$

SO-Enhanced doubles the number of detectors and adds another five years of observations

SO LAT Science: Light Relics and Early Universe Science

SO measures the relativistic density; it will see 2σ signal of any new particle with spin that decoupled after the start of the QCD phase transition

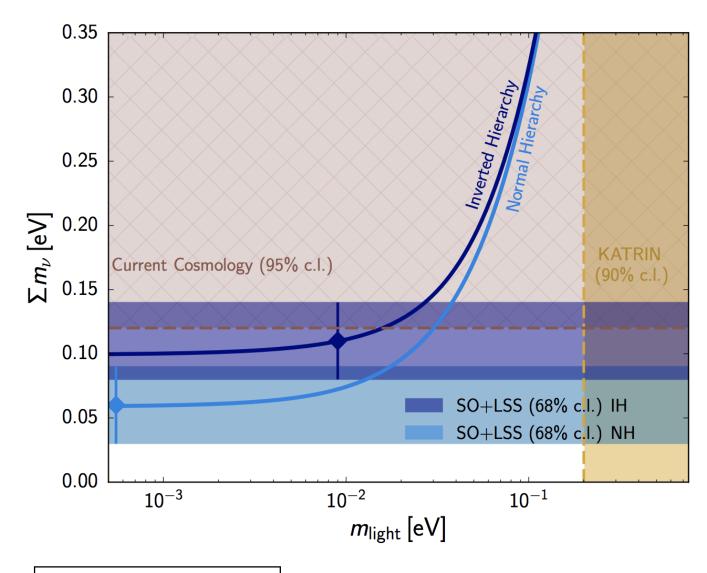
$$\sigma(N_{eff}) = 0.05 (SO-Nominal)$$


Forecasts are strongly robust to foregrounds (driven by TE + EE)

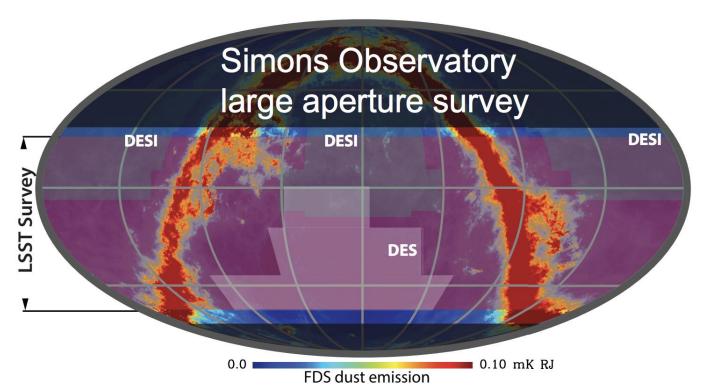
Other damping tail science:

- BBN (Y_p)
- H_0 improvement (2x)
- Dark matter interactions
- Ultra-light axions
- and more

Degree-Scale Primordial B-modes from Chile


- The site in Chile provides larger sky coverage.
 - Can be delensed with 50% of the power removed by existing, external sources (e.g. CIB).
 - Internal delensing is not required, but the wide-field LAT data provide a useful crosscheck.
 - Lower sample variance error if a signal is detected.
 - If a signal is detected, there are multiple low-foreground patches for comparison and confirmation.

 $\sigma(r)$ =0.002 (SO-Nominal, goal) $\sigma(r)$ =0.001 (SO-Enhanced, goal)

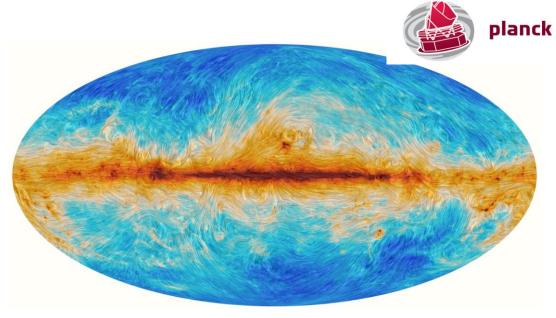

SO LAT Science: Neutrino Masses

Constraints derived from CMB lensing power spectrum (+DESI BAO), tSZ cluster counts (+Rubin-LSST WL), and tSZ power spectrum (+DESI BAO)

Synergy with Rubin Observatory, DESI, Euclid

Joint science projects from

CMB: SO lensing, tSZ, kSZ


Optical: galaxy shear, clustering and

clusters

- Neutrino mass
- Structure growth: sigma8 at z>1
- Non-Gaussianity: fnl
- Cluster mass calibration
- Shear bias calibration
- Constraints on baryonic feedback

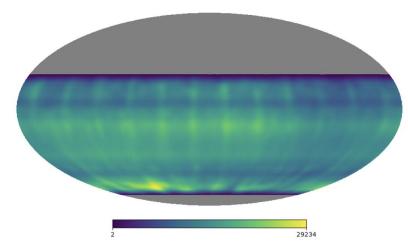
Galactic science

- Arcminute-resolution half-sky maps from 30-280 GHz
- SO working group led by Brandon Hensley & Susan Clark
- Topics include:
 - Mapping magnetic fields
 - Polarized dust SED
 - Polarized synchrotron SED
 - ISM turbulence
 - Dust/synchrotron connection
 - AME spectrum and polarization
 - Molecular line emission
 - Star formation and magnetic fields

SO: higher resolution, lower noise, half-sky

Panel Question #1: Transient Science

To enable the transient science that SO envisions, what data products (alerts, difference maps, etc.) will be provided to the community, with what astrometric accuracy, and on what timescales relative to observations?


(1) 'Discovery' transients: orphan afterglows of GRBs, and/or jetted TDEs. Of interest on timescales of days - alerts would enable optical follow up.

Will make daily maps using matched filter method, and difference to identify candidates.

Anticipate releasing alerts (on daily basis) with position and flux at our 6 frequencies. Astrometric accuracy is expected to be ~1 arcsec. Difference maps could also be made available.

(1) Variable AGN: expect to track thousands daily/weekly/monthly.

Matched-filtered maps will be made at these cadences, and per-frequency light-curves released. A model being considered is to release light-curves as they are made, with dedicated alerts for highly flaring objects.

[Previous | Next | ADS]

ACT-T J061647-402140: a Strongly Variable, Flaring Source at 90, 150 and 220 GHz Positionally Coincident with the Transient Gamma-Ray Blazar, Fermi 0617-4026

ATel #12738; Sigurd Naess (Center for Computational Astrophysics, Flatiron Institute) on beha of the ACT Collaboration on 8 May 2019; 23:32 UT

Credential Certification: John P. Hughes (jph@physics.rutgers.edu)

Subjects: Millimeter, Gamma Ray, AGN, Blazar, Transient, Variables

0 0 1: 1 470 1 // 1000

Panel Question #8: Transient Science

Are the hardware and software capabilities necessary for generating transient science data products included at full scope within the project budget?

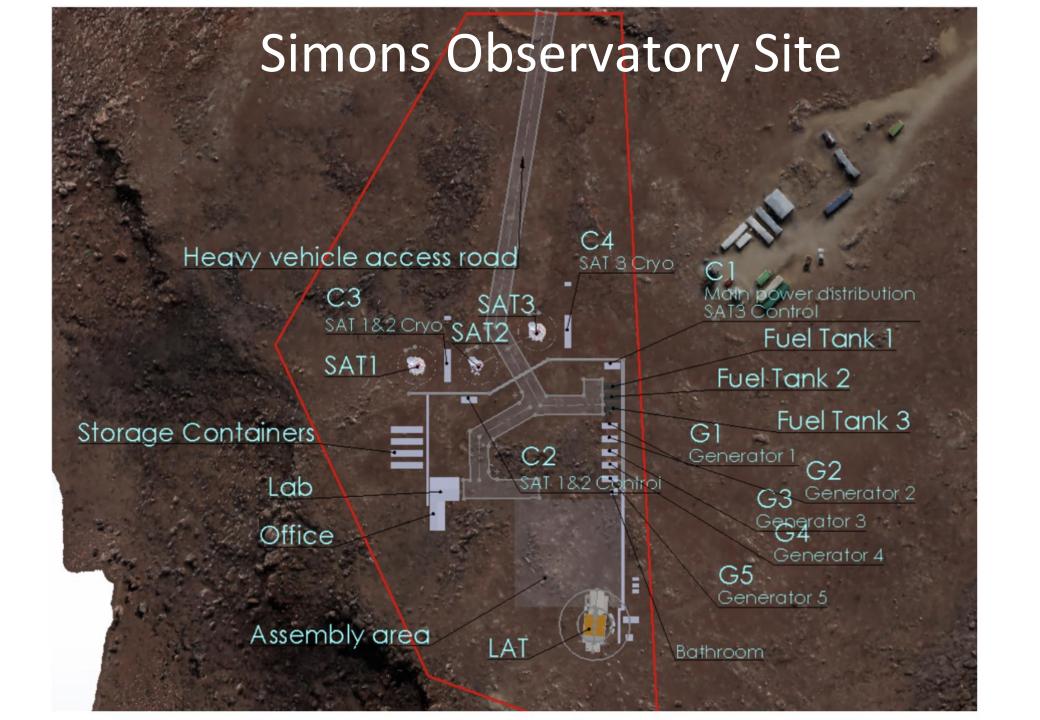
Yes. Our budget covers:

- the making of maps and associated computing costs
- personnel to handle web delivery of science products

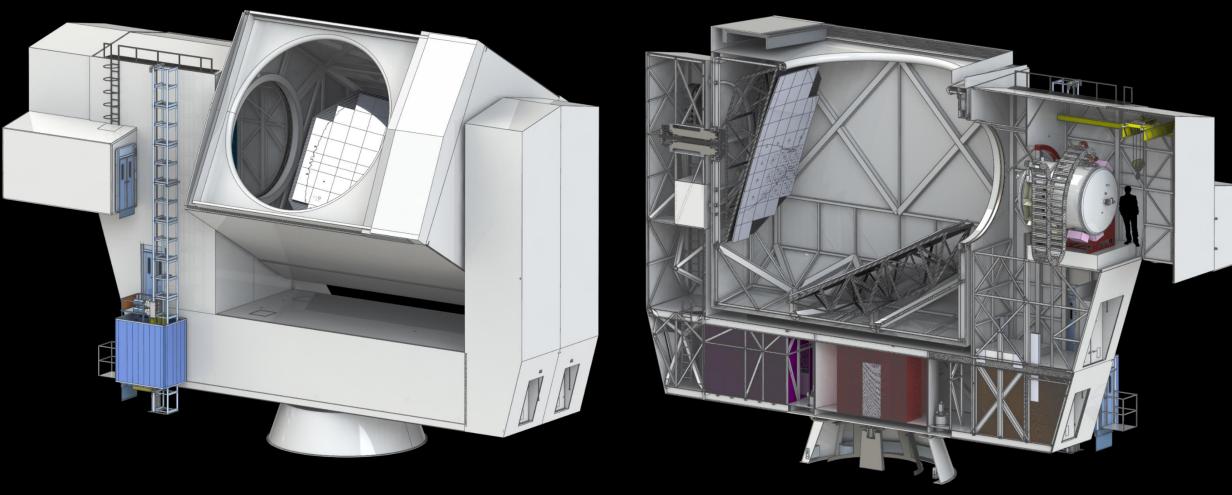
We also anticipate covering minor costs associated with:

- travel associated with engaging with the broader transient community
- development of Zoom-based online tutorials on using the relevant SO data

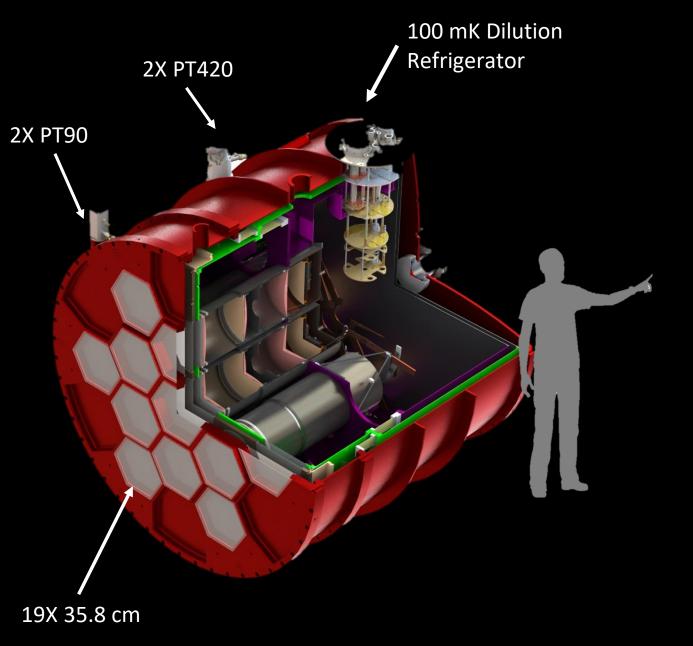
SO-Nominal Construction


Simons Observatory Project Work Breakdown **Structure Simons Observatory** WBS 1 Bazarko – Project Manager Large Aperture Telescope **Small Aperture Telescopes** Detectors/Readout Data Management Integration & Test LAT LAT Receiver SAT Platform SAT Site **WBS 1.1** WBS 1.2 **WBS 1.3 WBS 1.4 WBS 1.5** WBS 1.6 **WBS 1.7 WBS 1.8** McMahon Limon Devlin Keating Lee Staggs Aiola Arnold 1.3.1 SATP Design & Procure 1.1.1 Co-rotator 1.5.1 Detectors 1.7.1 External Drivers 1.7.2 Low-Elevation Facility 1.1.2 Hardware interfaces 1.3.2 SATP Test 1.5.2 Readout 1.1.3 Software interfaces 1.3.3 SATP interfaces & 1.5.3 Universal Focal Plane 1.7.3 Power Generation/Trans 1.1.4 Testing Integration Module 1.7.4 Communication to/from 1.1.5 Optical design 1.5.4 Det/Readout Testing Site optimization 1.7.5 Telescope Foundations 1.1.6 Management 1.7.6 Non-Foundation HEF infrastructure 1.4.1 SAT Cryostat 1.6.1 Subsystem Management 1.8.1 Requirements 1.7.7 Access Site w People & 1.4.2 SAT Optics Tubes 1.6.2 Data Acquisition Tracking 1.2.1 LATR Cryostat Equip 1.4.3 SAT integration & Test 1.6.3 Site Computing 1.8.2 Test Cryostat 1.2.2 LATR Optics Tubes 1.7.8 Telescope Install & Verf. 1.4.4 SAT Housekeeping 1.8.3 Calibration 1.6.4 Data Movement 1.2.3 LATR integration & Test 1.7.9 Ops & Maintenance 1.6.5 Software Infrastructure electronics 1.2.4 LATR Housekeeping 1.7.10 Legal Issues 1.6.6 Data Synthesis Simulations electronics 1.7.11 Management 1.6.7 Data Reduction TOD2Maps

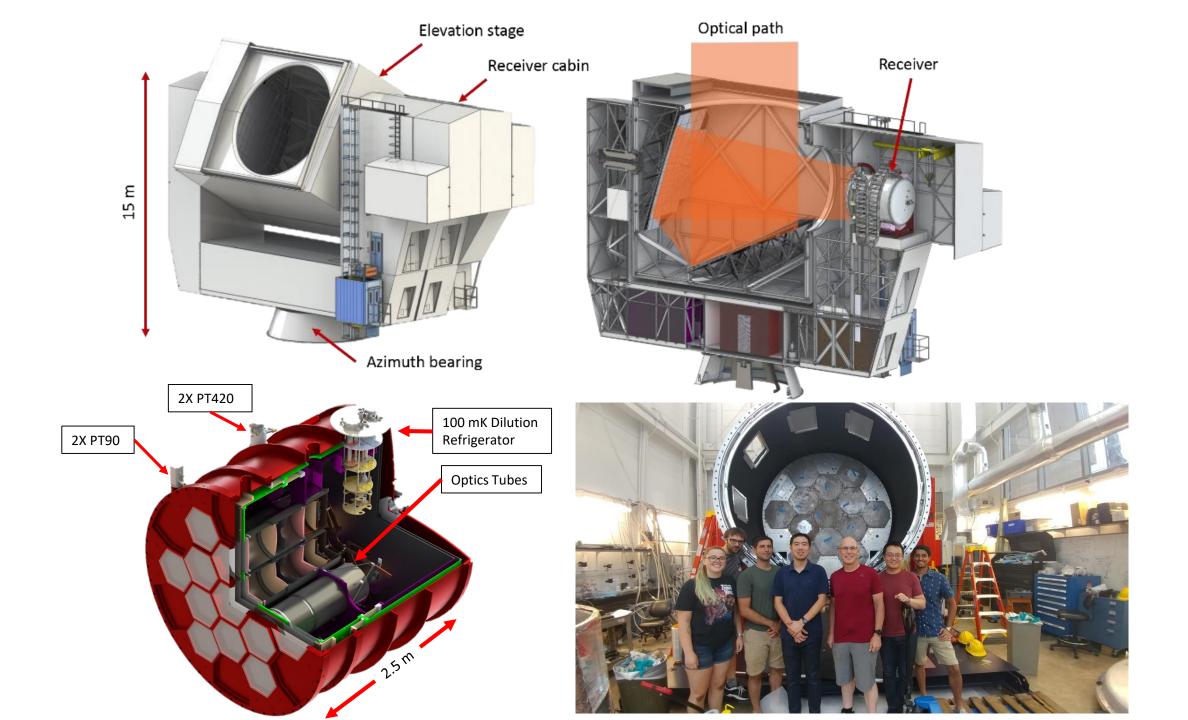
1.7.12 Safety


1.7.13 Chilean Outreach1.7.14 Personnel deployment

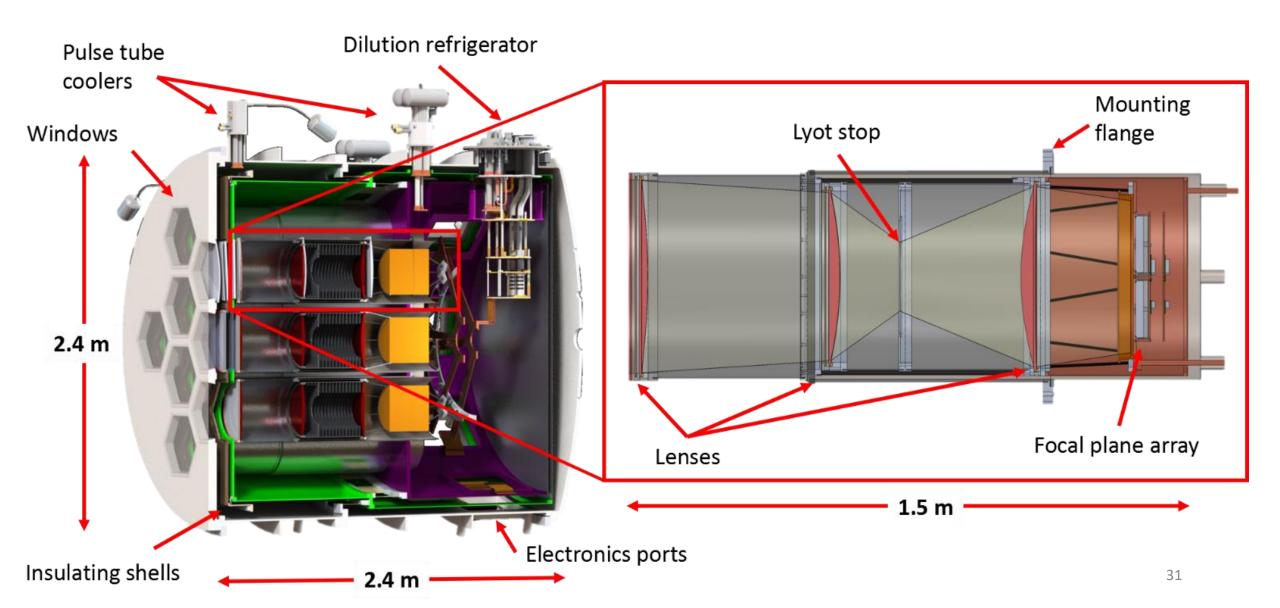
The SO Site



Simons Observatory Large Aperture Telescope

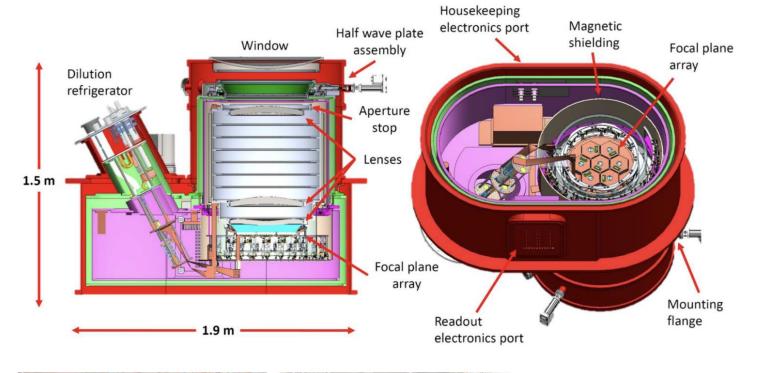

- 6 meter off-axis Cross Dragone design
- 9 degree field of view 9 times the throughput of ACT
- 1.7 arcmin resolution at 150 GHz

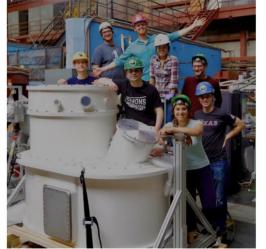
Simons Observatory Large Aperture Telescope Receiver

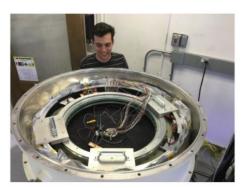


- **2 PT90s** 180 Watts @80 K
- 3 PT420 coolers
 - 165 Watts @40 K
 - 6 Watts @4 K
- Dilution Refrigerator
 - 17 mW @1K
 - 500 uW @100 mK
- 1200 kg cooled to 4K
- 200 kg cooled to 100 mK
- Up to 13 optics tubes
 - ~6-9 planned for SO
- 80,000+ detector capacity
 - 40,000 planed for SO
- Optics tubes can be replaced while installed.

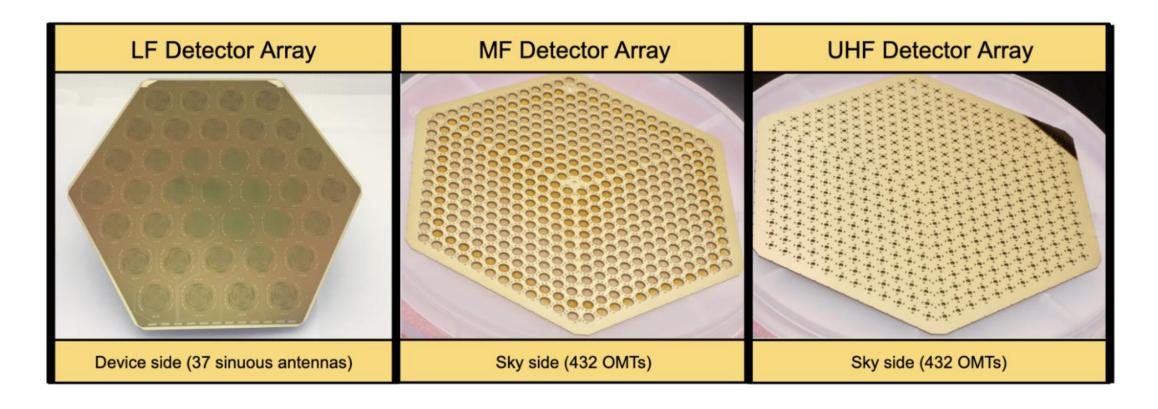
29




Large Aperture Telescope Receiver


Small Aperture Telescopes

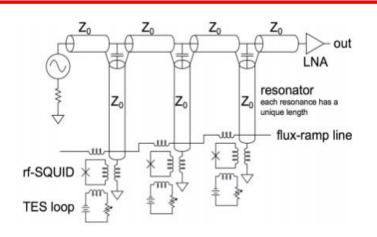
- 42 cm aperture size, 35 degree FoV
- 3 SATs, each with 7 150mm detector arrays
- Continuously rotating HWP



SAT Platforms and Ground Screens

Ground screens 4.9 m high, 16 meters in diameter

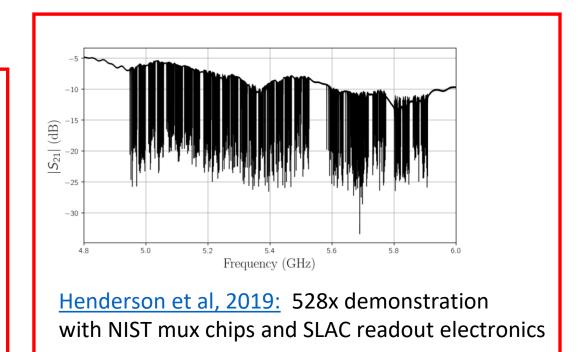
SO Detectors



SO detector arrays use 100 mK TESes in dichroic arrays with two optical coupling methods. Prototype arrays of all three bands are shown here.

SO Readout

One of six enabling technologies* for SO is the 910x µmux readout for close-packed 100 mK TES arrays.


Targeting mux factor ~ 10x larger than other TES readout methods.

μMux:

- Send in a comb of narrow frequency bands (MHz tones)
- Dissipationless rf SQUID couples δI from a TES detector into δf of a resonant circuit.

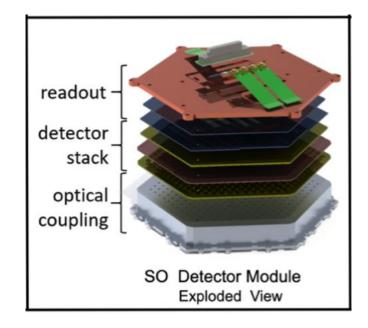
Mates et al, 2008

SO needs compared to this 528x demo:

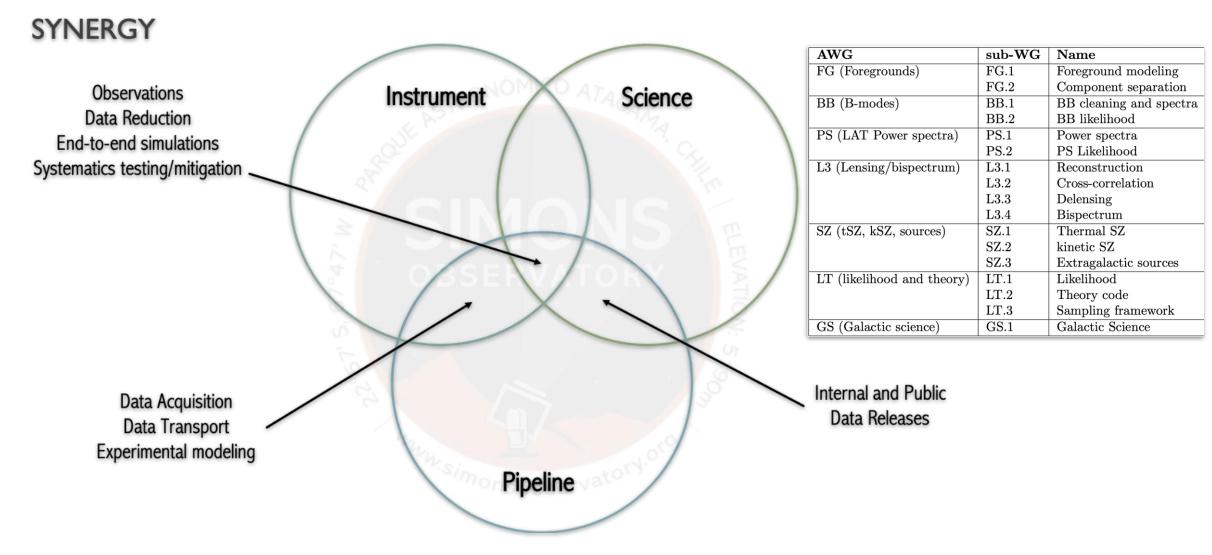
- New packaging format
- Larger mux factor (910x)

^{*}Also: LAT, LATR, large filters, large AR coatings, HWPs

SO Readout Challenges

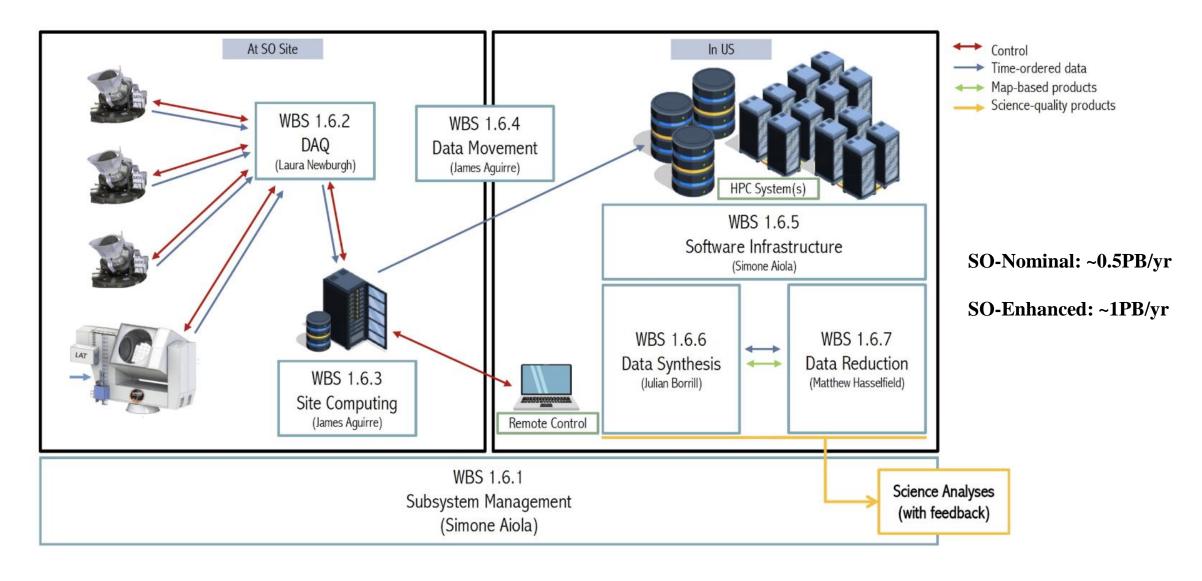

While there have been challenges with the readout development, it is on track to be successfully deployed in 2021 well before SO-Enhanced. Performance depends on:

- 1) Fabrication of resonator multiplexing chips
- Incorporation of resonator chips into packaging that couples behind the detector wafer
- 3) Room temperature electronics
- Early SO readout packaging lowered the intrinsic Q's of the resonators, impacting the readout noise performance.
- We baselined 910x (using 4-6 GHz) and improved the packaging design.
- The Qs achieved in current SO packaging no longer limit the readout noise performance.


We are currently optimizing the performance of all three factors in concert to maximize yield and minimize noise.

Development, deployment, and first observations with SO detectors and readout are fully funded and not part of any federal funding request.

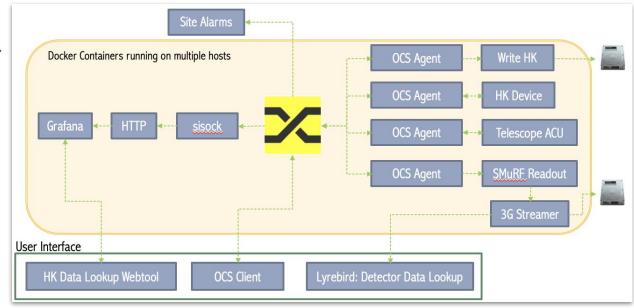
For SO, all the readout components fit behind a ~150 mm detector wafer, and all 1728 detectors are read out on 2 coaxial pairs, with 910x multiplexing.

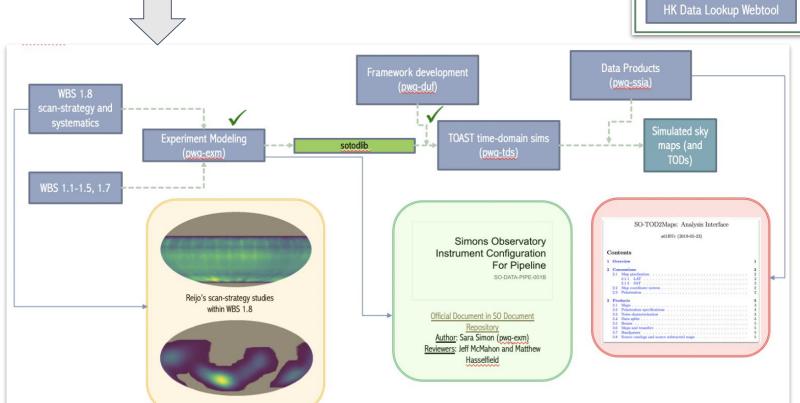


SO Pipeline and Data Management

Pipeline effort historically understaffed and not formally coordinated → analysis bottleneck

SO established Data Management team to coordinate resources, workflow, and fundings → aim to fast turnaround and timely data releases




Core team: coordination and main development effort, funded at all times for project and operations

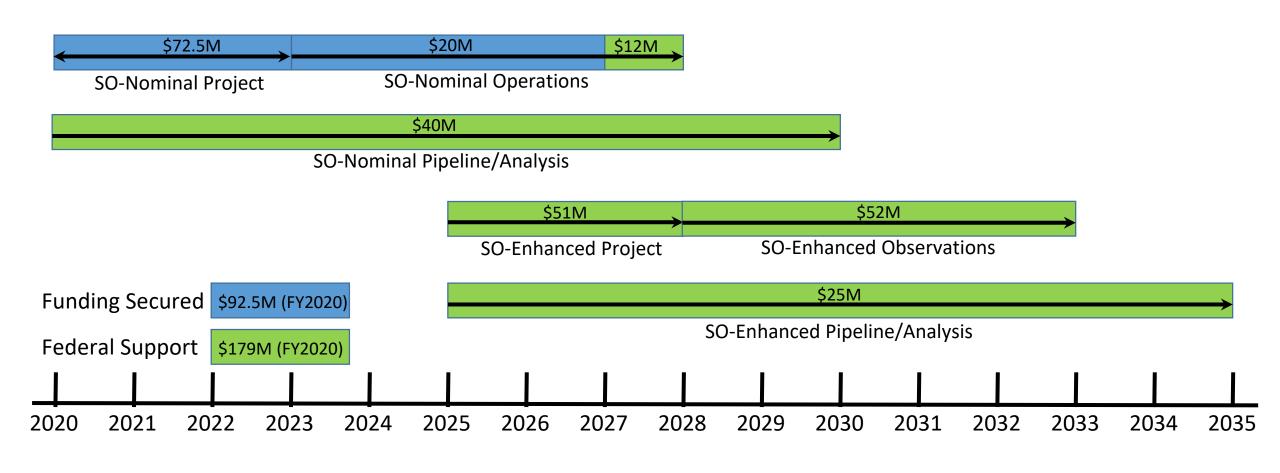
Builder team: collaborators (funded outside DM) involved in specific time-limited tasks

Observatory Control System: developed and deployed to testing labs. Public and easily scalable for future experiment GitHub: https://github.com/simonsobs/ocs

<u>Data reduction and sims:</u> coordinated effort to simulate and reduce data. Plan to test pipelines on existing data before first light. Generic CMB-analysis pipeline already public

PWG	Name	L3
ssia	Science and Systematics Interfaces Awareness	1.6.1
duf	Databases, Utilities, Framework	1.6.5
exm	Experiment Modeling	1.6.6, 1.6.7
mbs	Map-Based Simulations	1.6.6
tds	Time-Domain Simulations	1.6.6
fct	Flagging, Conditioning, other TOD operations	1.6.7
qds	Quality Assurance, Quality Cuts, Data Selection	1.6.7
pmn	Projection, Mapping, (map-space) Noise	1.6.7
bcp	Beams, Cal, Polcal, Pointing Model	1.6.7
hwp	HWP (Half Wave Plate)	1.6.7

SO is Community Oriented


- Data Releases
 - ACT data in SO format (before SO data release)
 - Realistic SO-LAT and SO-SAT map-based simulations (to be released in 2020)
 - Regular releases of products on NASA LAMBDA and other platforms
 - Data Products
 - Multi-frequency maps
 - Lensing potential maps
 - tSZ (gas pressure) maps
 - CMB+kSZ+ISW (blackbody) maps
 - Catalog of tSZ clusters
 - Point source catalogs
 - Likelihoods and spectra (and software) for cross-correlations
 - Primary CMB likelihoods for data combinations
 - Transient alerts

SO is Community Oriented

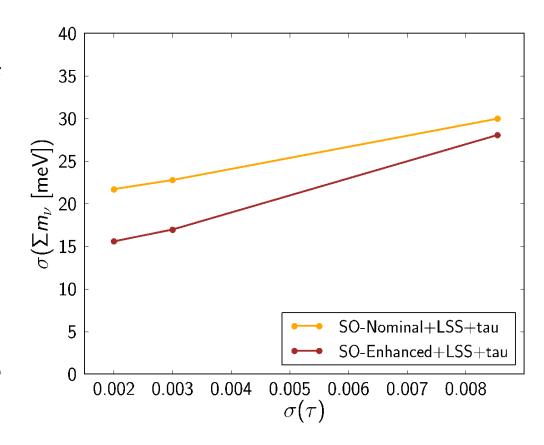
- Software Releases (currently public on SO GitHub)
 - DAQ software: https://github.com/simonsobs/ocs
 - Data representation and core library: https://github.com/simonsobs/so3g
 - Time-ordered data analysis software: https://github.com/simonsobs/sotodlib
 - Map-domain analysis software (pixell): https://github.com/simonsobs/pixell
 - Tutorials: https://github.com/simonsobs/pixell_tutorials
 - Map-based sims software: https://github.com/simonsobs/mapsims
 - SO Noise levels: https://github.com/simonsobs/so_noise_models
 - Power spectrum pipeline: https://github.com/simonsobs/PSpipe
 - B-mode analysis pipeline: https://github.com/simonsobs/BBPipe

Timeline & Conclusions

SO-Nominal and SO-Enhanced Timelines

Conclusions

- SO is committed to timely delivery of public data products for a broad community base
- SO-Enhanced is a shovel-ready experiment that can take an important step in CMB research
 - We are well into the construction phase for SO-Nominal, and only need to copy parts to build SO-Enhanced.
- SO-Enhanced is a cost effective, highly leveraged concept
 - Private-public partnership is an effective way to use federal funding


Responses to Remaining Questions

Panel Question #2

How strongly will SO parameter limits depend on the success and timeline of the LiteBIRD mission?

The only parameter that depends on the results of the LiteBIRD mission is the sum of neutrino masses which depends on τ , the optical depth to reionization. CLASS may also be able to make a good measurement of τ , and SO-Enhanced will probe a new measure through the 4-pt kSZ.

If both LiteBIRD and SO detect r at different angular scales, this will set limits on the slope of tensor fluctuations and, thus, early universe models. This goes beyond our core science goals.

Panel Question #5

How does SO view itself in relation to CMB-S4, LiteBIRD, PICO, and any other concepts for CMB projects on the ground and missions in space? Does the SO team see these projects/missions as essential for SO, helpful for SO, and/or competitive with SO in their scientific and/or technical aspects?

The SO program is a logical step toward next generation CMB science goals

- Long term, it is scientifically imperative to measure the CMB as well as we can.
- SO represents a logical step toward those goals
 - An iterative approach has been very successful over the past 30 years of CMB research
- SO has developed technology and pipelines which are directly applicable to future CMB experiments including CMB-S4, LiteBIRD, and PICO
- SO does not require any of these experiments to achieve our main science goals
 - SO would benefit, however, from the results of these experiments.

Panel Question #7

How would the governance structure of SO be modified to reflect any new (e.g., federal) funding sources?

- The SO-Nominal governance will remain in place through the completion of the construction and first light (2023).
- The Simons Foundation has a strong track record of working with the NSF on large programs.
- The SO is committed to remaining flexible on the future of its governance depending on the form of the federal support.
 - O Multiple MSIP's and other PI grants would need to be given standing within the existing governance structure.
 - A single large program (MREFC) would require a significant restructuring of the governance.
 - O Joint Private/Federal support would require a hybrid model which will likely include a joint oversight group with the Simons Foundation and the Agencies.

Backup: Basis of Estimate

Table 15: SO-Nominal Operations and Pipeline and Analysis budgets.

WBS 1 SO-Nominal Operations	RY2020	RY2021	RY2022	RY2023	RY2024	RY2025	RY2026	RY2027	RY2028	RY2029	, , , , , , , , , , , , , , , , , , , ,	Total (FY2020)
Cost												
(1.1-1.5, 1.8) University ops				2,482,583	2,557,061	2,633,772	2,712,786	3,652,939			14,039,141	12,057,835
1.7 Site operations				2,503,169	2,578,264	2,655,612	2,735,280	3,733,381			14,205,705	12,198,596
Reserves				1,495,726	1,540,597	1,586,815	1,634,420	2,215,896			8,473,454	7,276,929
Total Cost				6,481,477	6,675,922	6,876,199	7,082,485	9,602,217				
									Total Activity	Cost	\$36,718,301	\$31,533,361

WBS 1 SO-Nominal Pipeline	RY2020	RY2021	RY2022	RY2023	RY2024	RY2025	RY2026	RY2027	RY2028	RY2029	Total (Real	Total
and Analysis	K12020	K12021	K12022	K12025	K12024	K12025	K12026	K12027	K12028	K12029	Yr.)	(FY2020)
Cost												
1.6 Data Management	154,500	1,785,141	909,877	2,247,926	3,474,638	2,384,825	2,456,370	3,606,815	1,892,791	1,949,575	20,862,458	17,402,933
1-AWG Analysis Work Groups	360,000	1,440,352	1,483,563	1,528,069	1,573,912	1,621,129	1,669,763	1,719,856	1,771,451	1,824,595	14,992,689	12,945,600
Reserves	154,350	967,648	718,032	1,132,799	1,514,565	1,201,786	1,237,840	1,598,001	1,099,273	1,132,251	10,756,544	9,104,560
Total Cost	668,850	4,193,141	3,111,472	4,908,794	6,563,114	5,207,740	5,363,972	6,924,672	4,763,515	4,906,420		
									Total Activity	Cost	\$46,611,691	\$39,453,093

Table 16: SO-Enhanced Hardware construction, Operations, and Pipeline and Analysis budgets.

WBS 2 SO-Enhanced Telescope and Site upgrade	RY2025	RY2026	RY2027	RY2028	RY2029	RY2030	RY2031	RY2032	RY2033	RY2034	,	Total (FY2020)
Cost												
2.2 LATR expansion	2,117,235	2,548,513	1,488,585								6,154,334	5,171,041
2.3 SATP	1,797,056	2,238,157	710,085								4,745,298	4,001,942
2.4 SAT	3,687,706	3,798,337	2,969,427								10,455,470	8,776,511
2.5 Detectors & Readout	5,951,241	5,079,865	5,232,261								16,263,367	13,642,206
2.7 Site	1,293,881	673,949	241,827								2,209,658	1,877,163
2.9 Program Mgmt & Syst Eng	2,102,556	2,165,632	2,230,601								6,498,790	5,441,049
Reserves	5,084,903	4,951,336	3,861,836								13,898,075	11,672,974
Total Cost	22,034,578											
	•	•	•		•		•	•	Total Activity	Cost	\$60,224,990	\$50,582,886

WBS 2 SO-Enhanced Operations	RY2025	RY2026	RY2027	RY2028	RY2029	RY2030	RY2031	RY2032	RY2033	IRY2034	,	Total (FY2020)
Cost												
(2.1-2.5, 2.8) University ops				4,849,544	4,995,030	5,144,881	5,299,228	5,458,204			25,746,887	19,141,373
2.7 Site operations				5,308,408	5,326,054	5,485,836	5,650,411	5,819,923			27,590,631	20,952,532
Reserves				3,047,386	3,096,325	3,189,215	3,284,891	3,383,438			16,001,255	12,028,172
Total Cost				13,205,338	13,417,409	13,819,932	14,234,530	14,661,565				
			•						Total Activity	Cost	\$69,338,774	\$52,122,077

WBS 2 SO-Enhanced Pipeline and Analysis	RY2025	RY2026	RY2027	RY2028	RY2029	RY2030	RY2031	RY2032	RY2033	RY2034	(Total (FY2020)
Cost												
2.6 Data Management	178,312	183,661	885,895	908,888	936,154	4,356,535	3,061,470	2,712,754	2,194,263	2,260,091	17,678,023	12,434,267
2-AWG Analysis Work Groups						1,879,333	1,935,713	1,993,784	2,053,598	2,115,205	9,977,632	6,992,000
Reserves	53,494	55,098	265,768	272,666	280,846	1,870,760	1,499,155	1,411,961	1,274,358	1,312,589	8,296,696	5,827,880
Total Cost	231,805	238,760	1,151,663	1,181,554	1,217,001	8,106,628	6,496,337	6,118,499	5,522,219	5,687,886		
									Total Activity	Cost	\$35,952,351	\$25,254,147

Table 13: WBS 1: SO-Nominal Operations and Pipeline and Analysis

WBS	Title	Description
1	SO-Nominal Operations	Data-taking operations of SO-Nominal
		Support for researchers operating and maintaining the observatory,
		operation of 1.1 LAT, 1.2 LATR, 1.3 SATP, 1.4 SAT, 1.5 Detectors \&
1.1-1.5, 1.8	University operations	Readout, 1.8 Calibration
		Power for site operations, support for site engineers, mainte-
1.7	Site Operations	nance of high elevation and low elevation facilities

WBS	Title	Description
	SO-Nominal Pipeline and	
1	Analysis	Data handling, map making, and data analysis for SO-Nominal
		Data storage and analysis computing, maintenance of site com-
		puting, networking and data storage, staff for data acquisition
1.6	Data Management	and pipeline development and map making
		Support for data reduction and analysis of sky maps and production of
1-AWG	Analysis Working Groups	final science deliverables

Table 14: WBS 2: SO-Enhanced Hardware upgrade, Operations, and Pipeline and Analysis

WBS	Title	Description
	SO-Enhanced Telescope and	Enhancement of SO-Nominal to about double the observatory
2	Site upgrade	capabilities by adding three SAT/SATPs and six LATR optics tubes
		Fabrication, integration, installation, and commissioning of six optics
		tubes in the LATR. This includes manufacture of silicon lenses, metal
	Large Aperture Telescope	mesh and alumina filters, and cryo-mechanical components, and
2.2	Receiver expansion	integration with detectors and readout and housekeeping electronics.
		Procurement, installation, and commissioning of three platforms for
	Small Aperture Telescope	the Small Aperture Telescopes, including the ground screens and
2.3	Platforms	related baffles.
		Procurement, integration, installation, and commissioning of three
		Small Aperture Telescopes. This includes procurement of the
		cryostats and cryogenic refrigerators, manufacture of the silicon
		lenses, metal mesh and alumina filters, and cryo-mechanical
		components, and integration with detectors and readout and
2.4	Small Aperture Telescopes	housekeeping electronics
		Fabrication, assembly, and test, of the detectors and cold and
		warm readout electronics for SO-Enhanced. This includes de-
		ployment of 39 Universal Focal Plane modules, where each UFM
		is includes a 150 mm detector wafer stack coupled to microwave
2.5	Detectors and Readout	multiplexed readout.
		Expansion of the SO Site for three SATP platforms, including
2.7	Site	concrete foundations and expanded electrical and cooling systems.
	Program Mgmt and Sys-	Management and systems engineering during the construction phase
2.9	tems Engineering	of SO-Enhanced.

WBS	Title	Description
2	SO-Enhanced Operations	Data-taking operations of SO-Enhanced
		Support for researchers operating and maintaining the observatory,
		operation of 2.1 LAT, 2.2 LATR, 2.3 SATP, 2.4 SAT, 2.5 Detectors \&
2.1-2.5, 2.8	University operations	Readout, 2.8 Calibration
		Power for site operations, support for site engineers, mainte-
2.7	Site Operations	nance of high elevation and low elevation facilities

WBS	Title	Description
	SO-Enhanced Pipeline and	
2	Analysis	Data handling, map making, and data analysis for SO-Enhanced
		Data storage and analysis computing, maintenance of site com-
		puting, networking and data storage, staff for data acquisition
2.6	Data Management	and pipeline development and map making
		Support for data reduction and analysis of sky maps and production of
2-AWG	Analysis Working Groups	final science deliverables

Table 17: Basis of estimate for SO-Nominal Operations and Pipeline and Analysis

SO-Nominal Operations		
component	cost Y2020\$	Description
		Average annual support for 9 postdocs, 8 graduate students, 10 months
		faculty summer salary, 7 summer undergraduates, 1 administrator, travel.
		Four years with 20% overhead (Simons Foundation), one year with 60%
WBS 1.1-1.5, 1.8 University Ops	2,411,567	overhead.
		Average annual cost of site operations, including power generation and
		fuel deliveries, three site engineers. Four years with 20% overhead
WBS 1.7 Site Ops	2,439,719	(Simons Foundation), one year with 60% overhead.
Total SO-Nominal operations (5 yr)	24,256,432	

SO-Nominal Pipeline and Analysis		
component	cost Y2020\$	Description
WBS 1.6 Data Management		
Computing	3,900,000	Analysis computing and data storage
		Support for 5 student-years, 30 postdoc-years, and 39 staff-years of effort
DAQ and Pipeline staff	13,502,933	on data acquistion and pipeline development
		Support for 4 postdocs, 4 graduate students, 4 summer students, 4 faculty
1-AWG Analysis Working Groups	12,945,600	summer salary, travel over 9.25 yr
Total SO-Nominal Pipeline & Analysis	30,348,533	

Table 18: Basis of estimate for SO-Enhanced Operations and Pipeline and Analysis

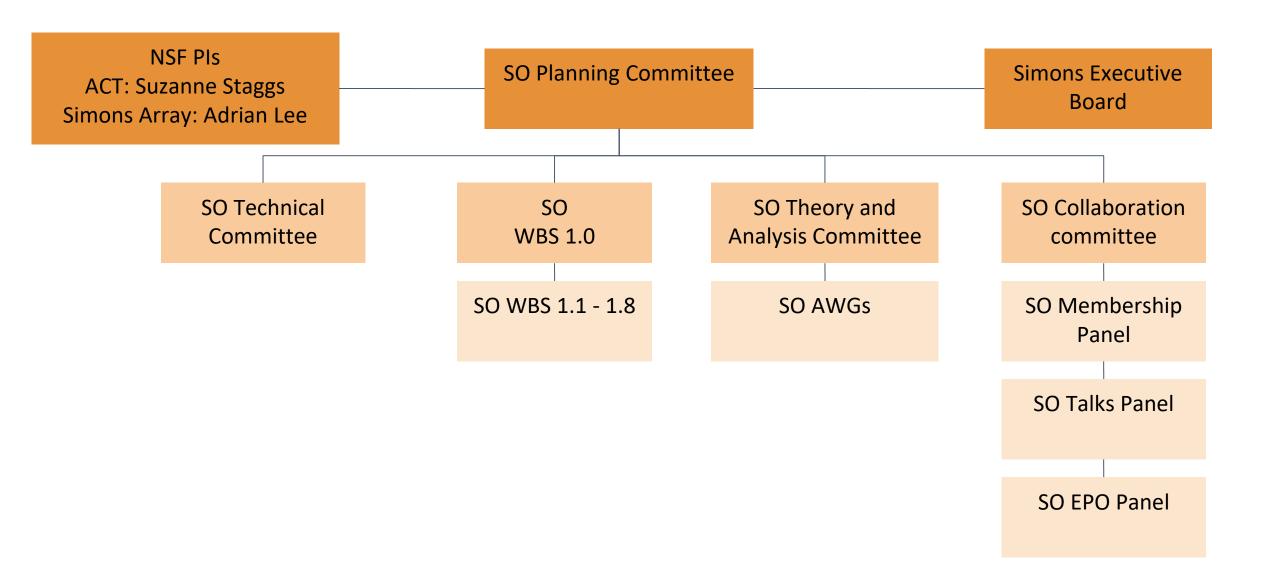
SO-Enhanced Operations		
component	cost Y2020\$	Description
		Annual support for 12 postdocs, 15 graduate students, 10 months faculty
WBS 2.1-2.5, 2.8 University Ops	3,828,275	summer salary, 7 summer undergraduates, 1 administrator, travel
		Annual cost of site operations, including power generation and fuel
WBS 2.7 Site Ops	4,190,506	deliveries, four site engineers.
Total SO-Nominal operations (5 yr)	40,093,905	

SO-Enhanced Pipeline and Analysis		
component	cost Y2020\$	Description
WBS 2.6 Data Management		
Computing	2,750,000	Analysis computing and data storage
		Support for 5 student-years, 23 postdoc-years, and 26 staff-years of effort
DAQ and Pipeline staff	9,684,267	on data acquistion and pipeline development
		Support for 4 postdocs, 4 graduate students, 4 summer students, 4 faculty
2-AWG Analysis Working Groups	6,992,000	summer salary, travel over 5 yr
Total SO-Nominal Pipeline & Analysis	19,426,267	

Table 19: Basis of estimate for SO-Enhanced Telescope and Site upgrade

SO-Enhanced basis of estimate		Methodology: Analogy wth SO-Nominal, except as noted	
component	cost Y2020\$	Description	
WBS 2.2 LATR			
		silicon material, commercial grinding into lenses, technician to cut	
Si lenses	403,466	metamaterial AR coating	
metal mesh filters	494,400	production of filters at Cardiff University	
Alumina filters	97,629	alumina material, technician to apply AR coating	
mechanical components	176,020	procurement costs for six LATR optics tube assembles	
magnetic shielding	92,700	procurement costs for six LATR optics tube assembles	
LATR UFM, test mechanical	150,872	procurement costs for six LATR optics tube assembles	
Housekeeping electronics	124,886	diode and ROX thermometers and readout electronics	
		Support for 4.4 graduate students, 2.4 postdocs, 3 months of faculty	
University personnel	3,631,069	summer salary each year, and 1.75 staff engineers	
WBS 2.3 SATP			
3 platforms	2,408,342	Contract with Vertex, excluding NRE	
forebaffles	,	engineering estimate	
Ground screens	772,500	estimate based on contracted SO-Nominal cost	
		Support for 0.6 graduate students, 0.6 postdocs, 0.3 months of faculty	
University personnel	759,299	9 summer salary each year, and 0.3 staff engineers	
WBS 2.4 SAT			
Mechanical Cryostat	664,350	cost of three SAT cryostats based on contracted SO-Nominal cost	
Electrical Cryostat	150,071	diode and ROX thermometers and readout electronics	
Cryogenic refrigerators	1,436,850	dilution refrigerators and pulse tube coolers	
Support: pumps, vacuum equip	47,380	pumps, hoses	
		silicon material, grinding into lenses, technician to cut metamaterial AR	
Si lenses	378,525	coating	
metal mesh filters	278,100	production of filters at Cardiff University	
Alumina filters	152,891	alumina material, technician to apply AR coating	
mechanical components	183,083	procurement costs for three SAT optics tube assemblies	
magnetic shielding	69,525	procurement costs for three SAT optics tube assemblies	
Focal plane array mechanical		procurement costs for three SAT optics tube assemblies	
SAT UFM, test mechanical	134,028	procurement costs for three SAT optics tube assemblies	
Half Wave Plate	278,100	procurement costs for three SAT optics tube assemblies	
		Support for 4.2 graduate students, 3.3 postdocs, 2.6 months of faculty	
University personnel	4,943,354	summer salary each year, and 2.5 staff engineers	

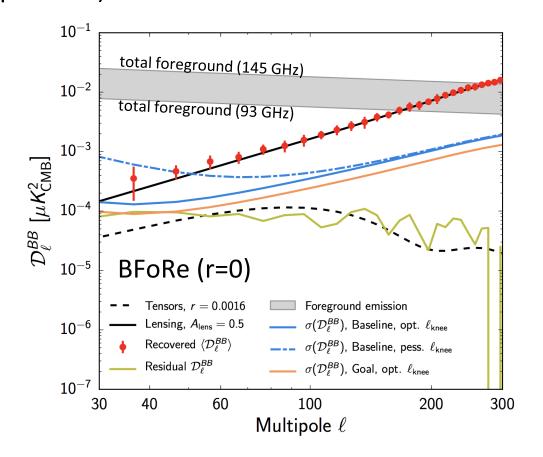
WBS 2.5 Detectors & Readout			
detectors	2 410 200	21 NIST detectors for SATs, 18 NIST dets for LATR	
feedhorns	200,850	5463 per feedhorn	
cold multiplexing fab, wafers (NIST)	2.123.989	choke wafers 4,075, mux fab & screen \$18/channel, DC/RF wafer \$16,400	
The state of the s	_,,		
Warm readout	2,524,530	SMuRF = 60,000; ATCA crates 2 per SAT, 2 for LATR plus supporting items	
Cold wiring & amplification	1,533,294	SAT 14 chains 269,583; LATR 36 chains 679,886	
		Support for 4.2 graduate students, 4.1 postdocs, 4.1 months of faculty	
University personnel	4,849,344	summer salary each year, and 1.2 staff engineers	
WBS 2.7 Site			
Low-Elevation Facility (LEF)	339,831	\$8,592 cost/person-quarter. 3 persons for 8 quarters	
Telescope Foundations	1,000,000	estimate based on contracted SO-Nominal cost	
Non-Foundation HEF Infrastructure	150,000	Costs to expand Sie electrical distribution and cooling systems	
Accessing site w/ people & equipment	72,000	Truck leasing, maint, fuel, road maintenance, shipments to Site	
Telescope Installation & Verification	32,000	rentals for installation	
Site personnel	245,140	One site engineer for two years	
University personnel	38,192	Support for 1 month of faculty summer salary each year	
WBS 2.9 Program Mgmt and Syst Eng			
Program Mgmt and Syst Eng personnel	5,441,049	Support for eight staff members	
Total SO-Enhanced	38,909,913		

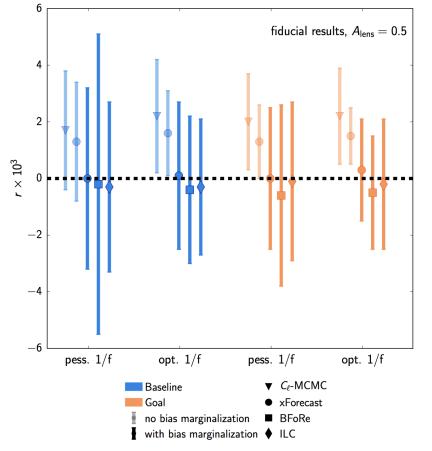

58

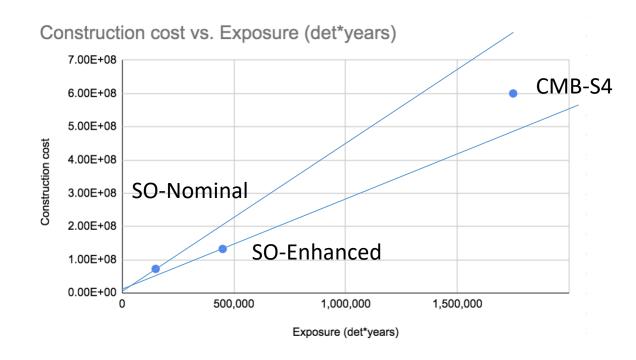
Computing and Data Processing

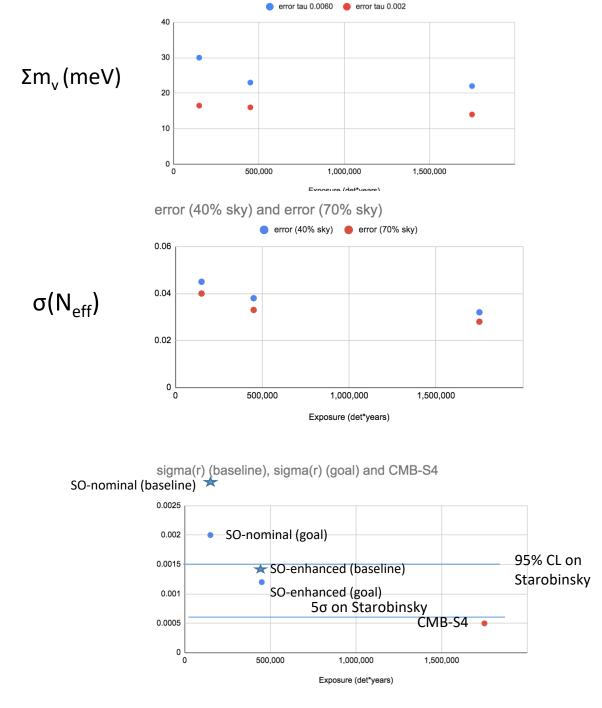
- We budgeted roughly 7M\$ for SO-Nominal and SO-Enhanced
- Baseline: data will be transferred from Chilean site to North America (UCSD) via fiber connection
 - MoU with ALMA is ongoing
 - Data will be distributed and backed up within 24hrs
 - Limited amount of computation at the site for quality check and small-scale map-making
- Three centers for analysis and storage:
 - Simons Foundation @ UCSD: full copy of the data and limited HPC computation
 - Princeton: full copy of the data and HPC computation
 - To manage risks connected to long queue times on gov-supported HPC systems
 - NSF computing centers (XSEDE program and successor program): similar to Princeton but larger HPC systems for full-scale runs and sims
 - This mitigates risks related to the assumption that we will have enough support at NERSC
 - Conversation with U Texas/TACC have started and plan to use ACT as pathfinder
 - We will engage in a multi-year project agreement to sustain SO data needs

Backup


SO Governance Structure




SAT BB forecasting based on full-sky simulated maps (PySM) w/ multiple sets of realistic foregrounds


Sky models are combined with SO SAT noise model, then coupled to several foreground mitigation schemes (cross-spectrum analysis, xForecast, BFoRe, harmonic-space ILC) to infer *r*

Scalings for Costs & Constraints

Science and Planning - 2018

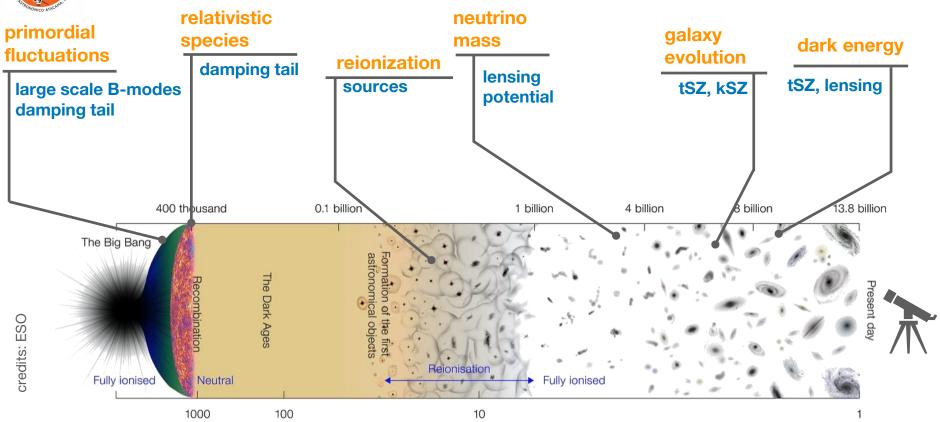
- V0 Initial Instrument Concepts Oct. 2016
- V1 Detailed Instrument Concept Jan. 2017
- V2 Frequency Balance June 2017
- V3 Sensitivity Budget and Tracking 2018

Science Traceability Matrix

ID	Title	Parameter	Baselin e	Goal	Current	Method
SR-1a	Primordial fluctuations	r	0.003	0.002	0.04	ВВ
SR-1b		P(k=0.2 h/Mpc)	0.5%	0.4%	6%	T/E
SR-1c		fnl	3	1	5	kk+LSST+3-pt
SR-2	Relativistic Species	N _{eff}	0.07	0.05	0.11	T/E
SR-3	Neutrino mass	m _V (eV) 0.04		0.03	0.1	kk+DESI
			0.04	0.03		tSZ-N+LSST
			0.05	0.04		tSZ-CI+DESI
SR-4	Dark Energy	sigma ₈ (z=2-4)	3%	2%	7%	kk+LSST
			3%	2%		tSZ+LSST/k
SR-5a	Galaxy Evolution	feedback efficiency in massive halos	6%	3%	50- 100%	tSZ+kSZ
SR-5b		non-thermal pressure in massive halos	15%	12%	50- 100%	tSZ+kSZ
SR-6	Reionization	duration delta(z)	0.6	0.3	1.4	T/E (kSZ)

Measurement Requirements - SAT

ID	Title	Description	Trace
MR-1S	#Bands	30, 40, 90, 150,220, 280 GHz	SR-1a
MR-2S	angular resolution	90, 60, 30, 30, 30, 30'	SR-1a
MR-3S	sensitivity white noise	(Baseline) 35, 22, 2.6, 3.3, 6.3, 16 uK/amin	SR-1a
		(Goal) 25, 17, 1.9, 2.1, 4.2, 10 uK/amin	
MR-4S	1/f noise	knee I<25	SR-1a
MR-5S	pol systematics	systematics below 40% of statistical errors	SR-1a
MR-6S	sky area	10% effective sky area with low FG	SR-1a


Measurement Requirements - LAT

ID	Title	Description	Trace
MR-1L	#Bands	30, 40, 90, 150,220, 280 GHz	SR-3-6
MR-2L	angular resolution	7.5, 5.5, 2.2, 1.4, 1.0,1.0'	SR-3-6
MR-3L	sensitivity white noise	(Baseline) 71, 36, 8.0, 10.0, 22, 54 uK/amin	SR-1b-6
		(Goal) 52, 27, 5.8, 6.3, 15, 38 uK/amin	
MR-4L	1/f noise	knee I<1000	SR-3-6
MR-5L	pol systematics	systematics below 40% of statistical errors	SR-1b-6
MR-6L	sky area	40+% sky, overlapping with LSST (f=0.35-4), DESI (f=0.1)	SR-1b-6

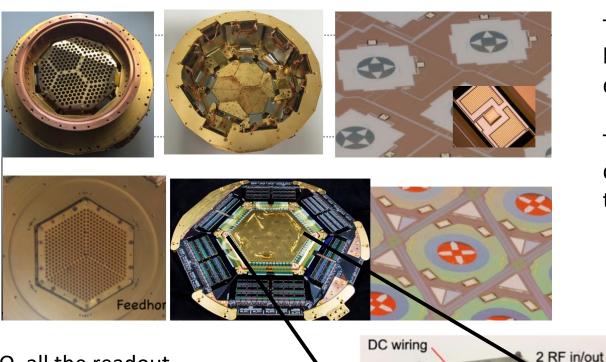
Table 12: Key Event Dates for SO-Enhanced

Project Phase	Milestone Date
Start of Development	January 1, 2025
Start of Conceptual Design	January 1, 2025
Preliminary Design Review (PDR)	February 1, 2025
Critical Design Review (CDR)	April 1, 2025
Delivery of SATs	August 15, 2027
Delivery of LATR Optics Tubes	February 1, 2027
Date of End of Construction	August 15, 2027
Date of First Light/Signal Reception	January 1, 2027
Date of Start of Commissioning	December 1, 2026
Operations Readiness Date	January 1, 2028
End of Operations	December 31, 2032

Simons Observatory Science Goals and Probes

Additional science includes (but is not limited to):

- helium fraction, cosmic birefringence, primordial magnetic fields
- high-redshift clusters
- dark matter annihilation and interactions
- isocurvature
- calibration of multiplicative shear bias (e.g., for LSST)
- new sample of dusty star-forming galaxies
- transient sources
- cosmic infrared background

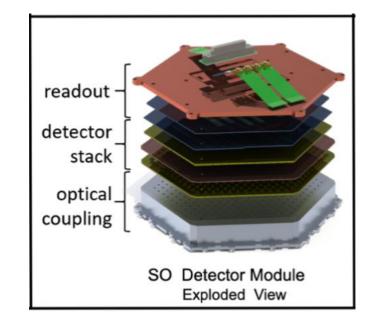

THE SIMONS OBSERVATORY:

SCIENCE GOALS AND FORECASTS

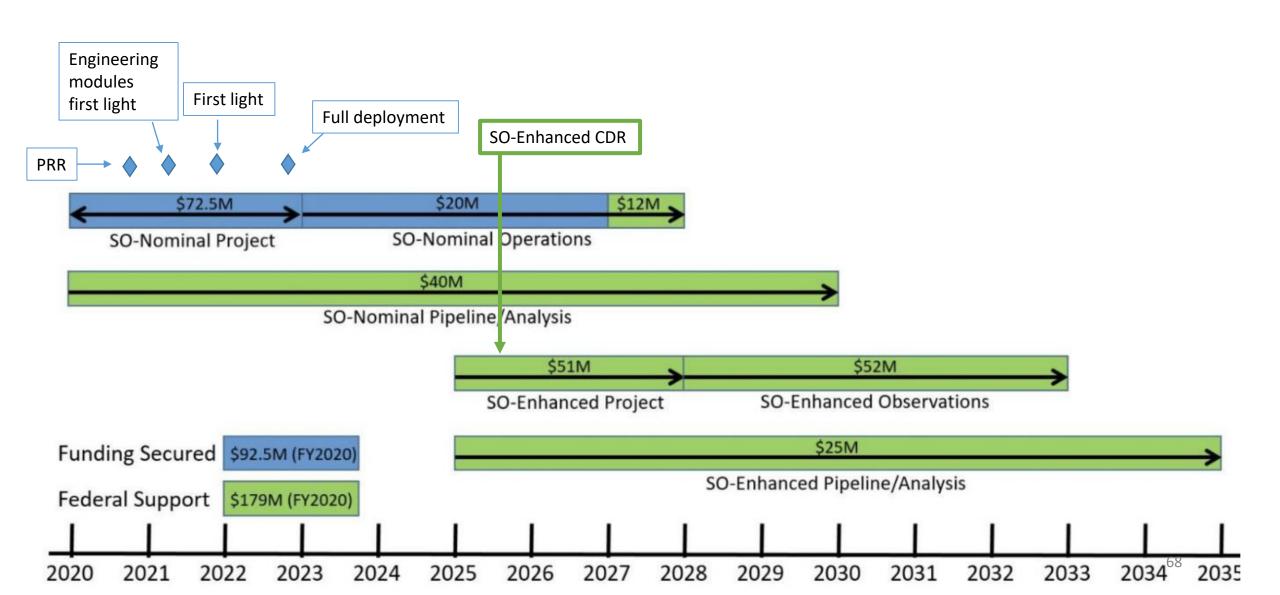
1808.07445

SO Readout Packaging Format in Context

Fielded 100 mK dichroic TES arrays for CMB:


For SO, all the readout components fit behind a ~150 mm detector wafer, and all 1728 detectors are read out

on 2 coaxial pairs, with 910x


multiplexing.

The last two generations of ACT kilopixel detector arrays were not designed for close-packed focal planes.

The ACT arrays were comparable in TES density to SO arrays, but only used 33x to 66x time-division multiplexing

Current SO Detectors & Readout Schedule compared to SO-Enhanced Need Dates

