

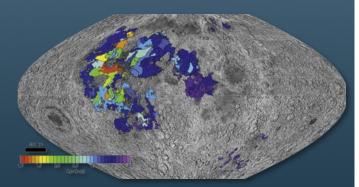
Geochronology for the Next Decade

A Planetary Mission Concept Study for the 2023 Decadal Survey

PI: Barbara Cohen, NASA GSFC (barbara.a.cohen@nasa.gov)

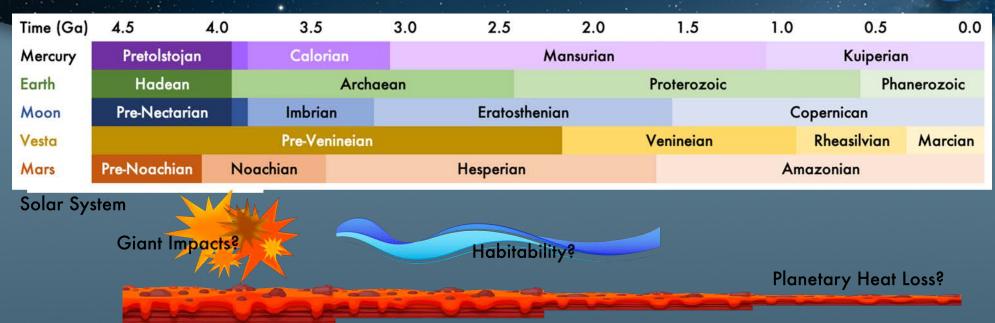
Study motivation and goals

NASA


- Geochronology: determination of absolute ages for geologic events
- Motivation: Major advances in planetary science can be driven by absolute geochronology in the next decade, calibrating body-specific chronologies and creating a framework for understanding Solar System formation
 - Traceable to 2014 NASA Science Goals, p.61; Planetary Science Decadal Survey: p.151, p.143; LEAG, MEPAG, and SBAG goals documents
- Why Now? In the last two decades, NASA has invested in the development of in situ dating techniques; K-Ar and Rb-Sr instruments will be TRL 6 by the time of the next Decadal Survey period

• Study Goals:

- Assess how in situ geochronology could be accomplished in the inner solar system (Moon, Mars, and asteroids) – multiple CML 3-4 studies
- Give the next Decadal Survey panel a viable alternative -- or addition to -- sample return missions to accomplish longstanding geochronology goals within a New Frontiers envelope



Lunar volcanic units

Geochronology in the next decade

- Science Goal: Create a common framework for the history of the inner solar system bodies by dating major events on the Moon, Mars, and Vesta
- Science Objectives:
 - Determine the chronology of basin-forming impacts and constrain the time period of heavy bombardment in the inner solar system
 - Constrain the 1 Ga uncertainty in solar system chronology from 1-3 Ga, informing models of planetary evolution including volcanism, volatiles, and habitability
 - Constrain the timing and longevity of hydration and habitability across the inner worlds

Science Goals, Objectives, and Measurements

- Radiometric dating, or the process of determining the age of rocks from the decay of their radioactive elements, has been in widespread use for over half a century
- Measure the parent and daughter isotopes in a pair to determine when a rock closed to addition or loss of its radioactive elements. Here we consider two pairs, Rb-Sr and K-Ar.
- Lots of rocks are amenable to Rb-Sr and K-Ar dating in terrestrial labs, including igneous rocks, phyllosilicates/clays, and sulfates. Each mineral can record a different event in the rock's history.
- An age is an interpretation, requiring accurate and precise measurement of the isotopes and adequate knowledge to interpret that measurement.
- Required Measurements:
 - Measure the age of the desired lithology with precision ±200 Myr
 - Contextualize the desired lithology using petrology, mineralogy, and/or elemental chemistry
 - Relate the measured lithology age to crater counting of the lithology's terrain
- Driving Mission Requirements:
 - Payload: Collect, characterize, and date at least ten 0.5-2 cm sized samples of lithologies that address the science objectives
 - Mobility: Conduct sample analysis at 2 different sites on each body to address different objectives

Science Traceability Matrix

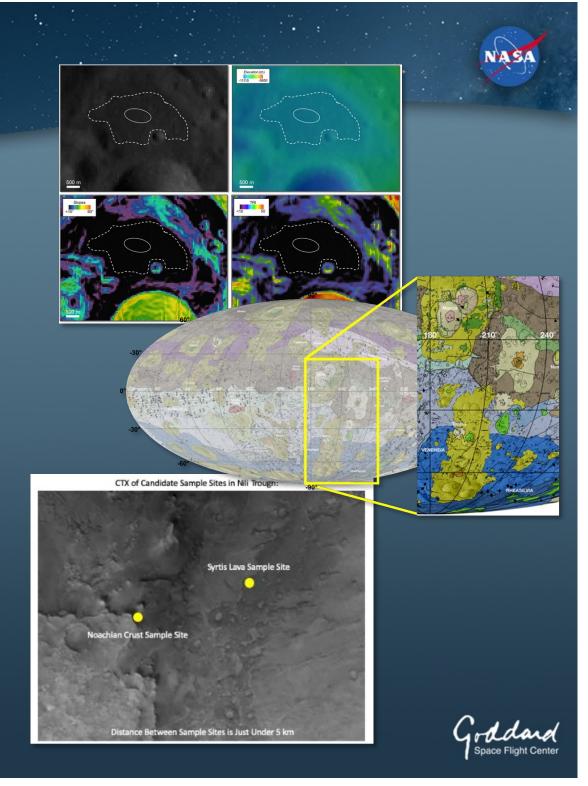
Science Objectives	Measurement Goals	Measurement Requirements	Mission Support
	Measure the age of the desired lithology with precision ±200 Myr	Use Rb-Sr radiometric chronology to directly measure the age of samples derived from the target lithology	
Determine the chronology of basin- forming impacts and		Use K-Ar radiometric chronology to directly measure the age of samples derived from the target lithology	Collect, triage, and analyze 10 0.5-2 cm sized samples at each site * see
constrain the time period of heavy bombardment in the inner solar system		Measure the major- and trace-element geochemistry of the samples to establish parentage and evolution of lithologies	additional information on sampling statistics Conduct sample analysis
Constrain the 1 Ga uncertainty in solar system chronology from 1-3 Ga, informing models of planetary evolution	Contextualize the desired lithology using petrology, mineralogy, and/or elemental chemistry	Identify the mineralogy by mapping abundances of olivines, pyroxenes, oxides, plagioclases; Identify aqueous alteration minerals including phyllosilicates, sulfates, carbonates, and other hydrated salts	at 2 different sites on each body ** see additional information on sites Remotely sense the workspace around the landing legs to provide
Establish the history of habitability across the		Image the samples at the microscale to determine grain size, petrology, etc.	sample context and of landing site at low and high sun angles to create
Solar System		Determine the composition of the surface unit to place the lithologies into a regional and global context	spatially contiguous maps
	Relate the measured lithology age to crater counting of the lithology's terrain	Determine the geology of the landed site and map discrete lithologic units to relate them to maps and crater counts determined from remote sensing	

Goddard Space Flight Center

Recommendations

Candidate Landing Sites

Moon


- Craters that excavate the impactmelt sheets of Crisium or Nectaris Basin to establish the chronology of basin-forming impacts
- Young lunar basalts to correlate crater count with crystallization age

Vesta

- Rheasilvia basin to establish the chronology of basin-forming impacts
- Marcia Crater to access and date a diversity of vestan stratigraphy

Mars

Many sites vetted for Curiosity /
Perseverance provide access to a
range of Noachian and Hesperian
materials: clays, carbonates, sulfates,
lavas such as Nili Fossae Trough,
Mawrth Vallis, NE Syrtis

Payload concept

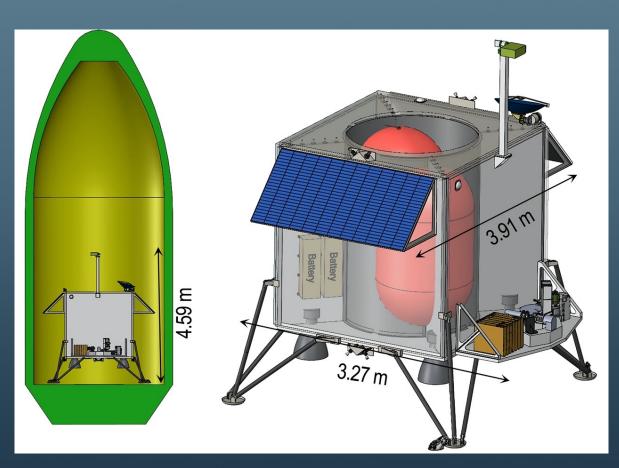
Measurement requirements could be met by carrying a single notional payload

• Study payload comprises representative instruments - generalizable and scaleable to any suite of instruments that can accomplish the Measurement Requirements

• Most elements would be TRL 6 in 2023 (start of next Decadal) – so we did not account for

additional payload development costs in this study architecture

Measurement Requirement	Measurement	Payload Element	Element Lead	TRL in 2023
Caaabranalaay	Rb-Sr geochronology	CDEX	Scott Anderson / SWRI	6 (MatISSE / DALI)
Geochronology	K-Ar geochronology	KArLE	Barbara Cohen / GSFC	6 (DALI)
	Trace-element geochemistry	ICPMS	Rick Arevalo / UMD	4 (PICASSO) – 6 (DALI or MatISSE)
Sample & site context	Mineralogy	UCIS-Moon	Bethany Ehlmann / JPL	6 (DALI)
	Visible/color imaging and micro-imaging	Panoramic and microimagers	Aileen Yingst / MSSS	9 (MSL / CLPS)
Sample Handling	Acquire, prepare, and introduce samples to analysis instruments	PlanetVac	Stephen Indyk / Honeybee Robotics	9 (CLPS / MMX)


Payload totals: 178 kg / 60 Gb / 180 W peak power

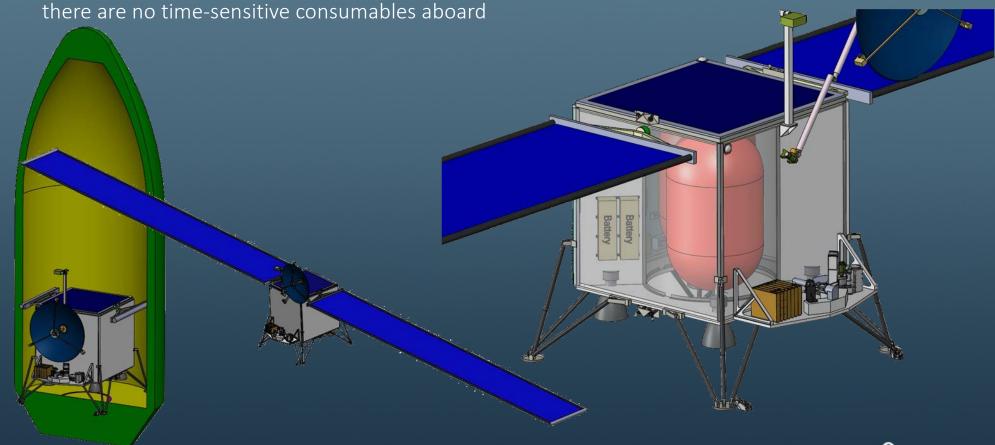
Lunar lander concept

- We conducted a full Mission Design Lab (MDL) focused on a lunar hopper to widely-separated sites (100's of km) design did not close in a New Frontiers envelope
- Downsized the lunar hopper concept without the extra propellant, structure, and power needed to hop
- Single lunar lander design closes with full payload and concept of operations

- Class B mission Selective Redundancy/fault tolerance
- Falcon 9 Heavy launch vehicle
- Direct insertion to land using 4 Aerojet R-40B engines with Terrain-Relative Navigation (TRN)
- Redundant Processor for Landing and all other CPU control functions
- 2 body-mounted TjGaAs solar panels and 1100Ahr battery
- X-band comm

Cost

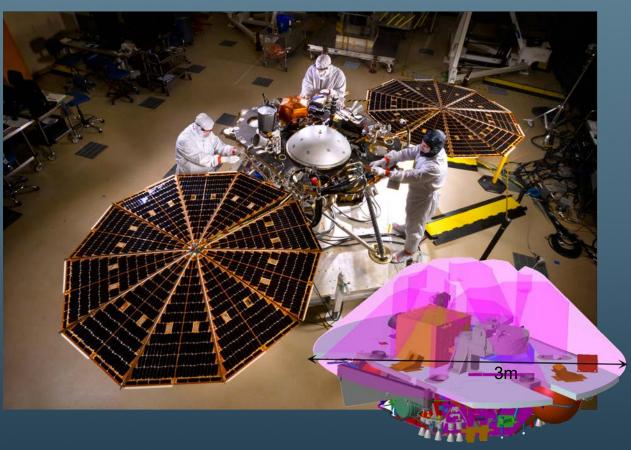
• Lifetime 1 year / 12 nights



Vesta hopper concept

- Translate lunar concept to Vesta
 - Trajectory designed to arrive when landing sites have solar illumination, Rheasilvia (south pole) has yearlong cycle of illumination/eclipse
 - Large rollout solar arrays that can retract for hopping
 - Added compression and data latency

• Increased surface mission lifetime to 2 years —this isn't a huge issue since it takes years in cruise and



Mars lander concept

 Worked with Lockheed to upsize a Phoenix/Insight lander concept, closes with full payload and concept of operations

- Class B mission Selective
 Redundancy/fault tolerance
- Falcon 9 Heavy launch vehicle
- Mars EDL similar to Phoenix / InSight
- TRN not required in this study
- Daily ~ 700 W-hr/sol for payload operations, which would pace payload use during Mars surface operations
- Context imaging divided over ~16 sols to ensure consistent lighting conditions
- 20-sample science operations would be complete at Sol 340, 450 sols were budgeted for margin

Recommendations

Cost

Goddard Space Flight Center

Summary of architecture options

- Vesta has an architecture option that meets full sample science at multiple sites in a New Frontiers cost
- For the Moon and Mars, both cost and payload mass preclude significant mobility, whether by hopper or by rover
- NF-class single-site landers at the Moon and Mars can carry full payloads for \sim 1 year of operations. Sites may exist where multiple objectives could be met by analyzing more rocks.

Target	Science Goal	Sample Science	Multiple Sites	Cost Class
	Determine the chronology of basin-forming impacts	Full	Single lander	New Frontiers
Moon	Constrain uncertainty in lunar chronology from 1-3 Ga	Full	Single lander	New Frontiers
	Do both	Reduced	Hopper 100's of km	Flagship
	Validate crater-counting ages on Mars	Full	Single lander	New Frontiers
Mars	Bound the epoch of habitability	Full	Single lander	New Frontiers
	Do both	Reduced	Rover 10's of km	Flagship
Vesta	Establish the Vestan chronology	Full	Hopper 100's of km	New Frontiers

Evaluation

- Feasible New Frontiers-class missions exist that would carry a capable instrument payload to conduct in situ dating with the precision to answer community-identified science goals
 - NASA investments in *in situ* dating instruments make a feasible payload, including dating by multiple corroborating methods and extensive characterization to give confidence in results
 - New remote-sensing work, geologic mapping, and site evaluation efforts have expanded the locations where safe landing sites can access lithologies of interest
 - Compelling cases can be made for specific science questions to be answered using targeted singlesite landers at the Moon and Mars.
- Ours is not the only payload option! Cases could be made for well-bounded questions using smaller payloads (e.g., single method of radiometric dating, downsized characterization suite), perhaps in Discovery or CLPS, or aboard mobile rovers
- Such missions would also be able to conduct a broad suite of geologic investigations
 - Geologic site investigations, geomorphology, ground truth
 - Major, minor, and trace-element analyses
 - Volatile element analyses, atmospheric monitoring
 - Organic molecule analysis
 - Soil properties, geotechnical properties
 - Long-lived monitoring (weather, space weather, etc)
 - Radio science and laser retroreflectors

Conclusions and Recommendations

- Geochronology underpins cross-cutting, big-picture, community-identified science goals
 across the inner solar system, creating a framework in which to interpret planetary histories
- Geochronology measurements may be flexibly accomplished on dedicated missions or as part of "normal" geology missions, by sample return or in situ measurements, depending on the science question and need
- We ask the Decadal Survey to consider such a geochronology framework as a fundamental advance that could be made in the next decade and consider possible ways the community could accomplish such a goal – including a chronology-focused mission in the New Frontiers list – with flexibility in implementation by sample return or by in situ dating

Backup

- Team membership
- Sampling Statistics
- Payload conops, power, and data
- Mission engineering trades and drivers
- Schedule and costing

Geochronology PMCS team

SCIENCE DEFINITION TEAM

Barbara Cohen (PI), GSFC

Kelsey Young* (DPI), GSFC

Kris Zacny, Honeybee Robotics

Ryan Watkins*, PSI

Sarah Valencia*, GSFC

Tim Swindle, U of Arizona

Stuart Robbins*, SwRI

Noah Petro, GSFC

Dan Moriarty*, GSFC

Stephen Indyk, Honeybee Robotics

Juliane Gross*, Rutgers University

Jennifer Grier, PSI

Nicolle Zellner, Albion College

John Grant, Smithsonian

Caleb Fassett, MSFC

R. Aileen Yingst, PSI

Ken Farley, Caltech

Ben Farcy*, U of Maryland

Bethany Ehlmann*, Caltech

Darby Dyar, PSI

Natalie Curran*, GSFC

Carolyn van der Bogert, University Westfalische

Ricardo Arevalo*, U of Maryland

Scott Anderson, SwRI

*early career

GSFC ENGINEERING TEAM

Mike Adams

Ginger Bronke

Eric Cardiff

John Crow

Gerard Daelemans

Amani Ginyard

Kyle Hughes

Stephen Indyk

Cameron Jerry

Andrew Jones

Richard Lynch

Stephen Meyer

Ryo Nakamura

Anthony Nicoletti

Dave Palace

Miguel Benayas Penas

Glenn Rakow

Bruno Sarli

Marcia Segura

Thomas Spitzer

David Steinfeld

John Zuby

LOCKHEED MARTIN (MARS LANDER CONCEPT)

Richard Warwick

Noble Hatten

Mark Johnson

Scott Francis

Madeline O'Neil

Tim Lin

GSFC MISSION DESIGN LAB TEAM

Maryam Bakhtiari-Nejad

Grant Barrett

Bob Beaman

Emily Beckman

Kaitlyn Blair

Jennifer Bracken

Thomas Carstens

Angel Davis

Paul Earle

Luis Gallo

Camille Holly

Frank Kirchman

Steve Levitski

Blake Lorenz

Mike Machado

Dick McBirney

Khashy Parsay

Sara Riall

Russ Snyder

David Steinfeld

James Sturm

Huaizu You

Cost

John Young

Recommendations

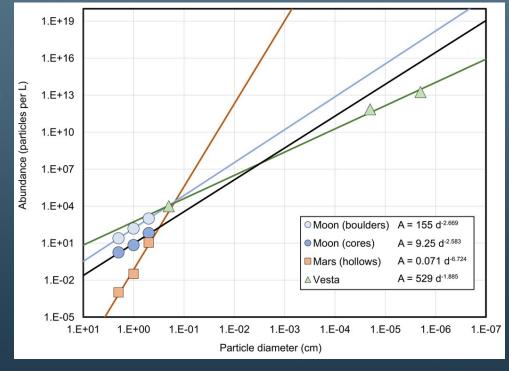
Geochronology Science Payload Mission

Sampling statistics

Apollo 11 soil

b	ow many rocks do we need?
•	Confidence requires 3 samples of the
	lithology to agree in age

 Allow for some rocks and experiments being uncooperative = 10 samples analyzed per lithology of interest


 Allow for some rocks at each site being not what we want = 30 samples acquired per lithology

Instruments require rocks measuring 0.5-2 cm in diameter to obtain sufficient analyses.

How many rocks of correct size (0.5 - 2 cm) in diameter) are in the regolith?

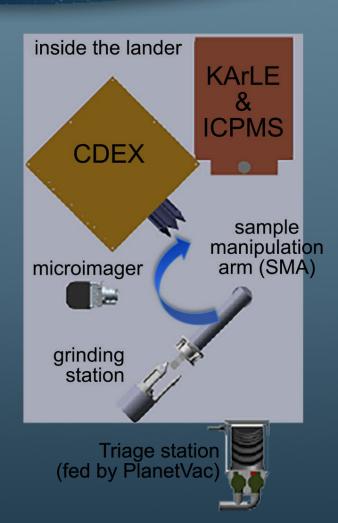
This volume must be excavated and sieved and samples delivered to the instruments. Few L is readily accommodated by dual PlanetVac inlets or a scoop & sieve.

Body	Volume for 30 samples (L)
Moon (boulders)	0.03
Moon (cores)	0.62
Mars (bedrock)	small
Mars (hollows)	2.68
Vesta (Kapoeta)	similar to Moon

Recommendations

Cost

Geochronology Science Payload Mission


Instrument layout / functional requirements

Instrument positioning is flexible and can adapt to lander configuration

- PlanetVac dislodges, transports, and sieves samples of correct size, regolith falls out a screen
- Samples fall into triage station for characterization by mast instruments
- SMA grabs a sample and delivers it to internal stations for analysis
- KArLE and ICPMS share an internal sample handling carousel

on a mast

UCIS

- Panoramic spectroscopy
- Spectroscopy of samples in the triage station
- Spectroscopy of area around lander footpads

Stereo Imagers

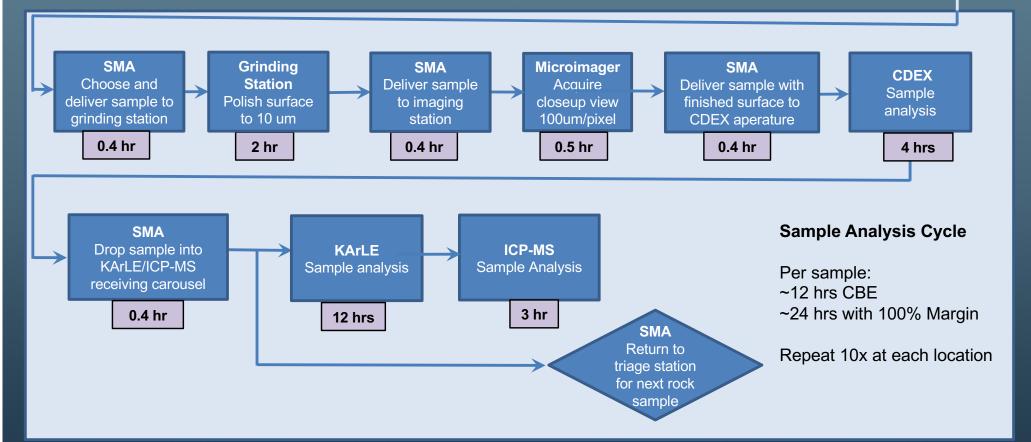
- Panoramic imaging
- Image soil around lander footpads

Microimager

Cost

- Image samples in the triage station

Surface operations concept


Remote Sensing
Imaging and Spectroscopy of the
landing site

PlanetVac
Sample collection and delivery to Triage Station

.4 hrs

Triage Station
Identify and prioritize rock
samples using imaging
spectrometer and microimager

2 hrs (automated) or 8 hours (ground in loop)

Payload mass and power

Payload Element	Mass (kg) (incl 30%)	Peak Power (W) (incl	Data Generation (Mbit)
Payload Element	Mass (kg) (IIICI 30 %)	30%)	(postcompression)
CDEX			
CDEX instrument	71.5	182	22400
Grinding station	7.4	26	N/A
Postgrind Imager	0.8	9	1500
Sample Manipulation Arm	13	26	1600
KArLE			
KArLE Instrument	29.8	130	21220
ICPMS	12.4	133	38
UCIS (Including DPU)	6.5	39	11268
Panoramic Imagers (total for 2)	1.5	19	1454
Microimager	1.4	10	180
Imaging DEA	1.4	0	N/A
Sample acquisition and triage			
PlanetVac	20.8	42	30
Triage station	3.8	8	N/A
Electronics box	3.0	30	
Totals	173		59690

Mission Drivers & Requirements

Mission Lifetime of at least 6 months Conduct sample analysis at 2 different sites on each planetary body Reliability Category 2, Class B Less than 1 m/s velocity at 1 m above surface during Landings Reliability Category 2, Class B Less than 1 m/s velocity at 1 m above surface during Landings Reliability Category 2, Class B Record Archive science data telemetry Record/Archive science data Reliability Category 2, Class B Record/Archive science data Record/Archive science data Record/Archive science data Record/Archive science data Reliability Category 2, Class B Record/Arch

Mission

Schedules and costing

Schedule development against a New Frontiers average mission life cycle schedule.
 Spacecraft and instrument development estimates fit within this family.

Payload Costing:

- CDEX, KArLE, UCIS, and ICPMS completed:
 - NASA Instrument Cost Modeling (NICM) cost estimates via GSFC Cost Estimating & Analysis (CEMA) Office
 - Analogous mission/parametric cost modeling via GSFC Resource Analysis Office (RAO)
- All payload elements also have a grassroots cost estimate from each payload element lead

• Lander Costing:

- Lunar hopping mission, Lunar single site mission, and Vesta asteroid hopping mission have Master Equipment Lists (MELs)
- SEER-H parametric cost modeled cost estimate for lunar and Vesta missions
- Lockheed developed Mars single site lander cost estimates

Recommendations