
MOSAIC Concept Study

Final report delivered to NASA & NASEM August 7

MOSAIC

MARS ORBITERS FOR SURFACE-ATMOSPHERE-IONOSPHERE CONNECTIONS

Mission Concept Study
Planetary Science Decadal Surve

National Aeronautics and Space Administration

PRINCIPAL INVESTIGATOR Robert Lilli riillis@berkeley.ed University of California, Berkele

CO PRINCIPAL INVESTIGATOR
David Mitchel
davem@berkeley.edu
University of California. Berkeley

JPL POINT OF CONTACT
Steve Matousek
steven.e.matousek@jpl.nasa.gov
Jet Propulsion Laboratory,
California Institute of Tanhanary

Mars Orbiters for Surface-Atmosphere-lonosphere **Connections**

Rob Lillis & the MOSAIC team

Presented to the Planetary Science Decadal Survey
2022-2032
Steering Committee 14th meeting
May 27, 2021

MOSAIC Study Team

Science Team

Principal Investigator	Robert Lillis	SSL, UC Berkeley
Deputy PI	David Mitchell	SSL, UC Berkeley
Interdisciplinary Science	Bruce Jakosky	LASP, University of Colorado
Subsurface & Surface Ice		
Lead	Tanya Harrison	Planet Federal Inc.
Co-lead	Cassie Stuurman	NASA Jet Propulsion Laboratory, California Institute of Technology
Member	Isaac Smith Gordon Osinski Catherine Neish	PSI/University of York University of Western Ontario (U. Western Ontario) University of Western Ontario (U. Western Ontario)
Lower & Middle Atmosphere	Catherine Neisii	University of Western Oritano (o. Western Oritano)
Co-lead	Scott Guzewich	NASA Goddard
Co-lead	Luca Montabone	Space Science Institute
Members	Nick Heavens	Space Science Institute
Thermosphere Lead Members	Amin Kleinbohl Lesile Tamppari Michael Mischna Michael Smith Michael Smith Michael Wolf Melinda Kafrhe Aymenc Spiga François Forget Bruce Cantlor David Kass Scott England Justin Deighan Amanda Brecht Steve Boucher	NASA Jet Proputsion Laboratory, California Institute of Technolo NASA Jet Proputsion Laboratory, California Institute of Technolo NASA Jet Proputsion Laboratory, California Institute of Technolo NASA Godded Space Science Institute NASA Amesa LMD, Paris LMD, Paris LMD, Paris Main Space Science Systems NASA Jet Proputsion Laboratory, California Institute of Technolo Virginia Technolo Virginia Technolo LASP, University of Colorado NASA Ames
lonosphere	Oleve bougher	Officially of Michigan
Lead	Paul Withers	Boston University
Members	Robert Lillis	SSL, UC Berkeley
	Christopher Fowler David Andrews Martin Patzold Kerstin Peter Silvia Tellman Mark Lester Beatriz Sánchez-Cano	SSL, UC Berkeley IRF Update, Sweden University of Kotn University of Kotn University of Kotn University of Kotn University of Leicester University of Leicester University of Leicester
Exosphere & Neutral Escape		,
Lead	Michael Chaffin	LASP, University of Colorado
Co-lead	Justin Deighan	LASP, University of Colorado
Magnetosphere, Ion Escape, ar		
Lead	Shannon Curry	SSL, UC Berkeley
Co-lead	David Mitchell	SSL, UC Berkeley
Members	Janet Luhmann Robert Lillis François Leblanc Jasper Halekas David Brain Xiaohua Fang Jared Espley Hermann Opgenoorth Oleg Vaisberg	SSL, UC Berkeley SSL, UC Berkeley LATMOS, Parts, France University of Iowa LASP, University of Colorado LASP, University of Colorado LASP, University of Colorado MASA Goddad University of Umea, Sweden HM, Moscow, Russia
Radio Science		
Lead	Chi Ao	NASA Jet Propulsion Laboratory, California Institute of Technology
Members	Sami Asmar Josh Vander Hook David Hinson Paul Withers Ozgur Karatekin	NASA Jet Propulsion Laboratory, California Institute of Technolo NASA Jet Propulsion Laboratory, California Institute of Technolo SETI Institute Boston University Royal Observatory of Belgium

MOSAIC Core team

PI: Rob Lillis (UC Berkeley)

DPI: Dave Mitchell (UC Berkeley) **Study Lead**: Steve Matousek (JPL)

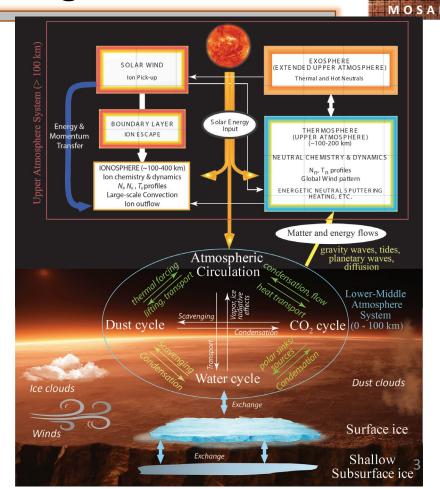
Systems Engineer: Nathan Barba (JPL)

Mission design: Ryan Woolley (JPL)
Science Leads: Luca Montabone, Scott

Guzewich, Nick Heavens, Tanya

Harrison, Scott England, Shannon Curry,

Mike Chaffin, Paul Withers, Chi Ao.

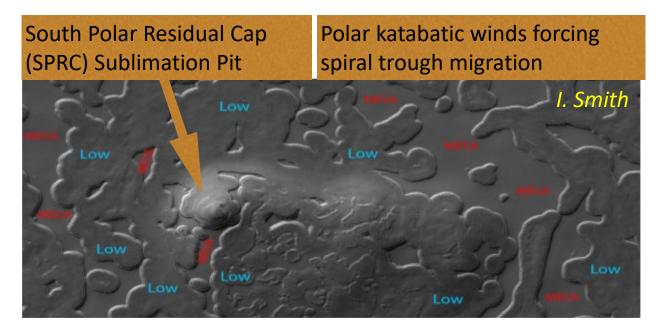

~125 people contributed

Technical/Management/Cost Team (JPL)

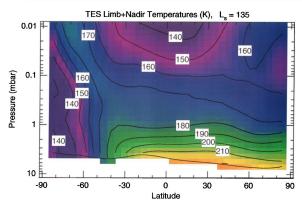
MOSAIC PMC	CS JPL Study Team
Steve Matousek, Study Lead	Nathan Barba, Lead System Engineer
Ryan Woolley, Mission Design	Ivair Gontijo, Payload System Engineer
Carlos Brinoccoli, Cost	Katherine Park, Visual Strategy and Design
Valerie Scott, Payload	Mariko Burgin, Payload
Cassie Stuurman, Radar	Scott Hensley, Radar
Kevin Wheeler, Radar	Jan Martin, Radar
Brian Sutin, Payload	Jean Biancone, Editor
Marc Lane, Configuration	David Hinkle, Graphics
Chester Everline, Constellation Probability of Success Analysis	Barbara Insua, Graphics
A Team, De	ecember 17, 2019
Justin Boland, Facilitator	Damon Landau, Mission Design
Paul Johnson, Asst Study Lead	Jonathan Murphy, Project Systems Engineering & Formulation
Kamal Oudrhiri. Communications Architectures & Research	Valerie Scott, Study Lead
Antranik Kolanjian, Cost	Mark Chodas, Assistant Study Lead
Claire Marie-Peterson, Documentation	Katherine Park, Visual Strategy
	ace, February 5–6, 2020
Justin Boland, Facilitator	Steven Zusack, Project Systems Engineering & Formulation
Randii Wessen. Architect	Mariko Burgin, Radar Science and Engineering
Paul Johnson, Asst Study Lead	Valerie Scott, Study Lead
Antranik Kolanjian, Cost	Alexander Austin, Systems Engineering
Claire Marie-Peterson, Documentation	Karla Hawkinson, Logistics
Damon Landau, Mission Design	5.1
	February 2020
Alfred Nash, Facilitator	Shelly Sposato, cPower
Aron Wolf, cACS	Matthew Devost, cPropulsion
Davide Sternberg, cACS	Matthew Kowalkowski, cPropulsion
William Jones-Wilson, cACS	Jonathan Murphy, cSystems
Roger Klemm, cCDS	Alexander Austin, cSystems
Karen Lee, cCDS	Alessandra Babuscia, cTelecom Systems
Marc Lane, cConfiguration	Nick Emis, cThermal
Antranik Kolanjian, cCost	Eric Sunada, cThermal
Jonathan Murphy, cDeputy Systems Engineer	Daniel Forgette, cThermal
Robert Miller, cDeputy Systems Engineer	Hared Ochoa, cThermal
Gregory Welz, cGround Systems	Karla Hawkinson, Logistics
Jeffrey Stuart, cMission Design	Laura Newlin, Planetary Protection
Ronald Hall, cPower	Zachary Dean, Planetary Protection
Dhack Muthulingam, cPower	Jonathan Murphy, Systems Engineer
Team X	, March 2020
Alfred Nash, Facilitator	Matthew Spaulding, Mechanical
Aron Wolf, ACS	Jeffrey Stuart, Mission Design
Roger Klemm, CDS	Laura Newlin, Planetary Protection
Karen Lee, CDS	Ronald Hall, Power
Daniel Kolenz, Configuration	Paul Woodmansee, Propulsion
Antranik Kolanjian, Cost	William Smythe, Science
Benjamin Donitz, Deputy Systems Engineer	Edward Benowitz. Software
Gregory Welz, Ground Systems	Kareen Badaruddin, SVIT
	Transcer David Main, OTT
Molora Larson Instruments	Jonathan Murnhy Systems Engineer
Melora Larson, Instruments Karla Hawkinson, Logistics	Jonathan Murphy, Systems Engineer Thaddaeus Voss, Telecom Systems

MOSAIC Motivating Questions

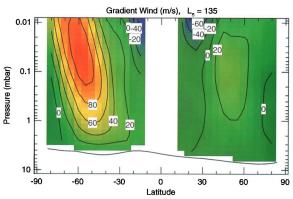
- 1. How do volatiles (e.g. H₂O and CO₂) move between the subsurface, surface, and atmosphere?
- 2. How does the Martian lower-middle atmosphere respond on meso- and global scales, to the diurnal and seasonal cycles of insolation?
- 3. How does coupling with the lower atmosphere combine with the influence of space weather to control the upper atmospheric system and drive atmospheric escape?



Ice-Atmosphere interactions


Numerous high latitude processes \rightarrow surface pressure and distribution of ice on Mars.

- Quantification of their effects is in its relative infancy.
- To adequately characterize surface-atmosphere flux, need simultaneous monitoring of shallow subsurface and surface for changes, and the lower atmosphere for effects.
- SAR and thermal monitoring would detect changes that result from these interactions.

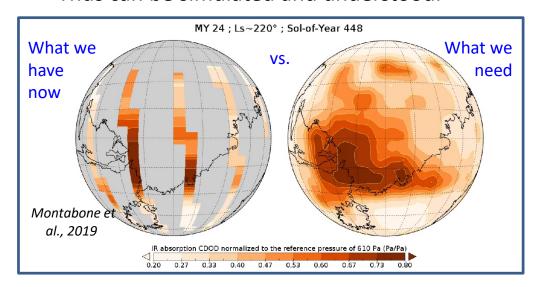

The Mysteries of Martian Winds

Knowledge of global winds is indirect: estimated from temperature measurements and the thermal wind relationship.

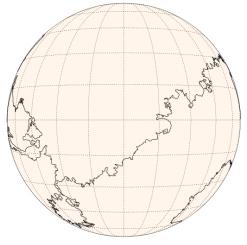
While useful to understand global dynamics, this approach is:

- inappropriate for winds in the tropics.
- far too imprecise for winds in synoptic systems everywhere

Direct measurement of winds are required to move from climatology to true Mars meteorology


Smith et al. (2001)

Global Views of Martian weather & climate


Dust Storm Development and diurnal cycle:

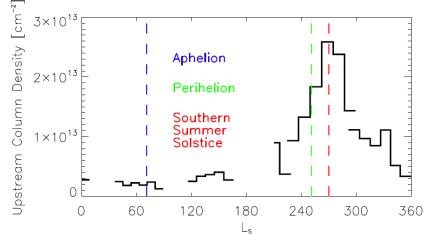
- Needs to be characterized from a synoptic, near-hemispherical viewpoint
- Thus can be simulated and understood.

Areostationary satellites provide the global perspective necessary to understand the storms

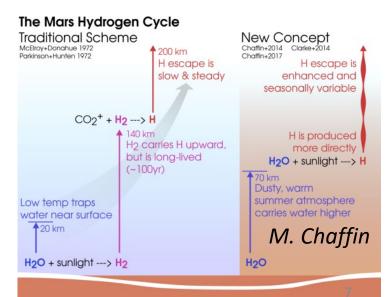
What MOSAIC will provide

Column Dust Opacity data from: Montabone et al., JGR, 2020

Lower/Upper Atmosphere Connections

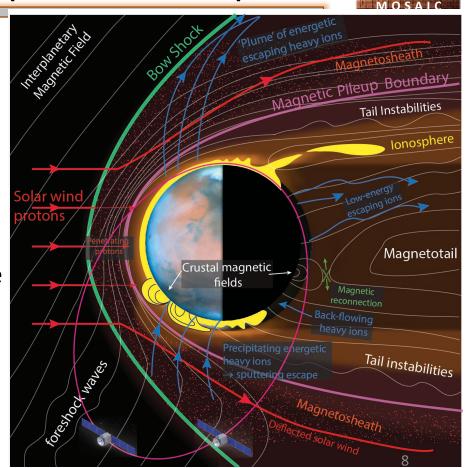


- Measured 10-20x seasonal variability in hydrogen loss to space requires enhanced lower/upper atmosphere interchange. H₂O transported to high altitudes.
- Mechanism for water transport unknown; multiple competing hypotheses.
- Need simultaneous measurements of the lower & upper atmosphere.

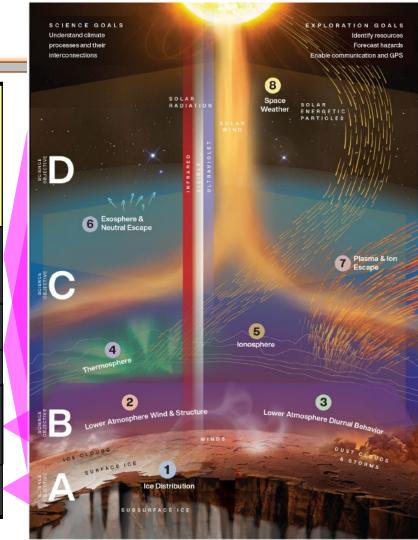

• Once transport mechanism is known, historical H loss (vastly different obliquity) can be

confidently modeled.

Exospheric hydrogen

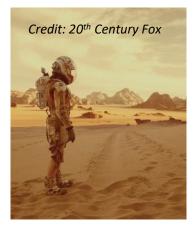

Halekas et al., 2017

Ionosphere-Magnetosphere & Escape


MOSALC

- Crustal magnetic fields create unique "hybrid" magnetosphere.
- Need coordinated multipoint in situ plasma measurements to:
 - Untangle spatial & temporal variability.
 - Measure real-time response to space weather.
 - Unravel chain of cause and effect as sun and solar wind energize ions to escape and precipitate.

Science Traceability


MOSAIC GOALS	Mission Objectives	Inv	estigations:	1. Ice distribution	2. Atmosphere structure	3. Atm. Diurnal behavior	4. Thermosphere	5. Ionosphere	6. Exosphere/neutral esc	7. Plasma /ion escape	8. Space weather
I. Understand Mars's present day	in the upstream throughout the	n sola e magr ere, se	netosphere and eparating spatial					√	√	√	√
climate processes and their	I.C: Correlate variability in the thermosphere,		The space weather environment				✓	✓	✓	√	✓
inter- connections,	ionosphere, an escape rates to		The lower-middle atmosphere.		✓	✓	✓	✓	√	\checkmark	
from the sub-surface to the solar wind	atmosphere on	e Mar meso	structure and tian lower-middle o- and global scales, iurnal, and seasonal		√	√					
	I.A: Characteriz between the su atmospheric re	ıbsurf	ace, surface and	✓	✓	✓					

Preparing for Human Exploration

MOSAIC GOALS	Exploration Objectives	Investigations	1. Ice distribution	2. Atmosphere structure	3. Atm. Diurnal behavior	4. Thermosphere	5. Ionosphere	6. Exosphere/neutral esc	7. Plasma /ion escape	8. Space weather	9. Tech Demonstration
II. Identify hazards,	Characterize potent ice resources to sup	cially extractable water oport ISRU.	✓								
characterize resources,	Allow accurate data weather forecasting			√	✓						
and demonstrate	Characterize neutra mesosphere/therm	ll winds in the osphere for aerobraking.				√					
technologies to enable the Human		rariability to mitigate communication and					✓		✓	√	
Exploration of Mars.	Demonstrate high-le communication bet orbit, and Earth.	oandwidth ween Mars surface, Mars									✓
	Characterize the en penetrating ions (> AU.	vironment of 10 MeV/nuc) at 1.4-1.6								✓	

<u>Relevant to NASA Exploration Goals.</u> knowledge gap-filling activities identified by Precursor Strategy Analysis Group (PSAG):

- Ice depth variation within the first meter (for drinking water & propellant synthesis). Activity D1-5, D1-6.
- 2. Weather forecasting: dust climatology (B1-1), model validation (A2-1), global-scale temperatures, wind, & aerosols (A1-1, A1-2, A1-3).
- 3. Communications & GPS: high-bandwidth comms (A4-2), delay-tolerant networking, Global positioning, and continuous Earth comm with all longitudes.

Goals to Investigations

OBJECTIVES SCIENCE OBJECTIVES

A Characterize volatile cycling

Characterize the structure and

dynamics of the Martian lower-

middle atmosphere on meso- and

global scales, and its geographic,

Conditions in

atmosphere.

The space

environment.

..

weather

the lower-middle

diurnal, and seasonal variability.

D Characterize fields and plasma

Characterize potentially ex-

Characterize the Mars atmo-

spheric state with sufficient spatial

sampling and cadence to allow

accurate data assimilation and

Characterize neutral winds in the

sphere (60 km-130 km) and their

variability with lower atmospheric conditions and solar activity.

Characterize the Mars ionospheric

state and variability sufficiently to determine its likely disruptive

effect on communications and

Characterize the environment of

penetrating ions (>10 MeV/nuc) at 1.38-1.62 AU with season and

Communication (DSOC), and re-

lay communication between Mars surface, Mars orbit, and Earth,

Demonstrate delay-tolerant networking, Deep Space Optical

positioning.

solar cycle.

mesosphere and lower thermo-

weather forecasting.

tractable water ice resources to support in situ resource utilization.

flows in the upstream solar wind

spatial from temporal variability. **EXPOLORATION OBJECTIVES**

and throughout the magnetosphere and upper ionosphere, separating

variability in the

thermosphere,

ionosphere.

and escape

between the subsurface, surface and atmospheric reservoirs.

MOSAIC Traceability

SCIENCE GOALS EXPLORATION GOALS Understand climate Identify resources processes and their Forecast hazards interconnections Enable communication and GPS 8 SOLAR RADIATION ENERGETIC PARTICLES Neutral Escape Plasma & Ion Atmosphere Wind & Structure Lower Atmosphere Diurnal Beha SURFACE ICE Ice Distribution UBSURFACE ICE

Investigations to Instruments

Table 1-2

	INVESTIGATIONS	MEASUREMENTS	INSTRUMENTS+	FUNCTIONAL REQUIREMENTS
1	Measure the three-dimensional distribution of ice from the surface to 10 m below.	Subsurface ice abundance derived from dielectric constant Surface thermal inertia Surface water ice & albedo	P-band SAR & Sounder Visible imager	<400 km circular near-polar orbit. Hi mass and powe
2	Measure the geographic and altitude distribution of pressure, winds, aerosol concentrations, water vapor, ozone, and temperatures in the Mars lower and middle atmosphere.	Vertical profiles (0-80 km) of: temperature, winds, dust, H2O and CO2 ices, H2O vapor, O3 Surface temperature and pressure	Thermal IR radiometer Wind LIDAR Sub-mm sounder	<400 km circular near-polar orbit
3	Measure the complete diumal and geographic behavior of the atmo- sphere and evolution of Martian dust and ice clouds.	Visible and/or UV imagery of clouds/hazes Column opacities/abundances of dust, H2O, ozone, and CO2 ice Temp/pressure profiles 0 - 40 km	Visible imager Near IR spectrometer Thermal IR radiometer Radio occultation	Four Areostational orbits, spaced evenly in longitude
		Vertical profiles (0-80 km) of temperature, dust, H2O and CO2 ices, H2O vapor, spread evenly across 8 local times		Four <400 km circular near-polar orbits, spaced evenly in local time
4	Measure the global 3-D composition, structure, and winds in Mars's thermosphere.	Vertical profiles (90 - 200 km) of: • Horizontal wind velocity • Density and temp. of O, CO, N2, CO2	Wind Doppler inter- ferometer FUV/MUV spectro- graph	<400 km circular near-polar orbit
5	Measure the global 3-D structure of Mars ionosphere.	Vertical profiles (90-400 km) of: • electron density • electron temperature	Langmuir probe Radio Occultation	< 400 km circular AND elliptical orbit < 170 km periapse
6	Measure the 3-D density and temperature structure of Mars's hydrogen and oxygen exospheres.	Vertical profiles (200 - 30,000 km) of: • O density and temperature • H density and temperature	FUV/EUV spectro- graph	Circular orbit >10,000 km altitud
7	Measure (from multiple viewpoints) fluxes of light and heavy ions, magnetic field and topology, plasma waves, and electric fields within and between all regions of Mars' hybrid magnetosphere.	Magnetic field Electric field Suprathermal electron pitch angle distributions magnetic topology I on mass, energy, and angular distributions. Thermal electron temperature and density Plasma waves	Fluxgate magne- tometer Search coil magne- tometer lon energy/angle/ mass Electron energy/ angle Electric fields	2 spacecraft Orbit inclination ~75°, Apoapsis >6000 km, <170 km periapse
8	Measure magnetic field and plasma conditions in the upstream solar wind, and solar extreme ultraviolet irradiance.	Magnetic field Solar wind density, speed, temp Solar EUV irradiance Solar Energetic Particle Flux	Fluxgate Magne- tometer Ion energy/angle Electron energy/ angle Extreme UV monitor Energetic ion/electron	2 spacecraftCircul orbit >10,000 km altitude
9	formance onboard process	t networking (DTN), high-per- sing, high-bandwidth optical usly available relay communi- ce and Farth via relay.	Electra/Relay antennas Optical communication DTN protocols	All

MOSAIC

GOALS

SCIENCE

Mars's

climate processes

and their

from the

connections.

sub-surface

to the solar

EXPLORATION

hazards

es, and demonstrate

characterize resourc-

technologies

to enable the Human

Exploration of Mars.

Understand

present day

KEY MOTIVATING

How do volatiles move

between the subsur-

Martian lower-middle

atmosphere respond

global scales, to the

How does coupling

from the lower atmo-

sphere combine with

the influence of space

SEPs, and solar EUV)

atmospheric system++ and drive atmospheric

How, where, and when

can future astronauts

water ice resources?

With what degree of

accuracy can Martian

How will mesospheric

winds affect aerobrak-

How will space weath-

er effects on the Mars

surface-orbit communi-

particle radiation affect

Can reliable high-band-

ionosphere affect surface-surface and

How will energetic

astronauts in Mars

width Earth-Mars communication be

maintained?

weather be forecast,

for operational pur-

and thermospheric

ing spacecraft?

poses?

access extractable

weather (solar wind,

to control the upper

seasonal cycle of

insolation?

escape?

diumally, on meso- and

face, surface, and

atmosphere?

How does the

QUESTIONS

Science drives mission architecture

ELLIPTICAL

PLATFORM

AREO

SMALLSAT B

Areo Smallsat B1

Areo Smallsat B 2

Elliptical Orbiter 1

Elliptical Orbiter 2

Electron energy/angle

Fluxgate Magnetometer

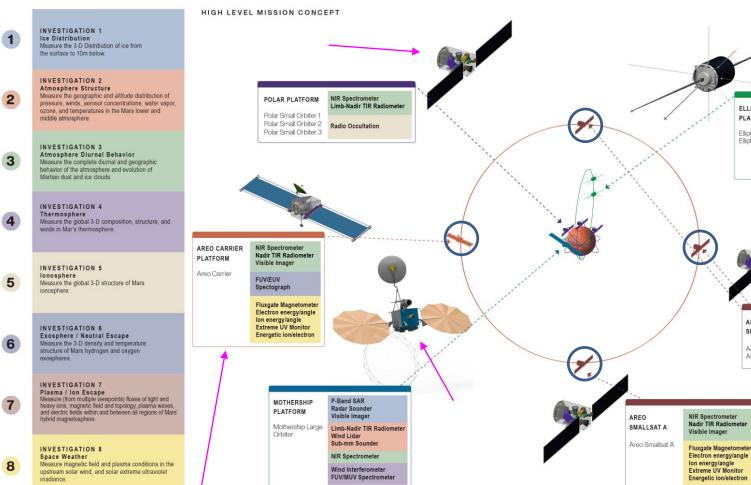
Ion energy/angle/mass

Electric Fields

magnetometer

Radio Occultation Langmuir Probe

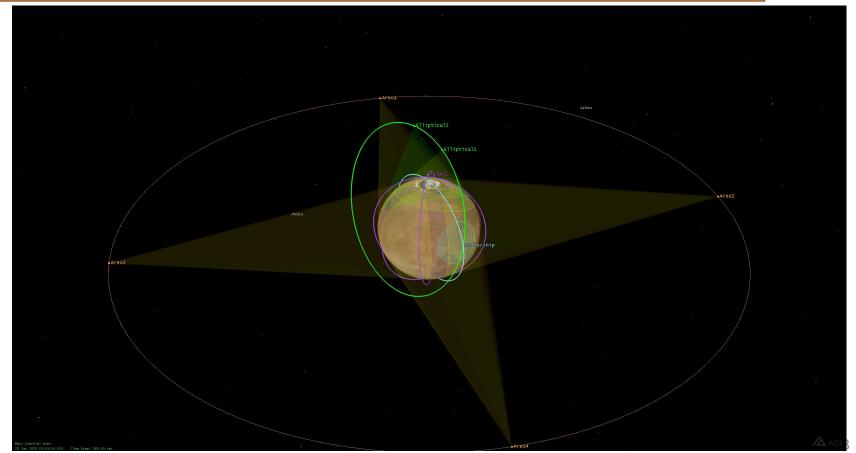
NIR Spectrometer


Visible Imager

+ Refer to 3.1, B.1.4, D.1 for detailed

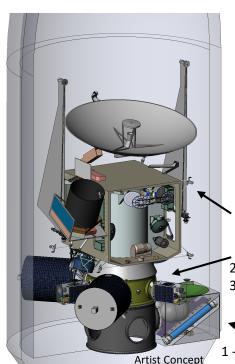
information on instruments

Nadir TIR Radiometer

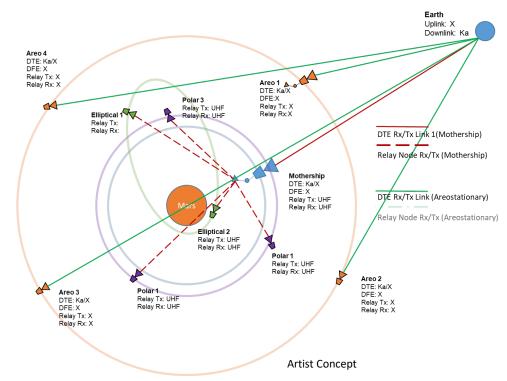

Search coil

Radio Occultation

MOSAIC constellation movie

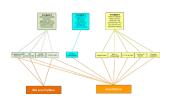


MOSAIC Architecture

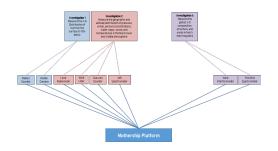


MOSAIC By the Numbers

- 10 Spacecraft Elements
- 49 Science Instruments
- 3 Orbital Perspectives
- 1 Launch Vehicle
- 1 Large Orbiter
- 2 Elliptical ESPA-Class S/C
- 3 Polar ESPA-Class S/C
- 1 Areostationary ESPA Class
- 3 Small Areostationary S/C


MOSAIC Telecommunications Architecture

MOSAIC cost can spread over 3 Mars launch opportunities



Spacecraft delivery via rideshare or propulsive tug element

- 4 Areostationary SSc
- Delivered via rideshare low DV prop capability
- Commercial SSc Builder (target <40M per ssc bus)
- DTE Using Iris and commercial antenna
- Optional: relay capability for future low Mars orbiters

- 4-5 SSc
- Delivered via rideshare very low DV prop capability
- Commercial SSc Builder (target <25M per SSc bus)
- Relay using exisiting relay network including Areo network

Icemapper or another mission

2026

2028

MOSAIC Cost & Descopes

Platforms:			N	1othersh	nip			Polar SmallSa			otical IISats		eostation Satellit		Traditional cost	Newspace cost*	Preserves	Loses
Instrument: Numbers of each instrument	P-band Radar		Sounder	Doppler Interfer- ometer	FUV/MUV Spectrogr aph	TIR** radiometer Visible Camera NIR Spectr.		Mini TIR radiometer NIR spectrometer	Radio Occultati -includes mothersl	ion sp	phere lasma	EUV/FUV Spectro- graph		Mini TIR radiometer Viz. camera NIR spectr.	FY25 \$M, 50% A-D, 25% E-F (30% A-D, 15% E-F)	FY25 \$M, 50% A-D, 25% E-F (30% A-D, 15% E-F)		
Investigation	1	2	2	4	4	1,2		2, 3	3, 5	5,	, 7	6	8	3				
Baseline (in final report)	1	1	1	1	1	1	1	3	6		2	1	2	4	4,220 (3,719)	4,060 (3,581)	Full MOSAIC Capability	
No Ice Mapping		1	1	1	1	1	1	3	6		2	1	2	4	3,436 (3,034)	3,277 (2,896)	Full top to bottom atmosphere sampling	Exchange of water with subsurface
Descope 1			1			1	1	3	6		2	1	2	4	3,073 (2,722)	2,910 (2,581)	Comprehensive lower atmosphere sampling	Above + Thermosphere + Winds except 10-80 km
Descope Lite			1			1**	1	2	4		1	1	1	3	2,409 (2,212)	1,484 (1,364)	Adequate lower atmosphere sampling	Above + Full diurnal coverage + lon escape short variability + Full space weather coverage
Threshold Plus			1			1**							1	3	1,445 (1,332)	911 (841)	Global/diurnal perspective with winds and ground truth (i.e. side & top views of same atmosphere column)	Above + Boundary layer + Ionosphere + Magnetosphere +Exosphere & neutral escape
Threshold						1 **								3	1,023 (942)	620 (571)	Global/diurnal perspective plus ground truth	Above + Winds + Space Weather
Threshold Class D						1 **								3	561 (514)	376 (344)***	Global/diurnal perspective plus ground truth	Class B reliability

^{*} Low end of triangular distribution from final report.

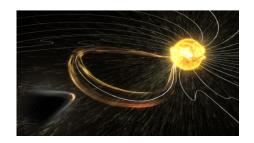
^{**} TIR radiometer could be AMCS (9 kg, 18 W) in higher cost cases or mini-MCS (3.5 kg, 8 W) in lower cost cases.

^{***} SIMPLEX-style costing results in ~50% lower costs [not a JPL estimate].

MOSAIC: Sharing the Burden

HEOMD may fund:

- Ice mapping
- Weather monitoring.
- X-band surface to areostationary relay comm.
- Radiation monitoring


STMD may fund:

- Delay-tolerant networking
- High-bandwidth Earth-Mars communications.

Heliophysics Division may fund:

- Space weather monitoring
- Magnetosphere measurements (e.g. ESCAPADE is funded by HPD)

NASA SMD divisions & other directorates

Other space agencies:

- All copies of one instrument
- All copies of one platform
- Active coordination only required for occultations

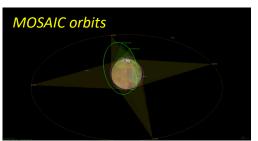
European Space Agency

Commercial partners:

SpaceX May wish to partner with HEOMD.

Mars Science: separate treatment?

Mars & Lunar science is in a different category. Much more mature than other planets.


- (mostly) past discovery phase.
- Well into "characterization & understanding" phase. Target for human exploration.
- Arguably should be treated separately from a strategic & funding perspective?

	Flybys	Orbiters	Probes+Landers	Rovers &/or Crew	Aircraft	Networks
Mercury	Few	1				
Venus	Many	4	Few short-lived			
Earth	N/A	hundreds	millions	millions	thousands	many
Moon	Many	43	22	10	N/A	
Mars	Many	16	10	5	1	
Jupiter	4	2	1			
Jupiter moons	Few each					
Saturn	3	1				
Saturn moons	Many		1			
Uranus + moons	1					
Neptune+moons	1					
Pluto & KBOs	1					18

The Case for MOSAIC

- MOSAIC represents a quantum leap in our understanding of the Mars climate system.
 - Simultaneous observations of climate regions will reveal motion of matter/energy within/between them.
 - 1st time global wind characterization.
 - Help prepare for human exploration.
- Full Constellation has a high price tag, however:
 - Mars orbiter heritage reduces need for reserves.
 - Other missions' simultaneous observations can help.
 - Cost-sharing with HEOMD, STMD, HPD, private sector.
 - Contributions from other agencies (instruments, SC).
 - Threshold mini-constellation (4 SC) fits within Discovery or less, depending on mission class.

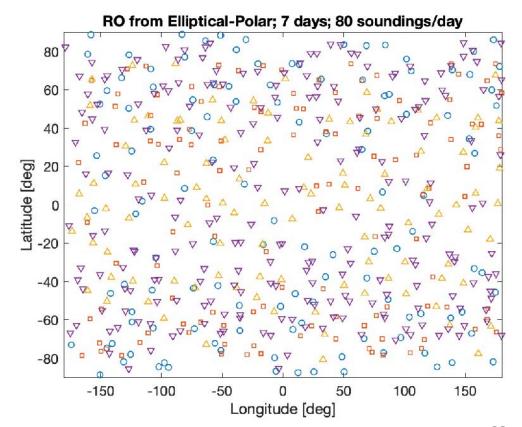
MOSAIC in Single 5 m fairing

Backup:

Can other missions substitute pieces?

• Existing/planned spacecraft can fulfill aspects of MOSAIC Investigations, but only if measurements are simultaneous.

Mission Status	Missions & Instruments	Investigations:	1. Ice distribution	2. Atmosphere structure	3. Atm. Diurnal behavior	4. Thermosphere	5. Ionosphere	6. Exosphere, neutral escape	7. Plasma & ion escape	8. Space weather
Operational or	Mars Reconnaissance Orbi	ter MCS (2005-								
In	MAVEN Particles & Fields	Package (2013-								
Development	MAVEN IUVS (2013-									
	Trace Gas Orbiter NOMAD	(2016-								
	Emirates Mars Mission EX	I, EMUS, & EMIRS (2021-								
	China Tianwen-1 ion analy	zer & magnetometer (2021-								
	NASA ESCAPADE (2026-	*not confirmed								
	JAXA-ESA MMX MacrOmega, MSA, & IREM (2025-2028)									
Concepts	Ice Mapper									
	COMPASS									

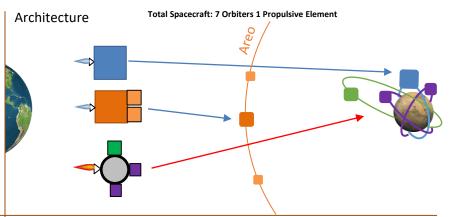

Fulfillment:

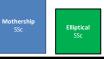
Baseline						
Adequate						
Partial						
Marginal						
None						

Radio Occultations probe PBL & Ionosphere

- Occultations provide:
 - Planetary boundary layer pressure/temperature profiles.
 - Ionospheric density profiles.
- Pre-MOSAIC: Singlespacecraft-to-earth occultations extremely limited by cadence and geometry.
- MOSAIC's inter-spacecraft links provide unprecedented remote sensing of the PBL and ionosphere.

Backup: MOSAIC Descope Option Charts


Descope Lite


Platforms:	Mothership					Polar Elliptical SmallSats SmallSats			Areostationary Satellites					
Instrument	P-band Radar	Wind LIDAR	Sub-mm Sounder	Interfer-	ph	TIR radiometer Visible Camera NIR Spectr.	У	radiometer NIR	Radio Occulta (include mothers	tion s	sphere Plasma		Weather Package	Mini TIR radiometer Viz. camera NIR spectr.
Investigation	1	2	2	4	4	1,2		2, 3	3, 5		5, 7	6	8	3
Descope Lite			1			1 **	1	2	4		1	1	1	3

Preserves: Adequate lower atmosphere sampling

Loses: Exchange of water with subsurface. Thermosphere Winds except 10-80 km Full diurnal coverage Ion escape short variability Full space weather coverage

Platforms

Platform	Mothership	Elliptical	Polar	Areo Carrier*	Areo B	Prop. Element
# of Spacecraft	1	1*	2*	1	2	1
# of Instruments	5	6	3	7	3	0
Spacecraft Analogue	Areo Carrier;	No change from report				
Payload Mass (kg)	41	20	4.2	34	4.2	n/a
Data Volume (Gb)	10.8^	0.5	1.4	16.2	0.3	
Spacecraft Wet Mass (kg)	800^	235	92	800	92	~1200
Orbit	300 km x 92.8°	1500 x 6000 km x 75°	300 km x 92.8°	17031 km x 0°	17031 km x 0°	
ΔV Budget (m/s)	7500^	500	250	5000	50	~2000
Telecom. Architecture	DTE; Ka Band	Relay to MS	Relay to MS	DTE; Ka Band	DTE	DTE X-Band

Cost/Risk

	Traditional	NewSpace†				
	FY25(\$M),50% A-D cst					
Flight System Total	710	435				
Other Costs	1549	949				
Total w/o LV	2259	1384				
Launch Vehicle	150	100				
Total	2409	1484				

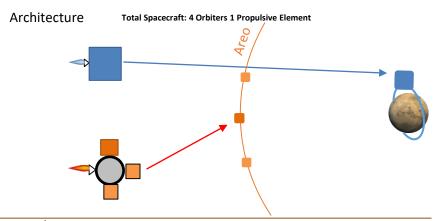
	Traditional	NewSpace1
	FY25(\$M),3	0% A-D cst rs
Flight System Total	710	435
Other Costs	1352	829
Total w/o LV	2062	1264
Launch Vehicle	150	100
Total	2212	1364

	Traditional	NewSpace†
	FY25	(\$M)
Mothership WBS6	133	60
Mothership Payload	53	53
Elliptical 1 WBS6	42	19
Elliptical 1 Payload	29	29
Polar 1 WBS6	32	14
Polar 1 Payload	8	8
Polar 2 WBS6	19	8
Polar 2 Payload	5	5
AreoCarrier WBS6	133	60
AreoCarrier Payload	61	61
AreoB 1 WBS6	32	14
AreoB 1 Payload	30	30
AreoB 2 WBS6	19	8
AreoB 2 Payload	18	18
PropElement 1 WBS6	60	30
PropElement 2WBS6	36	18
Flight System Total	710	435

Cost estimates at CML3, use payload costs from final report, use chemical propellant cruise stage cost estimates from recent similar studies, and estimate the ratio of flight hardware cost to total cost w/o LV from final report numbers (other costs).

† low end of triangular distribution numbers from final report appendix

Note: Assumes a Falcon Heavy reusable similar to Psyche LV 24


Threshold Plus

Platforms:			М	othersh	ip			Polar SmallSa			iptical allSats			
	P-band Radar	Wind LIDAR	Sounder	Doppler Interfer- ometer	Spectrogra ph	TIR radiometer Visible Camera NIR Spectr.	У	radiometer NIR	Radio Occulta (include mothers	tion s	sphere Plasma	Spectro-	Weather	Mini TIR radiometer Viz. camera NIR spectr.
Investigation	1	2	2	4	4	1,2		2,3	3, 5		5, 7	6	8	3
Threshold plus wind & space weather			1			1**							1	3

Preserves: Global/diurnal perspective with winds and ground truth (i.e. side & top views of same atmosphere column)

Loses: Above +
Boundary layer
Ionosphere
Magnetosphere
Exosphere & neutral escape

Platforms

Platform	Mothership	Areo A^	Areo B	Prop. Element
# of Spacecraft	1	1	2	1
# of Instruments	5	6	3	0
Spacecraft Analogue	Areo Carrier;	No change from report	No change from report	
Payload Mass (kg)	41 ^	12	4.2	n/a
Data Volume (Gb)	10.8^	1.53	0.3	
Spacecraft Wet Mass (kg)	800	95^	92	~1200
Orbit	300 km x 92.8°	17031 km x 0°	17031 km x 0°	
ΔV Budget (m/s)	7500	5000	50	~2000
Telecom. Architecture	DTE; Ka Band	DTE	DTE	DTE X-Band

Cost/Risk

	Traditional	NewSpace†
	FY25(\$M),	50% A-D est rsv
Flight System Total	407	255
Other Costs	888	556
Total w/o LV	1295	811
Launch Vehicle	150	100
Total	1445	911

	Traditional	NewSpace†
	FY25(\$M),3	0% A-D cst rsv
Flight System Total	407	255
Other Costs	775	486
Total w/o LV	1182	741
Launch Vehicle	150	100
Total	1332	841

	Traditional	NewSpace†
	FY25	(\$M)
Mothership WBS6	133	60
Mothership Payload	53	53
AreoA 1 WBS6	35	15
AreoA 1 Payload	27	27
AreoB 1 WBS6	32	14
AreoB 1 Payload	30	30
AreoB 2 WBS6	19	8
AreoB 2 Payload	18	18
PropElement 1 WBS6	60	30
Flight System Total	407	255

Cost estimates at CML3, use payload costs from final report, use chemical propellant cruise stage cost estimates from recent similar studies, and estimate the ratio of flight hardware cost to total cost w/o LV from final report numbers (other costs).

† low end of triangular distribution numbers from final report appendix

Note: Assumes a Falcon Heavy reusable similar to

Psyche LV

Threshold

Platforms:		Mothership				Polar SmallSa			iptical allSats					
	P-band Radar	Wind LIDAR	Sub-mm Sounder	Interfer-	ph	TIR radiometer Visible Camera NIR Spectr	У	radiometer NIR	(includ	ation les		Spectro-	Weather Package	MiniTIR radiometer Viz. camera NIR spectr.
Investigation	1	2	2	4	4	1,2		2, 3	3, 5		5, 7	6	8	3
Threshold						1**								3

Preserves: Global/diurnal perspective plus ground truth

Loses: Above + Winds Space Weather

Architecture Total Spacecraft: 4 Orbiters 2 Propulsive Element

Platforms

Platform	Mothership	Areo B	Prop. Element
# of Spacecraft	1	3	2
# of Instruments	3	3	0
Spacecraft Analogue	No change from report	No change from report	
Payload Mass (kg)	4.2	4.2	n/a
Data Volume (Gb)	1.4	0.3	
Spacecraft Wet Mass (kg)	92	92	~1200
Orbit	300 km x 92.8°	17031 km x 0°	Platform Specific
ΔV Budget (m/s)	250	50	~2000
Telecom. Architecture	DTE	DTE	DTE X-Band

Cost/Risk

	Traditional	NewSpace†
	FY25(\$M),5	0% A-D cst rsv
Flight System Total	290	176
Other Costs	633	384
Total w/o LV	923	560
Launch Vehicle	100	60
Total	1023	620

	Traditional	NewSpace†
	FY25(\$M),3	0% A-D cst rsv
Flight System Total	290	176
Other Costs	552	335
Total w/o LV	842	511
Launch Vehicle	100	60
Total	942	571

	Traditional	NewSpace†
		(\$M)
Polar 1 WBS6	32	14
Polar 1 Payload	8	8
Polar 2 WBS6	19	8
Polar 2 Payload	5	5
AreoB 1 WBS6	32	14
AreoB 1 Payload	30	30
AreoB 2 WBS6	19	8
AreoB 2 Payload	18	18
AreoB 3 WBS6	13	5
AreoB 3 Payload	18	18
PropElement 1 WBS6	60	30
PropElement 2WBS6	36	18
Flight System Total	290	176

Cost estimates at CML3, use payload costs from final report, use chemical propellant cruise stage cost estimates from recent similar studies, and estimate the ratio of flight hardware cost to total cost w/o LV from final report numbers (other costs).

† low end of triangular distribution numbers from final report appendix

Note: Assumes a Falcon 9 reusable

Threshold Class D

Platforms:	Mothership						Polar SmallSa		iptical allSats	Areostationary Satellites				
	P-band Radar	Wind LIDAR	Sounder	Interfer-	ph	TIR radiometer Visible Camera NIR Spectr.	У	radiometer NIR	Radio Occultatio (includes mothership		sphere Plasma		Weather Package	MiniTIR radiometer Viz. camera NIR spectr.
Investigation	1	2	2	4	4	1,2		2, 3	3, 5		5, 7	6	8	3
Threshold Class D						1**								3

Preserves: Global/diurnal perspective plus ground truth

Loses: Class B reliability

Architecture

Platforms

Platform	Mothership	Areo B
# of Spacecraft	1	3
# of Instruments	3	3
Spacecraft Analogue	No change from report	No change from report
Payload Mass (kg)	4.2	4.2
Data Volume (Gb)	1.4	0.3
Spacecraft Wet Mass (kg)	92	92
Orbit	300 km x 92.8°	17031 km x 0°
ΔV Budget (m/s)	250	50
Telecom. Architecture	DTE	DTE

Cost/Risk

	Traditional	NewSpace†
	FY25(\$M),5	0% A-D cst rsv
Flight System Total	170	115
Other Costs	371	251
Total w/o LV	541	366
Rideshare*	20	10
Total	561	376

	Traditional	NewSpace†
	FY25(\$M),3	0% A-D cst rsv
Flight System Total	170	115
Other Costs	324	219
Total w/o LV	494	334
Rideshare*	20	10
Total	514	344

Traditional	NewSpace†				
FY2	5(\$M)				
32	14				
8	8				
32	14				
30	30				
19	8				
18	18				
13	5				
18	18				
	FY2 32 8 32 30 19 18				

Cost estimates at CML3, use payload costs from final report, use chemical propellant cruise stage cost estimates from recent similar studies, and estimate the ratio of flight hardware cost to total cost w/o LV from final report numbers (other costs).

- † low end of triangular distribution numbers from final report appendix
- * Assumes the spacecraft is deployed at Mars in the final orbit required_

Comments and Observations (Study lead S. Matousek)

- Descope options beyond "Descope 1" from final report cost estimates are at CML3 with larger uncertainty, though largely based on final report design team estimates
- Recommend further study to engage with commercial small spacecraft bus providers to understand cost savings using commercial buses and commercial propulsive tugs (e.g. propulsive ESPA) to support the payloads.
- The descope options (except "descope 1" in the PMCS study report) are all ESPA class or smaller spacecraft form factors. These smallsat platforms could also be accommodated as a rideshare on a Mars-bound rocket.
- If a communications infrastructure was in place prior to placement of the
 constellation the cost savings would be realized in the telecom transceiver for
 direct-to-earth (DTE), reduction of antenna diameter, and reduction or removal of
 any antenna pointing mechanisms. This cost savings is likely small for MOSAIC.

PI (R. Lillis) Perspective on SIMPLEX costing

- JPL NewSpace cost estimate of \$376M for Threshold Class D is > 2x higher than the existing SIMPLEX missions' \$55M costs would imply.
- If SIMPLEX missions turn out to be viable, then smallsat Mars constellations could be significantly lower cost.

	# small SC	Payload mass	A-E cost
Trailblazer	1	~15 kg	\$55 M
Janus	2	<4 kg	\$55 M
ESCAPADE	2	8 kg	\$55 M
MOSAIC Threshold Class D	4	4.8 kg	\$376 M

^{*}NOTE: Opinion of PI only. Does not reflect the opinion of JPL.

Backup: MOSAIC Relevance and Rationale

MOSAIC Science Impact

Simultaneous measurements of all "regions" of the climate system will:

- Characterize geographic, diurnal, mesoscale, and seasonal behavior.
- Lead to groundbreaking improvements in our understanding of how climate variables correlate with one another.
 - I.e. uncover how different parts of the climate system "talk" to each other.
- Spur understanding of the physical processes occurring within and between regions.

Charcterizing the effect of \downarrow on \rightarrow :			\	Ice		Lower Atmosphere structure Thermo- sphere			-	lono- sphere			Exosp here		Magn etosp here		Space weather drivers						
MOSAIC will enable, w.r.t. current/planned observations:		ne?	es.				ates									l escape		a				S	
Groundbre	_		alo	ırfa		e e		lens	ပ္သ	e e		so					utra		scap				icle
improvem	ent		jzed	ısqı		nss		ouo	ami	nss	uo	ami	sity	uo			/Ne		n e	L			Pan
Significant	Improven	nent	teri	N St	١,,	pre		2/	ĮŽ,	pre	siti	dyn	den	siti	ics	ıre	ics/	spi	8 0	vina		3	tic
Incremental Improvement		Characterized alone?	Shallow Subsurface	Surface	Temp, pressure	Dust	H2O (g) /condensates	Wind/dynamics	Temp, pressure	Composition	Wind/dynamics	Temp, density	Composition	Dynamics	Structure	Dynamics/Neutral	E, B Fields	Flows & ion escape	Solar wind	IMF	Solar EUV	Energetic Particles	
Ice	Shallow subsurfac	e	В		BPPB First systematic observations of subsurface material propert						/	Areostation observatio											
	surface		1	В		В	В	1	Р											_			
Lower Atmo- sphere	Temp, pre	essure	1	В	1		1	1	В	В	В	Ρ	В	В	Р	В	В	Ρ	Р	1			tema nosph
	Dust		ı	Р	В	I		В	Ρ	В	В	Ρ	В	В	Р	В	В	Ρ	Р	Ш		wii	nd .
	H₂O/cond	lensates	В	Р	В	I	1	4	-	В	В	Ρ	В	В	Р	В	В	Р	Р	L	me	asur	emen
эрпеге	Wind/dyn	namics	Р		Р	Р	Р	Р		Ρ	Ρ	Ρ	Р	P	P	P	P	P	Р	\leq_{Γ}		l High	-res
Thermo-	Temp, pre	essure	1								1	P	1	1	Ρ	1	1	В	В		obs	erva	tions
sphere	Composit		1							1		Ρ	-	1	Ρ	1	1	В	В				ls an vapo
Spriere .	Wind/dyn	namics	Р							Р	Ρ		Ρ	Р	P	1	P	Р	Р	L		cyct	•mat
Iono-	Temp, dei		ı	Ц				tion +			7	Ρ		В	В	В	В	В	В	\Box		mos	pher
sphere	Composit	Composition			mu ionos			situ asmt				Ρ	1	_	В	В	В	В	В		mea	win sure	d ment
Spriere	Dynamics	:	В	_						В		P	В	В		В	В	В	В	_			
5	Structure		1		Tex				inuo	us			1	1	В		В	В	В				
Exosphere	Neutral E	scape	В	L,				oring		Ľ			В	В	В	В		В	В				
Magnetos	E, B fields		1				ated Iasm			В	В	Ρ	В	В	В	В	В		В				
phere	Flows & id		1	L			men		-	В	В	P	В	В	В	В	В	В					
C	Solar win	d	М				ie so			В	В	Ρ	В	В	В	В	В	В	В				
Space	IMF		М				& IMI			В	В	Ρ	В	В	В	В	В	В	В				
weather	Solar EUV		М	L						1	1	Р	1	1	P	1	В	В	В				
drivers	Energetic Particles		М					Р		В	В	P	В	В	Р								
Current degree of understanding enabled by Mostly We available understood		Vell-		(I)In at le impe	ast	one			(B) Basic understanding but many issues remain						(P) Poor understanding and/or based solely on models.				ls.	di	rect	ctio	

<u>MEPAG.</u> Goal II "Understand the processes and history of climate on Mars":

- A1. Constrain the processes that control the present distributions of dust, water, & carbon dioxide in the lower atmosphere, at daily, seasonal & multi-annual timescales.
- A2. Constrain the processes that control the dynamics & thermal structure of the upper atmosphere & surrounding plasma environment.
- A4. Constrain the processes by which volatiles & dust exchange between surface & atmospheric reservoirs.
- **C3.** Determine present escape rates of key species & constrain the processes that control them.

Mars Science Goals, Objectives, Investigations, and Priorities: 2020 Version

Mars Exploration Program Analysis Group (MEPAG)

Prepared by the MEPAG Goals Committee:

Don Banfield, Chair, Cornell University (banfield@astro.cornell.edu)

Representing Goal I: Determine If Mars Ever Supported, or Still Supports, Life
Jennifer Stern, NASA Goddard Space Flight Center (Jennifer, C. Stern@nasa.gov)
Alfonso Davila, NASA Ames (alfonso.davila@nasa.gov)

Sarah Stewart Johnson, Georgetown University (sarah.johnson@georgetown.edu)
Representing Goal II: Understand The Processes And History Of Climate On Mars

David Brain, University of Colorado (David Brain@lasp.colorado.edu)

Robin Wordsworth, Harvard University (<u>rwordsworth@seas.harvard.edu</u>)

Representing Goal III: Understand The Origin And Evolution Of Mars As A Geological System
Briony Horgan, Purdue University (briony@purdue.edu)

Rebecca M.E. Williams, Planetary Science Institute (williams@psi.edu)

Representing Goal IV: Prepare For Human Exploration

Paul Niles, NASA Johnson Space Center (paul.b.niles@nasa.gov)

Michelle Rucker, NASA Johnson Space Center (michelle.a.rucker@nasa.gov)
Kevin Watts, NASA Johnson Space Center (kevin.d.watts@nasa.gov)

Mars Program Office, JPL/Caltech

Serina Diniega (Serina.Diniega@ipl.nasa.gov)
Rich Zurek (richard.w.zurek@jpl.nasa.gov)
Dave Beaty (david.w.beaty@jpl.nasa.gov)

Recommended bibliographic citation:

MEPAG (2020), Mars Scientific Goals, Objectives, Investigations, and Priorities: 2020. D. Banfield, ed., 89 p. white paper posted March, 2020 by the Mars Exploration Program Analysis Group (MEPAG) at https://mepag.jpl.nasa.gov/reports.cfm.

2013-2022 Decadal Survey calls for a mission like MOSAIC, stating:

"Fundamental advances in our understanding of modern climate would come from a complete determination of the three-dimensional structure of the martian atmosphere from the surface boundary layer to the exosphere. This should be performed globally, ideally by combining wind, surface pressure and accurate temperature measurements from landed and orbital payloads."

VISION VOYAGES

for Planetary Science in the Decade 2013-2022

Committee on the Planetary Science Decadal Survey

Space Studies Board

Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu

Concept maturity/relationship to SAGs.

NEX-SAG and ICE-SAG outline the needed measurements in the lower-and middle atmosphere. BUT:

- SAGs didn't account for recent discoveries:
 - Strong relationships between lower/middle atmospheric dynamics and escape from the upper atmosphere.
 - Extreme weather in mesoscale systems.
- This concept is technically immature at present. We need to:
 - Understand the risks and challenges of flying and operating a mothership with several linked daughtercraft in the Mars environment
 - Specify the resolution and sampling frequency needed to understand extreme weather at sub-100 km scales.

<u>Relevant to NASA Exploration Goals.</u> MOSAIC fulfills *seven* high-priority knowledge gap-filling activities identified by PSAG:

- Ice depth variation within the first meter (for drinking water & propellant synthesis). Activity D1-5, D1-6.
- Weather forecasting: dust climatology (B1-1), model validation (A2-1), global-scale T, wind, aerosols (A1-1, A1-2, A1-3).
- Communications: deep space optical comms (A4-2), delay-tolerant networking, and continuous relay-to-Earth from any Mars longitude.

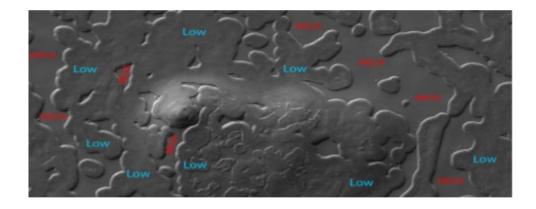
In LEO
Commercial & International partnerships

In Cislunar Space
A leturn to the moon for long-term exploration

On Mars
Research to reform future

Backup: MOSAIC Investigations

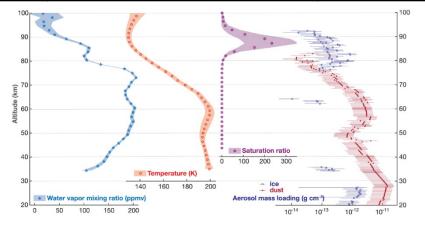
Science Investigations


Marie Bridge Co.	
ALC: UNKNOWN	ALC: UNKNOWN
# 114 4 4 1	
11-121-11-1	and the same of
MO	SAIC

Investigations *	Magguramanta**	In about the contract of the c	Platforms
Investigations *	Measurements**	Instruments	
1. Measure the three-dimensional distribution of ice from the surface to 10 m below.	Subsurface ice abundance derived from dielectric constant. Surface thermal inertia Surface water ice & albedo	P-band radar with VV or HH polarization. Thermal IR imager Visible camera	Mothership
2. Measure the geographic and altitude distribution of pressure, winds, aerosol concentrations, water vapor, ozone, and temperatures in the Mars lower and middle atmosphere.	Vertical profiles (0-80 km) of: temperature, winds, dust, $\rm H_2O$ and $\rm CO_2$ ices, $\rm H_2O$ vapor, $\rm O_3$. Surface temperature and pressure.	Microwave/sub-mm limb and nadir sounder Thermal infrared spectrometer/radiometer Near-infrared spectrometer LIDAR	Mothership
3. Measure the complete diurnal and geographic behavior of the atmosphere and evolution of Martian dust and ice clouds.	Visible and/or UV imagery of clouds/hazes Column opacities/abundances of dust, $\rm H_2O$, ozone, and $\rm CO_2$ ice Temp/pressure profiles 0 - 40 km	Visible and/or UV imager NIR spectrometer Thermal infrared spectrometer Radio Occultation	Areo-stationary
	Vertical profiles (0-80 km) of temperature, dust, $\rm H_2O$ and $\rm CO_2$ ices, $\rm H_2O$ vapor.	Thermal infrared spectrometer/radiometer	Polar orbiting smallsats
4. Measure the global 3-D composition, structure, and winds in Mars's thermosphere.	Vertical profiles (90 - 200 km) of: Horizontal wind velocity Density and temp. of 0, CO, N2, CO2	Wind interferometer FUV/MUV Spectrograph	Mothership
5. Measure the global 3-D structure of Mars	Vertical profiles (90-400 km) of	Radio Occultation	All orbiters
ionosphere.	electron density	Langmuir probe	Elliptical
	electron temperature CO2+ density	FUV/MUV Spectrograph	Mothership
6. Measure the 3-D density and temperature structure of Mars's hydrogen and oxygen exospheres.	Vertical profiles (200 - 30,000 km) of: density and temperature H density and temperature	FUV Spectrograph with hydrogen absorption cell.	Areostationary and/or Mothership
7. Measure (from multiple viewpoints) magnetic field and topology and fluxes of light and heavy ions across Mars's bow shock, through magnetosheath, down magnetotail, and into and out of the Martian upper atmosphere and ionosphere.	Magnetic field Suprathermal electron pitch angle distributions → magnetic topology Ion mass, energy, and angular distributions. Thermal electron temperature and density.	Magnetometer Electron analyzer Ion mass analyzer Langmuir probe	Elliptical
8. Measure magnetic field and plasma conditions in the upstream solar wind, and solar extreme ultraviolet irradiance.	Magnetic field Solar wind density, speed, temp. Solar EUV irradiance Solar Energetic Particle Flux	Magnetometer Solar Wind Ion analyzer Solar EUV monitor Solid State Telescope	Long Orbit

Investigation 1: Ice (subsurface & surface)

Investigations	Measurements	Instruments	Platform
1. Measure the three- dimensional distribution of ice from the surface to 10 m below.	 Subsurface ice abundance derived from dielectric constant. Surface thermal inertia Surface water ice & albedo 	 P-band radar with VV or HH polarization. Thermal IR imager Visible camera 	Near-polar low altitude circular orbit.


Leads: <u>T. Harrison, C. Stuurman</u>, C. Neish, I. Smith, G. Osinski,, S. Spencer.

Strong overlap with MORIE (next presentation).

Investigations 2 & 3: lower-middle atmosphere

Investigations	Measurements	Instruments	Platforms
2. Measure the geographic and	Vertical profiles (0-80 km) of:	Microwave/sub-mm limb	Near-polar
altitude distribution of pressure,	temperature, winds, dust, H ₂ O	and nadir sounder	low altitude
winds, aerosol concentrations,	and CO_2 ices, H_2O vapor, O_3 .	Thermal infrared	circular
water vapor, ozone, and	Surface temperature and	spectrometer/radiometer	orbit.
temperatures in the Mars lower	pressure.	NIR spectrometer	
and middle atmosphere.		Wind LIDAR	

Fedorova et al., 2020

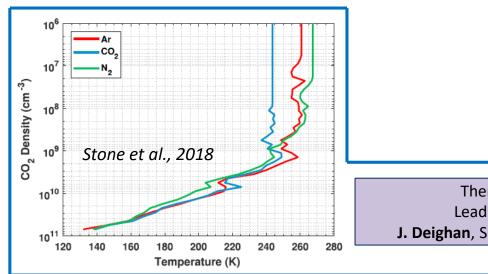
Leads: L. Montabone, S. Guzewich

M. Kahre, N. Heavens, M. Smith, A. Spiga, M. Mischna, M. Wolff, A. Kleinboehl, D. Hinson, F. Forget, L. Tamppari, B. Cantor

Investigations 2 & 3: lower-middle atmosphere

Investigations	Measurements	Instruments	Platforms
2. Measure the geographic and altitude distribution of pressure, winds, aerosol concentrations, water vapor, ozone, and temperatures in the Mars lower and middle atmosphere.	temperature, winds, dust, H_2O and CO_2 ices, H_2O vapor, O_3 . Surface temperature and pressure.	and nadir sounder Thermal infrared	Near-polar low altitude circular orbit.
3. Measure the complete diurnal and geographic behavior of the atmosphere and evolution of Martian dust and ice clouds.	clouds/hazes Column opacities/abundances of dust, H ₂ O, ozone, and CO ₂ ice	NIR spectrometer	Areo- stationary
		spectrometer/radiometer	Near-polar low altitude circular @ different

Leads: L. Montabone, S. Guzewich

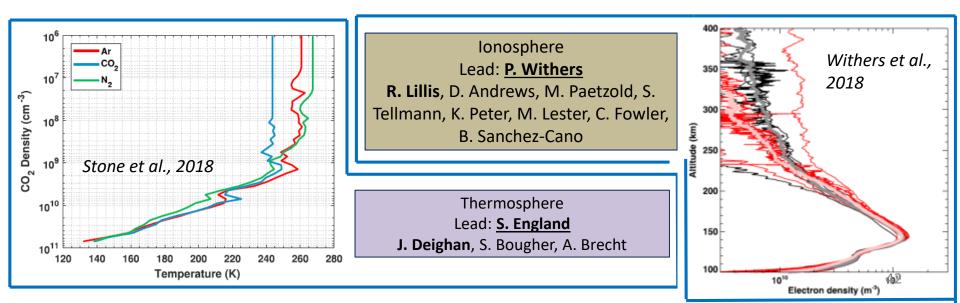

M. Kahre, N. Heavens, M. Smith, A. Spiga, M. Mischna, M. Wolff, A. Kleinboehl, D. Hinson, F. Forget, L. Tamppari, B. Cantor

local times

Investigations 4 & 5: Thermosphere-Ionosphere

			Charles and the control of the contr
Investigations	Measurements	Instruments	Platforms
		Wind interferometer FUV/MUV	Near-polar low altitude circular
winds in Mars's thermosphere.	-Density and temp. of O , CO , N_2 , CO_2	0 . 1	orbit.

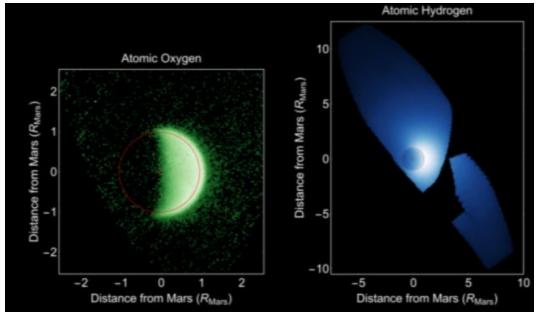
Thermosphere


Lead: **S. England**

J. Deighan, S. Bougher, A. Brecht

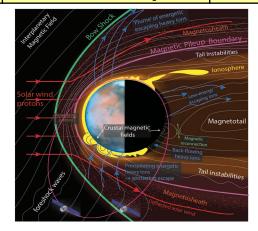
Investigations 4 & 5: Thermosphere-Ionosphere

Investigations	Measurements	Instruments	Platforms
composition, structure, and	-Horizontal wind velocity -Density and temp. of O, CO, N ₂ , CO ₂	Spectrograph	Near-polar low altitude circular orbit.
			Elliptical+polar Elliptical orbit



Investigation 6: exosphere

Investigations	Measurements	Instruments	Platforms
6. Measure the 3-D density and	Vertical profiles (200 - 30,000	FUV Spectrograph.	Areostationary
	km) of:		
hydrogen and oxygen exospheres.			
	H density and temperature		


Team members: M. Chaffin, J. Deighan

Investigations 7&8: Magnetosphere & Escape

			MUSA
Investigations	Measurements	Instruments	Platforms
shock and throughout the magnetosphere, from multiple simultaneous locations.	Suprathermal electron pitch angle distributions → magnetic topology	Electron analyzer Ion mass analyzer Langmuir probe	Elliptical orbit ~150km x ~6000 km
plasma conditions in the upstream	Solar wind density, speed, temp. Solar EUV irradiance	Solar Wind Ion analyzer	Outside Mars' bow shock

Magnetosphere/Escape Lead: <u>S. Curry</u> J. Luhmann, R. Lillis, F. LeBlanc, J. Halekas, D. Brain, X. Fang, J. Espley, H. Opgenoorth, O. Vaisberg

Connections between science and architectures

Investigation 1

Measure the 3-D Distribution of ice from the surface to 10m below.

Investigation 2

Measure the geographic and altitude distribution of pressure, winds, aerosol concentrations, water vapor, ozone, and temperatures in the Mars lower and middle atmosphere.

Investigation 3

Measure the complete diurnal and geographic behavior of the atmosphere and evolution of Martian dust and ice clouds.

Investigation 4

Measure the global 3-D composition, structure, and winds in Mar's thermosphere.

Investigation 5

Measure the global 3-D structure of Mars ionosphere.

Investigation 6

Measure the 3-D density and temperature structure of Mars hydrogen and oxygen exospheres.

Investigation 7

Measure (from multiple view points) magnetic field and topology and fluxes of light and heavy ions across Mars' bow shock, down magnetotail, and into and out of the Martian upper atmosphere and ionosphere.

Investigation 8

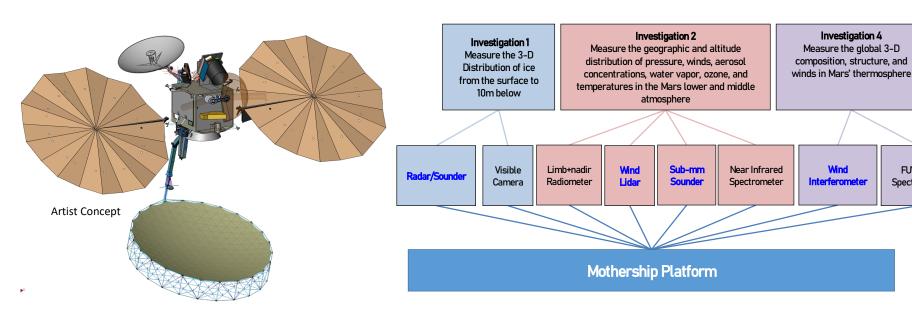
Measure magnetic field and plasma conditions in the upstream solar wind, and solar extreme ultraviolet irradiance.

Mothership Platform

Areo Platform

Polar Platform

Elliptical Platform


Backup: MOSAIC Orbital Platforms

Mothership Platform

FUV/MUV

Spectrometer

Solar Electric Large Orbiter

(1) Orbiter Spacecraft

Wet Mass: 3721 kg

Orbit: 300 km; ~93° (MRO Orbit)

Areostationary Platform

Areostationary Small Orbiter

(1) Orbiter Spacecraft

Wet Mass: 565 kg

Orbit: 17,000 km; Equatorial

Investigation 3 Measure the complete diurnal

and geographic behavior of the atmosphere and evolution of Martian dust and ice clouds

Investigation 6

Measure the 3-D density and temperature structure of Mars hydrogen and oxygen exospheres.

Investigation 8

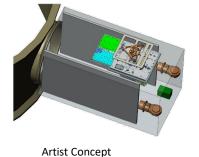
Measure magnetic field and plasma conditions in the upstream solar wind, and solar extreme ultraviolet irradiance.

Nadir IR Radiometer Visible Imager Spectrometer

FUV/EUV Magnetometer Spectrograph

Electron energy/angle

energy/angle


Extreme UV

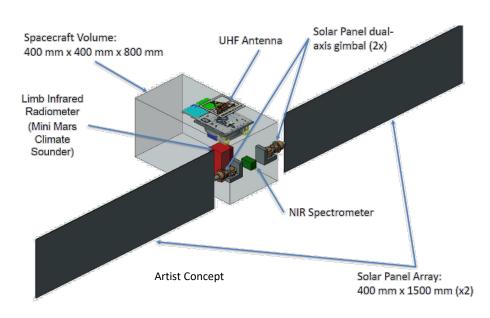
Monitor

Energetic ion/electron

Mini Areo Platform

Areo Platform

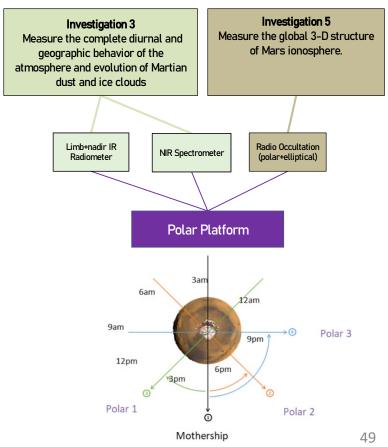
Mini Areostationary Orbiter


(3) Orbiter Spacecraft

Wet Mass: 93 kg

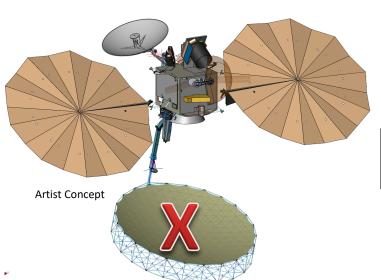
Orbit: 17,000km; Equatorial

Polar Platform



Polar Small Spacecraft

(3) Orbiter Spacecraft


Wet Mass: 93 kg

Orbit: 300 km; ~93° (MRO Orbit)

"Mini" Mothership Option

Solar Electric Small Orbiter

(1) Orbiter Spacecraft

Wet Mass: \sim 3700 \rightarrow \sim 750 kg

Orbit: 300 km; ~93° (MRO Orbit)

Investigation 1 Measure the 3-D Distribution of ice from the surface to

10m below

.

Investigation 2

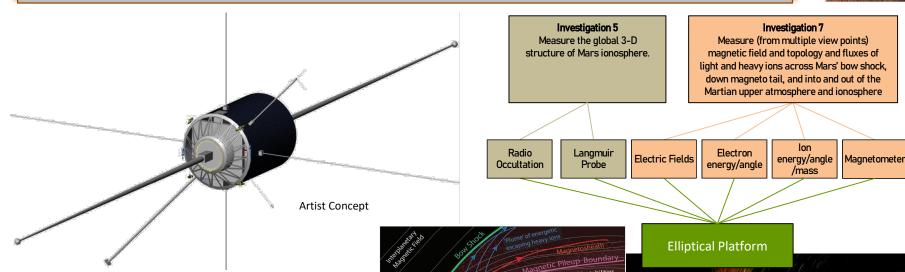
Measure the geographic and altitude distribution of pressure, winds, aerosol concentrations, water vapor, ozone, and temperatures in the Mars lower and middle atmosphere

Investigation 4

Measure the global 3-D composition, structure, and winds in Mars' thermosphere

Visible Camera Limb+nadir Radiometer

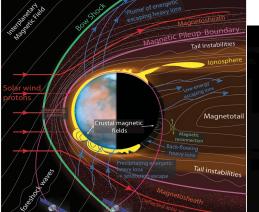
Near Infrared Spectrometer

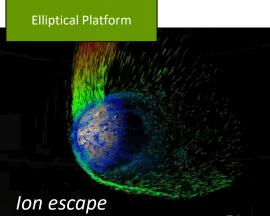

FUV/MUV Spectrometer

Mothership Platform

- <u>Huge reduction</u> in mass and cost
- **Preserves**: global coverage of atmospheric connections
- Sacrifices: brand-new measurements (ice and wind)

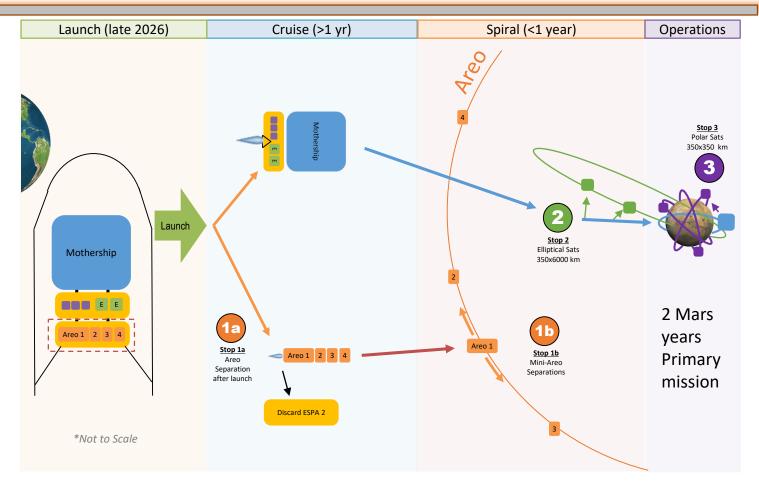
Elliptical Platform




Elliptical Small Spinning Spacecraft

(2) Orbiter Spacecraft

Wet Mass: 221 kg


Orbit: 150 x 6000 km; 75°

Constellation Delivery (Example Option)


Backup: MOSAIC Synergies with other Mars missions

Fitting in with the Crowd: TGO

The ESA Trace Gas Orbiter:

- measures altitude profiles of H₂O, O₃, and aerosols but only at 6 AM and 6 PM (via solar occultation), providing a precursor to MOSAIC's much more systematic sub-mm limb sounding.
- conducts traditional nadir mapping of temperature profiles, ice, and aerosols, as MRO MCS has done, but takes ~55 days to cover all local times. MOSAIC will ensure full diurnal, geographic, altitude, and seasonal coverage.
- uses neutrons to derive total water ice abundance in the top ~1 m with 100-200 km resolution, i.e. complementary to the muchhigher resolution, and deeper ice depth profiles from MOSAIC's radar.

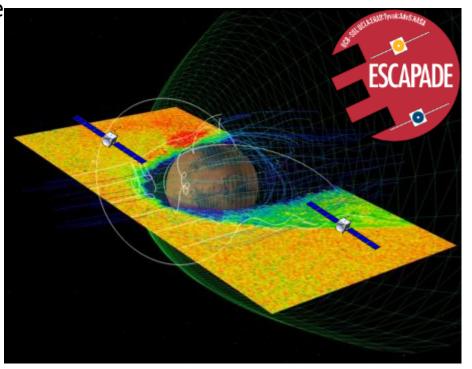
Fitting in with the Crowd: EMM

- Starting in May 2021, the Emirates Mars Mission will make total column abundance/opacity measurements from a 55-hour high circular orbit.
 - no altitude info except crude temperature profiles
- As a single spacecraft, EMM will observe most of the diurnal cycle over most of the planet once every 10 days (inevitable gaps in latitude-local time space), not *continuously* as MOSAIC will.

Fitting in with the Crowd: MAVEN

Hopefully MAVEN is still operational in the 2028-2034 timeframe. However MAVEN, as a single spacecraft:

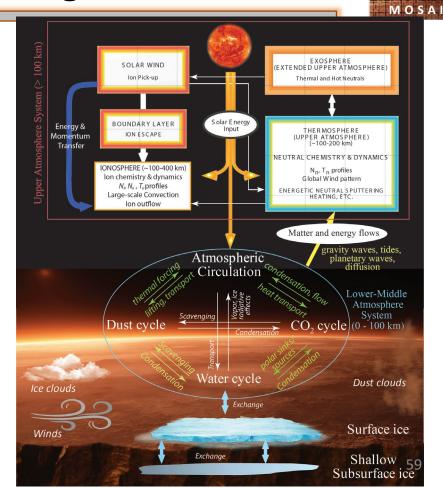
- Samples the upstream solar wind for 10s of minutes per 3.7-hour orbit on only ~40% of orbits.
- Has raised its periapsis to ~200 km in September 2020, continuing its remote FUV/MUV measurements of thermosphere density (MOSAIC Investigation 4) but no longer sampling the thermosphere or photochemical ionosphere in situ (needed for MOSAIC Investigation 5).



Fitting in with the Crowd: ESCAPADE

ESCAPADE fulfills some of the science goals of MOSAIC's elliptical orbit satellites. However ESCAPADE:

- Does not measure electric fields, which are <u>the</u> key factor in accelerating plasma throughout the Mars magnetosphere.
- Must pass its PDR & Confirmation Review summer 2021.
- Does not have any budget line item within HPD. Contingent on available funds.



MOSAIC Science Background

MOSAIC Motivating Questions

- 1. How do volatiles (e.g. H₂O and CO₂) move between the subsurface, surface, and atmosphere?
- 2. How does the Martian lower-middle atmosphere respond on meso- and global scales, to the diurnal and seasonal cycles of insolation?
- 3. How does coupling with the lower atmosphere combine with the influence of space weather to control the upper atmospheric system and drive atmospheric escape?


MOSAIC Concept Study Science Process

Science Requirements Definition

For each investigation we defined:

- <u>Measurement</u> requirements: range, accuracy, resolution, coverage, physical parameter vs. observable quantity, baseline vs. threshold.
- *Instruments* that can meet measurement requirements.
- Example below from investigation 2:

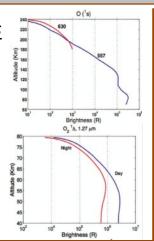

TLDR: we compiled all the MEASUREMENT requirements in 8 spreadsheets

Instrument Requirements

For each instrument we defined:

 Description, name, platform, measurements, supplier, TRL, FOV, mass, power, volume, accommodation, resolution, data rate, cost.

TLDR: we compiled lots of INSTRUMENT requirements to guide the JPL concept study team


Quad chart example: NIR, Visible Doppler Interferometer

Middle-Upper Atmosphere Winds

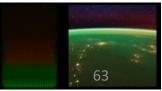
- Knowledge gap in dynamics especially between homopause and near exobase.
- Winds reveal global-scale dynamics, large-sale waves, provides inputs to models.

MOSAIC Objectives: I.C, II.C

Resources/accommodations

Platform (order)	M
# platforms	Baseline: 1
Mass	40 kg (for both channels
Power (incl. heat)	20 W ave. (heat est.)
Data Rate	Baseline: 14 kbps (number already accounts for duty
	cycling of 2 images per 3 min)
FOV	3°H x 5°V x 2 channels, 45° and 135° to ram
Limb Pointing (deg)	Contrl: 0.1, Know: 0.05, Jitter., 0.06 over 30s
Keep out zones.	No sun in FOV while on. Baffle scatter below ~50km
Conops.	Always on, 2x30s exp per 3 min

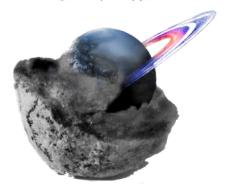
<u>Measurement Requirements</u>


Physical Parameter/	Doppler shift of	Doppler shift of O ₂ 1Δ
Observable Quantity	O(¹ S) (557.7 nm)	(1.27 μm)
Altitude range	80-150 km ⁺	60-80 km
Altitude resolution	5 km ⁺⁺	2.5 km ⁺⁺
Precision - f(alt)	10-20 m/s	5-10 m/s
Cadence	3 minutes	3 minutes

⁺Daytime only

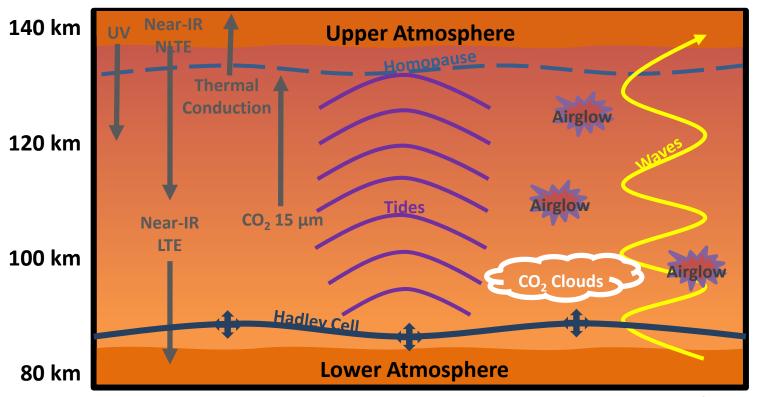
TRL story/development required

	THE Story acveropinen
Current TRL	5 Recent flight, 1 channel needs different wavelengths, vastly different radiation, thermal
Heritage	ICON MIGHTI
\$ to TRL 6	? Not too much ?
Time to TRL 6	Months?
Notes:	Thermal control, pointing stability, knowledge are drivers


^{**}Must be ½ scale height or better

JPL A-Team & Team-X Studies

- Examined the study trade space and produced the MOSAIC architecture "building blocks" relevant to the trade space.
- Defined technologies would enable parts of the trade space over the Decadal Survey span (e.g. optical comm).
- Looked at 13 potential architectures, quickly narrowed to four
- Team-Xc and Team-X (in their first ever virtual session) produced point designs by early April 2020.



Backup: MOSAIC Science Slides

Lower/Upper Atmosphere Connections

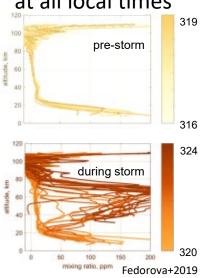
A. Brecht

Need comprehensive Lower-Upper atmosphere monitoring

Dust, H₂O, and HDO surface monitoring

D/H Map - Ls: 83° (Northern late spring)
(RIRES/VLT Jan/29 and Jan/30 2014

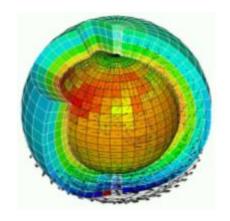
Oympun Name


D/H(H, 0) [VSMOW]

L0 55 100

Argyne Caster

180 -150 -120 -50 -60 -30 0


H₂O profiles to ~100km, at all local times

Vis/IR, Microwave, and submm limb and nadir observations

Villanueva+2013

Waves, Tides, and Winds, revealing dynamics

Wind LIDAR, Wind interferometer,
Tidal analysis of other datasets

Monitoring of H+O escape

FUV spectroscopy, H absorption cell, Ion Mass Analyzer

Backup: MOSAIC Descope Science matrices

Case 1: No Ice Radar

2 x Elliptical

Platforms

			· · · · · · · · · · · · · · · · · · ·			- tationis		r tationino		· tationing	
					\/				1	1	
Science & Exploration Goals	Scientific Objectives	Investigations:	1. Ice distribution	2. Atmosphere structure	3. Atm. Diurnal behavior	4. Thermosphere	5. Ionosphere	6. Exosphere, neutral escape	7. Plasma & ion escape	8. Space weather	
I. Understand	LA: Characterize volatile cycling between the subsurface, surface and atmospheric reservoirs.			✓	✓						
Mars's present day climate	<u>L.B.</u> : Characterize the structure and dynamics of the Martian lower-middle atmosphere on meso- and global scales, and its geographic, diurnal, and seasonal variability.			✓	✓						
processes and their inter-	I.C: Correlate variability in the thermosphere,	The lower-middle atmosphere.		✓	✓	✓	✓	✓	✓		
connections, from	ionosphere, and escape rates to:	The space weather environment				✓	✓	✓	✓	✓	
the sub-surface to the solar wind	LD: Characterize fields and plasma flows in the upstream solar wind and throughout the magnetosphere and upper ionosphere, separating spatial from temporal variability.						✓	✓	✓	✓	
II. Identify	II.A: Characterize potentially extractable water ice re	sources to support in situ resource utilization									
characterize resources, and demonstrate technologies to enable the Human Exploration of Mars	<u>II.B:</u> Characterize the Mars atmospheric state with sufficient spatial sampling and cadence to allow accurate data assimilation and weather forecasting.			✓	✓						
	<u>II.C:</u> characterize neutral winds in the mesosphere and lower thermosphere (60 km-130 km) and their variability with lower atmospheric conditions and solar activity.					✓					
	II.D: Characterize the Mars ionospheric state and variability sufficiently to determine its likely disruptive effect on communications and positioning						✓		✓	✓	
	II.E: characterize the environment of penetrating ions (>10 MeV/nuc) at 1.38-1.62 AU.									✓	

Smaller

Mothership

4 x Areo

Platforms

3 x Polar

Platforms

Case 2: "Descope"

2 x Elliptical

Platforms

					1				1	
Science & Exploration Goals	Scientific Objectives	Investigations:	1. Ice distribution	2. Atmosphere structure	3. Atm. Diurnal behavior	4. Thermosphere	5. Ionosphere	6. Exosphere, neutral escape	7. Plasma & ion escape	8. Space weather
	<u>I.A</u> : Characterize volatile cycling between the subsurface, surface and atmospheric reservoirs.			✓	✓					
day climate	<u>L.B.</u> : Characterize the structure and dynamics of the Martian lower-middle atmosphere on meso- and global scales, and its geographic, diurnal, and seasonal variability.			✓	✓					
		The lower-middle atmosphere.		✓	✓		✓	✓	✓	
connections, from		The space weather environment					✓	✓	✓	✓
the sub-surface to the solar wind	L.D. Characterize fields and plasma flows in the upstream solar wind and throughout the magnetosphere and upper ionosphere, separating spatial from temporal variability.						✓	✓	✓	✓
II. Identify	H.A: Characterize potentially extractable water ice re	esources to support in situ resource utilization								
characterize resources, and demonstrate technologies to enable the Human Exploration of	II.B: Characterize the Mars atmospheric state with sufficient spatial sampling and cadence to allow accurate data assimilation and weather forecasting.			✓	✓					
	ILC: characterize neutral winds in the mesosphere and lower thermosphere (60 km-130 km) and their variability with lower atmospheric conditions and solar activity.									
	II.D: Characterize the Mars ionospheric state and variability sufficiently to determine its likely disruptive effect on communications and positioning						✓		✓	✓
	II.E: characterize the environment of penetrating ions (>10 MeV/nuc) at 1.38-1.62 AU.									✓

Smaller

Mothership

4 x Areo

Platforms

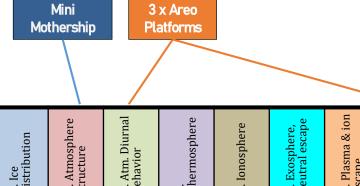
3 x Polar

Platforms

Case 3: "Descope Lite"

1 x Elliptical

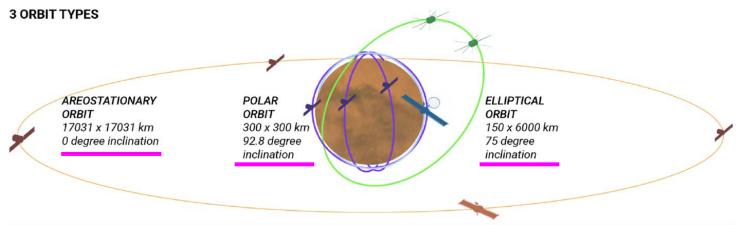
			Mothership		Pl	Platforms		Platforms		ittorms
					1			/	1	1
Science & Exploration Goals	Scientific Objectives	Investigations:	1. Ice distribution	2. Atmosphere structure	3. Atm. Diurnal behavior	4. Thermosphere	5. lonosphere	6. Exosphere, neutral escape	7. Plasma & ion escape	8. Space weather
I. Understand	<u>I.A</u> : Characterize volatile cycling between the subsurface, surface and atmospheric reservoirs.			✓	✓					
day climate	LB: Characterize the structure and dynamics of the Martian lower-middle atmosphere on meso- and global scales, and its geographic, diurnal, and seasonal variability.			✓	✓					
	I.C: Correlate variability in the thermosphere,	The lower-middle atmosphere.		✓	✓		✓	✓	✓	
connections, from		The space weather environment					✓	✓	✓	✓
	<u>L.D.</u> Characterize fields and plasma flows in the upstream solar wind and throughout the magnetosphere and upper ionosphere, separating spatial from temporal variability.						✓	✓	✓	✓
II. Identify	II.A: Characterize potentially extractable water ice r	esources to support in situ resource utilization								
characterize resources, and demonstrate technologies to enable the Human Exploration of Mars	II.B: Characterize the Mars atmospheric state with sufficient spatial sampling and cadence to allow accurate data assimilation and weather forecasting.			✓	✓					
	ILC: characterize neutral winds in the mesosphere and lower thermosphere (60 km-130 km) and their variability with lower atmospheric conditions and solar activity.									
	II.D: Characterize the Mars ionospheric state and variability sufficiently to determine its likely disruptive effect on communications and positioning						✓		✓	✓
	II.E: characterize the environment of penetrating ions (>10 MeV/nuc) at 1.38-1.62 AU.									✓

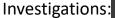

Smaller

3 x Areo

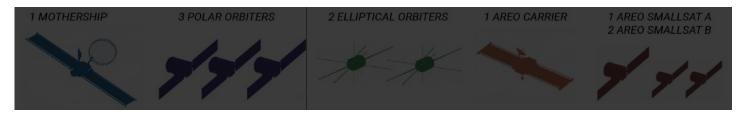
2 x Polar

Case 4: Threshold




Science & Exploration Goals	Scientific Objectives	Investigations:	1. Ice distribution	2. Atmosphere structure	3. Atm. Diurnal behavior	4. Thermosphere	5. Ionosphere	6. Exosphere, neutral escape	7. Plasma & ion escape	8. Space weather
I. Understand	LA: Characterize volatile cycling between the subsurface, surface and atmospheric reservoirs.			✓	✓					
Mars's present day climate	I.B : Characterize the structure and dynamics of the Martian lower-middle atmosphere on meso- and global scales, and its geographic, diurnal, and seasonal variability.			✓	✓					
processes and their inter-		The lower-middle atmosphere.		✓	✓					
connections, from		The space weather environment								✓
the sub-surface to the solar wind	<u>I.D.</u> Characterize fields and plasma flows in the upstream solar wind and throughout the magnetosphere and upper ionosphere, separating spatial from temporal variability.									✓
II. Identify	H.A: Characterize potentially extractable water ice re	sources to support in situ resource utilization								
hazards, characterize resources, and	II.B: Characterize the Mars atmospheric state with su accurate data assimilation and weather forecasting.	fficient spatial sampling and cadence to allow		✓	✓					
demonstrate technologies to enable the Human Exploration of Mars	<u>II.C:</u> characterize neutral winds in the mesosphere and lower thermosphere (60 km-130 km) and their variability with lower atmospheric conditions and solar activity.									
	II.D: Characterize the Mars ionospheric state and variability sufficiently to determine its likely disruptive effect on communications and positioning									✓
	II.E: characterize the environment of penetrating ions (>10 MeV/nuc) at 1.38-1.62 AU.									✓

The MOSAIC Constellation



5 PLATFORMS

10 SPACECRAFT

