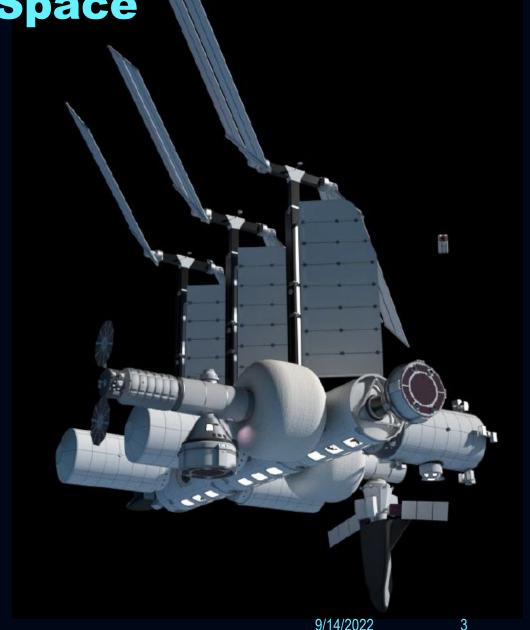


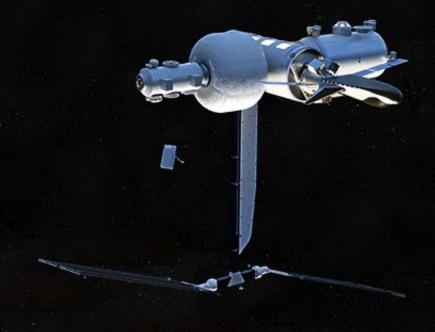
Orbital Reef Update

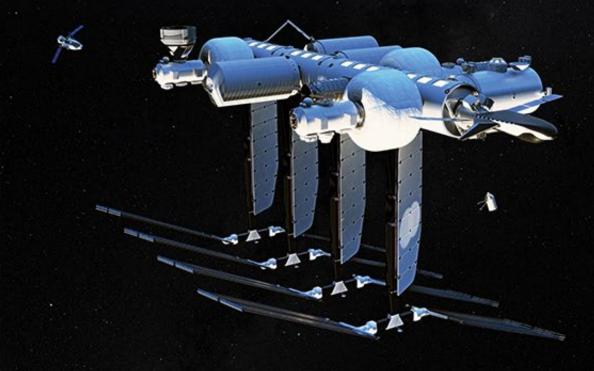
Tara M Ruttley, PhD – Blue Origin

CBPSS Decadal Presentation Sep 14, 2022 NASEM Washington, DC Truttley@blueorigin.com


NOTICE OF PROPRIETARY INFORMATION

This document contains trade secrets, commercial, and/or financial information that is proprietary and confidential to Blue Origin, LLC, and its affiliates. By accepting this document, recipient agrees that neither this document and any attachments, nor the information disclosed herein, nor any part thereof shall be reproduced or transferred to other documents, or used or disclosed to others for any purpose except as specifically authorized in writing by Blue Origin. Government recipients, by accepting this document, agree to protect this information in accordance with 18 U.S.C. § 1905 and that neither this document nor the information disclosed herein nor any part thereof shall otherwise be reproduced or transferred to other documents nor used or disclosed to others for any purpose except as specifically authorized in writing by the disclosing party. This document is exempt from public disclosure under 5 U.S.C. § 552(b).


Mixed Use Business Park in Space


- Commercially developed, owned, and operated station in low Earth orbit
- Shared long-term vision of developing and operating infrastructure and systems to enable humans to live and work in space in large numbers
- Modular and expandable architecture grows with market demand
- Focus on commercial efficiency and reimagined logistics reduces capital and operating expenses
- International collaborations to develop and utilize Orbital Reef create a thriving global space economy

BASELINE CONFIGURATION | LATE-2020s

GROWTH CONFIGURATION | MID-2030s

Orbital Reef Team

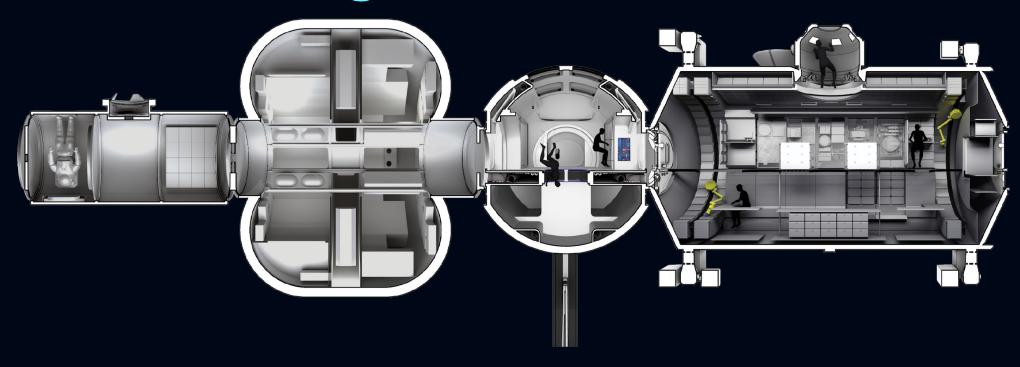
Utility systems, large-diameter core modules, reusable heavy-lift New Glenn launch system, and space tug vehicle

Expandable LIFE modules with docking nodes, and Dream Chaser reusable spaceplanes for crew and cargo delivery to runways worldwide

Science module, station operations, maintenance engineering, and Starliner crew spacecraft

Microgravity R&D and manufacturing; payload operations and deployable structures; digital engineering

Single Person Spacecraft for routine operations and tourist excursions


Leads a consortium of global universities providing research advisory services and public outreach

Logistics management system, internal robotics and automation

Baseline Configuration

LIFE + Node (Sierra Space)

- Docking ports
- Airlock for EVA and SPS
- Crew quarters, galley, commodes, exercise equipment
- Science payload support
- ECLSS
- Astro Garden

Core + Mast (Blue Origin)

- Power generation
- ECLSS
- Radiators
- Modular equipment
- Consumables storage
- High-power compute
- Secure communications

Research Module (Boeing)

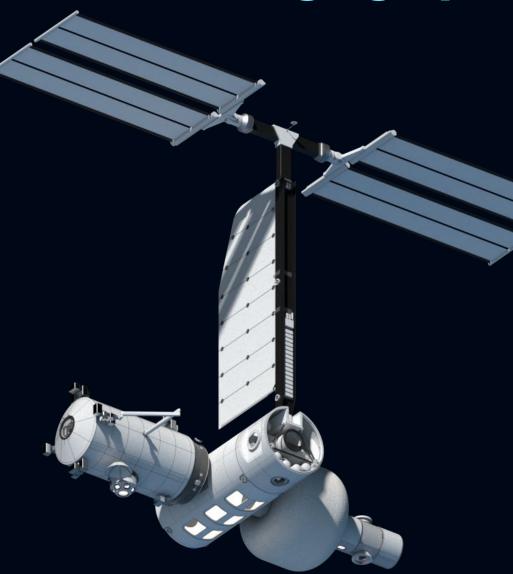
- Robotically served MLEs
- External payloads
- Science airlock
- Human research / bio lab
- Materials research, quantum physics facility, rodent habitat
- Freezers, gloveboxes

Hub for a Vibrant Emerging Space Economy

National Research

Dedicated or shared facilities

Science, tech development, human research, and other missions post-ISS


Exploration Services

Integration point and base station; platform for astronaut training and exploration systems development

Satellites

In-orbit Support

Production/assembly, delivery, deployment, servicing, and decommission

Commercial Industry

Research & Production

Microgravity to develop and manufacture products for terrestrial applications, and for use in space

Consumer Productions

Entertainment, Media, & Advertising

Production of content for mass market audiences, games, performances, and competitions

Travel and Tourism

Noble Causes & Personal Journeys

Demand ramping up from individuals seeking adventure travel and legacy impact

Orbital Reef Science Vision:

To be the premier Low Earth Orbit science and innovation ecosystem for the benefit of Earth and our future in space. in space.

Orbital Reef Science Mission:

To enable a variety of orbital research, development, and applications through best-in-class customer experience from inception to mission success.

Orbital Reef Science Goals...

To create a vibrant research ecosystem by driving bold new R&D pathways and innovating on the highest potential legacy spaceflight results.

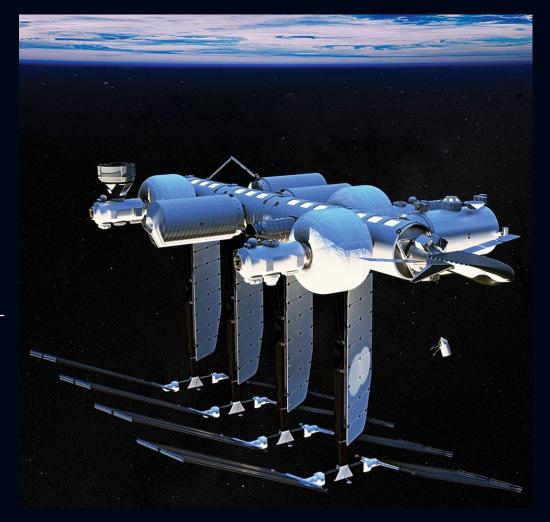
- Meet NASA's demands for LEO research
- Capitalize on highestpotential results from ISS to increase use cases and build market demand
- Engage with the greatest

To develop an orbiting laboratory that researchers trust as an essential element of their transformative research and technology programs.

- Provide researchers novelty, ability to iterate, consistency, and repeatability
- Customer-centric design
- Reimagined logistics for

To leverage the unique suite of Orbital Reef Enterprise capabilities to advance, derisk, and mature our customers' research and technology activities.

- New Shepard
- Dream Chaser
- Reef development programs
- Access to ISS
- Leverage team members' existing and planned ISS



To build an Orbital Reef science and technology community that fosters collaboration, sharing of opportunities, diversity of ideas, and inspires the future workforce.

- Known as the premier commercial space station community of professionals
- Collaboration and mentorship will maximize LEO outcomes
- Workshops, summits, and
- innovators to Orbital Reef

Decadal Considerations

- NASA research forecasts are two years old, and due for an update so the CLDs can plan and prioritize
- Research Roadmaps are needed to clarify timing, new research questions, and priorities for ISS-to-CLD transitions
- NASA needs to engage soon on defining and funding next gen research hardware/capabilities to be ready for CLDs
- Test campaigns that connect suborbital New Shepard to Orbital Reef can help with CLD planning
- Identification of major LEO research themes will provide input to CLDs (like CAL) or distinguishing CLD capabilities