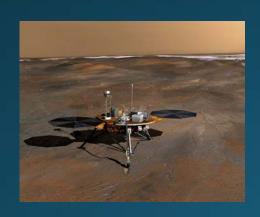
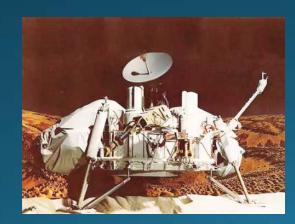
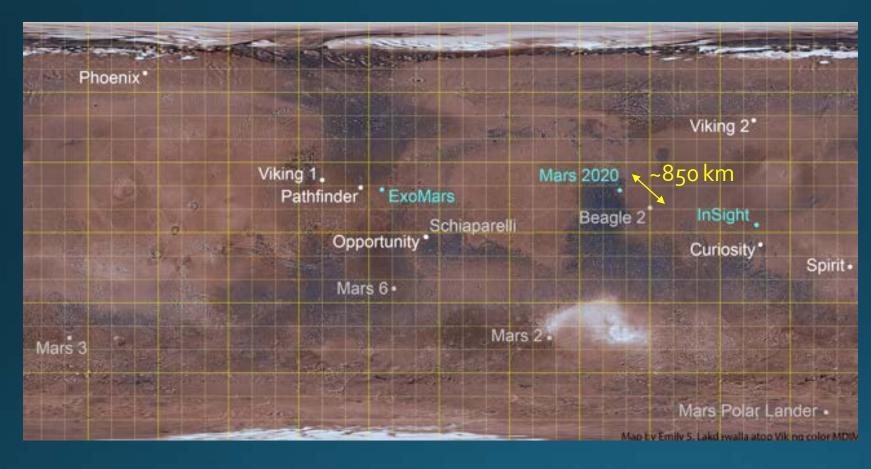


Atmospheric Transport of Contaminants and Microbes on Mars



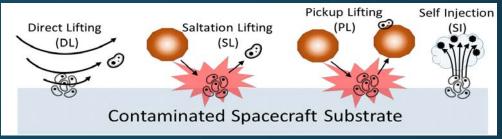

Scot Rafkin, Southwest Research Institute, Boulder CO, rafkin@boulder.swri.edu

Jorge Pla-Garcia, Space Science Institute & Centro de Astrobiologia (Spain)


Alison Bridger, San Jose State University

This work is supported by NASA Planetary Protection Research Program research grant #80NSSC19K0236

Over a Dozen Forward Contamination Events



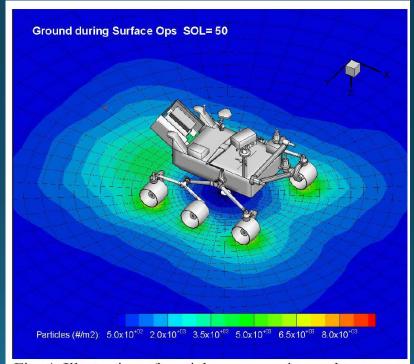
Thought Experiment: Toss a handful of very fine dust into the atmosphere from the steps of the Lincoln Memorial, Washington D.C. What is the probability that a single particle would land in a small area on the Rockefeller Plaza ice rink in NYC and that you would find it after a few random samples?

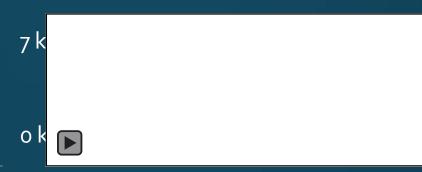
What is the potential for contamination transport from one location to another?

- Source Function
 - Total contaminant reservoir
 - Viable reservoir fraction
 - Mobilization processes and transport vector
- Transport
 - Wind
 - Turbulence
 - Sedimentation
 - Aerosol and microphysical interactions
- Sinks/Destruction Mechanisms
 - Ionizing radiation
 - UV spectrum
 - Chemistry
 - Temperature
 - Humidity/Water activity
 - Electrodynamics
 - Others?

- Source Function
 - Total contaminant reservoir
 - Viable reservoir fraction
 - Mobilization processes and transport vector
- Transport
 - Wind
 - Turbulence
 - Sedimentation
 - Aerosol and microphysical interactions
- Sinks/Destruction Mechanisms
 - Ionizing radiatior
 - UV spectrum
 - Chemistry
 - Temperature
 - Humidity/Water activity
 - Electrodynamics
 - Others?

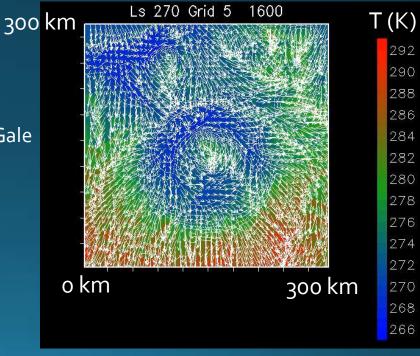
Rafkin, PPRP proposal, 2018



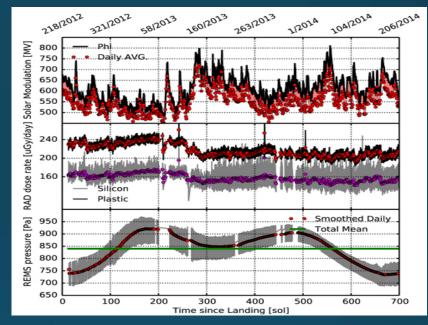

Fig. 4. Illustration of particle resuspension and transport for the Mars 2020 rover on the surface of Mars

Soares et al., 68th IAC, 2017

- Source Function
 - Total contaminant reservoir
 - Viable reservoir fraction
 - Mobilization processes and transport vector
- Transport
 - Wind
 - Turbulence
 - Sedimentation
 - Aerosol and microphysical interactions
- Sinks/Destruction Mechanisms


 - UV spectrum
 - Chemistry

 - Electrodynamics


Large Eddy Simulation of Afternoon **Turbulence**

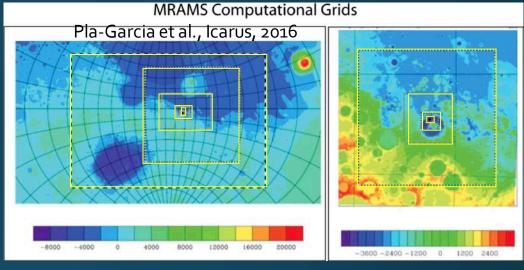
Near-Surface Winds in the Gale Crater Area. (Rafkin et al., Icarus, 2016)

Rafkin 5

- Source Function
 - Total contaminant reservoir
 - Viable reservoir fraction
 - Mobilization processes and transport vector
- Transport
 - Wind
 - Turbulence
 - Sedimentation
 - Aerosol and microphysical interactions
- Sinks/Destruction Mechanisms
 - Ionizing radiation
 - UV spectrum
 - Chemistry
 - Temperature
 - Humidity/Water activity
 - Electrodynamics
 - Others?

Measurements for the Mars Science Laboratory RAD and REMS Investigation (Guo et al., 2015)

UVABC flux from MSL REMS (Vicente-Retortillo et al.,Space Sci. Rev., 2020)

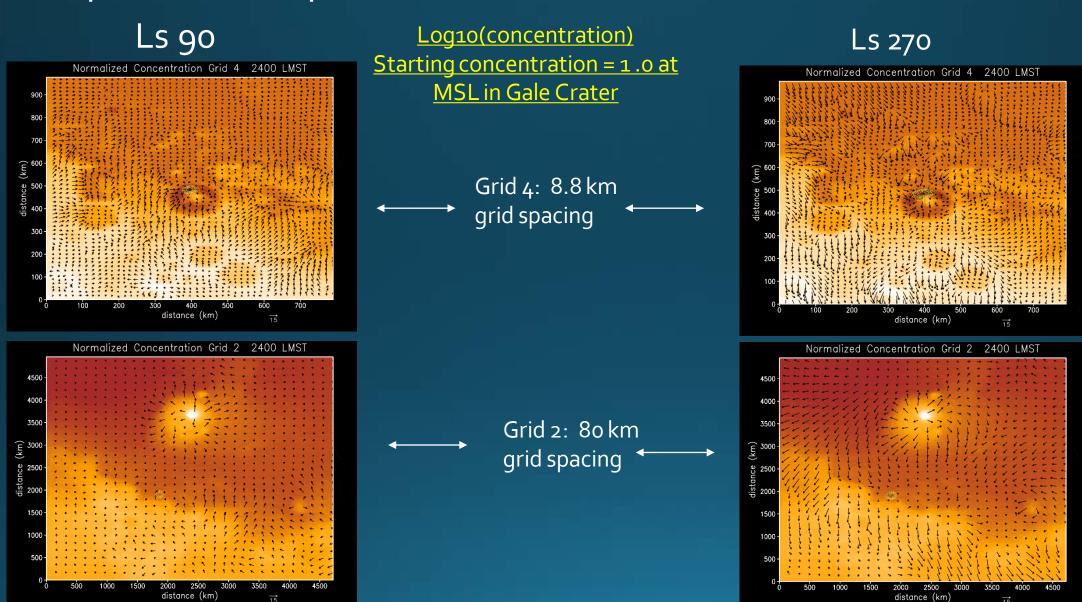

- Source Function
 - Total contaminant reservoir
 - Viable reservoir fraction
 - Mobilization processes and transport vector
- Transport
 - Wind
 - Turbulence
 - Sedimentation
 - Aerosol and microphysical interactions
- Sinks/Destruction Mechanisms
 - Ionizing radiation
 - UV spectrum
 - Chemistry
 - Temperature
 - Humidity/Water activity
 - Electrodynamics
 - Others?

- This is a highly interdisciplinary problem.
- Many of the elements are poorly understood, poorly constrained, or highly uncertain.
- Parametric studies and simplifications can bound the problem.
- This study:
 - Ignore source function.
 - Ignore sedimentation and microphysics.
 - Ignore destruction.
- Future Work will incrementally add complexity to encompass additional source, transport, and destruction mechanisms.

Modeling Transport at MSL: Tracers and Trajectories in the Mars Regional Atmospheric Modeling System

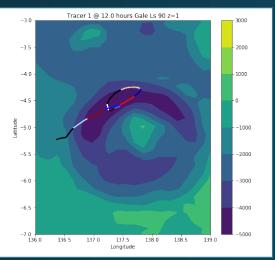
The Mars Regional Atmospheric Modeling System (MRAMS)

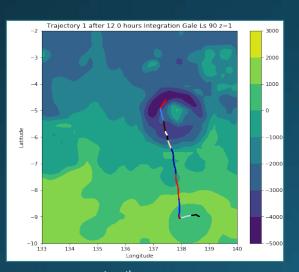
- A dynamic atmospheric model that calculates the timevarying atmospheric properties (Rafkin et al., 2013, 2020).
- Includes topography and realistic surface properties.
- Nestable: high-resolution coverage over limited domains and coarser resolution over larger domains.


Tracers

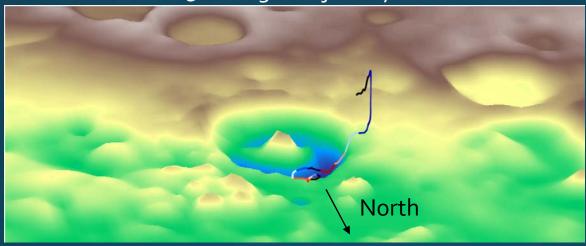
- Initialize a passive tracer at MSL.
- At t=0, tracer fills lowest level model grid box (3 km x 3 km x 14 m).
- Model winds and parameterized turbulence transport and mix tracer.
- Better suited to a gas that can be diluted, but instructional for particles.
- Provides some quantitative measure of dispersion and contamination probability.

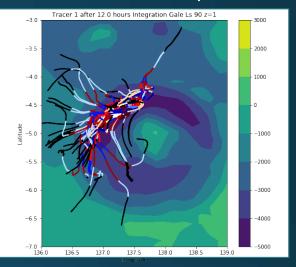
<u>Trajectory</u>


- Calculate the transport of a single particle by the model wind.
- Provides quantitative information on actual particle trajectories and histories.
- Can determine environmental properties along trajectory.
- Ensemble/Monte Carlo simulations quantify atmospheric transport chaos and chaotic attractors.

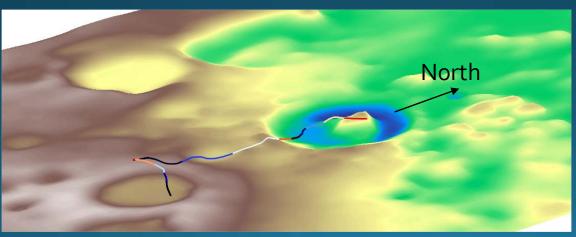

Example Tracer Experiment

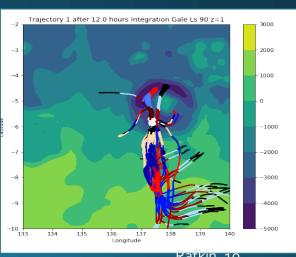
Example Trajectory Experiments Ls 90 with 12 Hour Integration


Single Trajectory



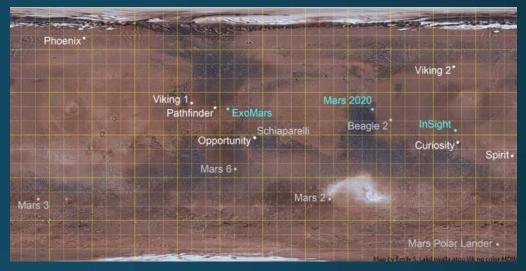
Morning Release


3-D Single Trajectory


Ensemble of 48

Afternoon Release

National Academy of Science Planetary Protection


5 April 2021

Rough Calculations (1/2)

- Assume source of 1 particle per m³ in a model box (3 km x 3 km x 14 m).
 - A spacecraft of 6 m² surface area fluxing 100 particles per meter squared per sec fills this volume in ~2.5 sols.
- Our tracer experiments indicate a dilution of at least 9 orders of magnitude a few hundred km away.
 - Yields 1 particle per 109 m3 in the lowest 14 m
 - 1 particle per 7x10⁷ m² (Note: Mars surface area = 1.4x10¹⁴ m²)
- Assume that all particles in this box fall to the ground => add 1 particle to an area of 70 km² every 2.5 sols.
- In 100 Mars years ~27,000 particles would accumulate in that area.
 - 27,000 particles per 7x10⁷ m² after 100 years.
 - Two particles per football field after 100 years.

Rough Calculations (2/2)

- M2020 surface sample size is order 0.01 m x $0.01 \text{ m} = 1 \times 10^{-4} \text{ m}^2$.
- Probability of collecting this particle is: 10⁻⁴ m² ÷ 2.7x10³ m²/particle = 3.7 x 10⁻⁸.
 - Probability of royal flush: 1.5x10⁻⁶.
 - Probability of getting struck by lightning (in U.S.) in a lifetime: 6.5x10⁻⁵.
 - Probability of getting killed by meteorite (est.): 4x10⁻⁶.
 - Hence, probability is very, very low.
- Rough calculations, backed by preliminary model results, *generally* indicate contamination is only a local/regional issue.
- Our rough calculations will be refined with ongoing modeling, including back trajectory calculations, time varying source functions, and sink processes.

- Closest contamination site to M2020 is Beagle 2
 @ ~800 km.
- 17 years ago, not 100 years.
- Likely not continuously fluxing 100 particles/m²/sec for 100 years.
- Beagle not continuously upwind of M2020.
- Degradation of organics not factored in.
- Not all particles in lowest layer will settle to surface.

Top 5 Lessons from MRAMS Transport Experiments

- 5. Transport circulations are complex and vary strongly in space and time (minutes to seasonal).
- 4. Transport is location specific.
- 3. Mars transport tends to be highly dispersive.
- 2. Contamination *typically* drops by many orders of magnitude (e.g., 10¹²) outside of immediate source region and continues to fall with distance.
- 1. The probability of transporting a single particle into a small sampling area hundreds of km away is excruciatingly small.