MARS MISSION BIOBURDEN REQUIREMENTS

BIOBURDEN CLEANLINESS METRICS FOR SPACE MISSIONS

BACKGROUND

- My expertise:
 - Sterilization science
 - Industrial and manufacturing microbiology
 - Regulatory expectations (e.g., FDA) with respect to both topics
 - Healthcare products
- Not specifically astrophysics or astrobiology
- However seemed to be useful for MSR Sterilization Working Group

CATEGORY IV REQUIREMENTS

- Key words:
 - Contamination control
 - Organics inventory
 - Trajectory biasing (careful selection of location?)
 - Cleanroom
 - Bioload/microbial reduction plan
 - Partial sterilization
 - Bioassay monitoring
- Right up my alley

INITIAL THOUGHTS

- Statement of task for Mars report:
 - "...determining locations or regions on Mars that are potentially suitable or missions of less-restrictive bioburden than the current requirements for Category IV."
- No water in any form (frozen or thawed)
- Location not of scientific interest (someplace boring)
- Frequent sunlight

COPP STATEMENT OF TASK

- Reviewed "Criteria might include"
 - Not surprised to see parity with my main thoughts
 - <-25°C and Aw <0.5 both keep microbial replication essentially nonexistent
 - Addition of frequent sunlight might be helpful
 - Martian UV likely very effective against Earth microbes
 - Andy Schuerger great resource on this
- Not saying my "approval" is necessary, but the criteria are reasonable

EXPERIENCES WITH MSR SWG

- Use meaningful terminology consistently
 - "Inactivate" with or instead of "sterilize"
 - Inactivate covers proteins (e.g., prions)
 - "Passive inactivation"
 - "Active inactivation"
 - "Martian material" rather than microbes or other term
- Focus on fundamental chemistries
 - Nucleic acid-based organisms
 - Heat-resistant protein
 - Prion surrogate

FUNDAMENTAL CHEMISTRY / BOND BREAKAGE

- Previous: select extreme worst-case microorganism and location on product
- Recent: select microorganism with a known, high resistance placed in reasonable location – based on risk
 - Acceptable approach with proper documentation
 - Performed in this manner many times every day in healthcare
 - Many other factors add safety to process obviates need for extreme approach in sterilization process

RISK AND STERILIZATION

- With sterilization, <u>not</u> only "sterile" or "non-sterile"
 - "Sterile" has one definition: free of viable microorganisms
 - Quantity of sterility assurance varies based on risk
 - AAMI ST67 (FDA consensus standard)
 - SAL of 10⁻³ and 10⁻⁶ both acceptable with risk-based justification
 - Non-compromised vs. compromised tissue
 - Healthcare regulatory bodies accustomed to risk assessments with decisions

RISK AND STERILIZATION

- "More safety" not always better begin to compromise efficiency, functionality, and fiscal responsibility
- "Just because we can" should be questioned what is absolutely necessary?
- Cat IV "partial sterilization" in line with healthcare
 - Not required that sterility (microbes) or pyrogenicity (endotoxins) be the same throughout a product or for all product types

BIOLOGICAL CONTAMINATION OF MARS

Statement of task:

• "...how human missions can be carried out without large-scale biological contamination of Mars."

Containment

- Hermetic seals reduce need for internal sterilization
- Example: pacemakers not internally sterilized

From MSR SWG report:

- "Any form of life on Mars is unlikely to be hazardous to Earth's biosphere or humans; however, without data the risk is not zero."
- Same for vice versa

BIOLOGICAL CONTAMINATION OF MARS

- Some contamination likely inevitable with increased missions
- What is the real risk?
 - Additional data over time could allow for loosening of requirements
 - Either no extinct/extant life or;
 - Martian extinct/extant life can be distinguished from that of Earth
 - Self-decontamination properties of Martian surface
 - Should be able to distinguish between Martian/Earth life with genetic techniques
 - MSR approach and data likely beneficial for this topic

METHODS FOR MISSION CRITERIA

- What value(s) should be established as minimum requirements?
 - Example: Sterile healthcare products usually at 10⁻⁶ SAL
 - Previous approach: Just achieve the SAL with a sterilization process 1 aspect targeted
 - Recent approach: End-to-end sterility assurance consider all aspects of process
 - Analog for PP: Don't have single aspect or value targeted, but focus on entire process likely already doing this
 - Example: Sterile products at 10⁻⁶ not tested after full sterilization process
 - Cannot test 1 million products
 - Test after partial sterilization process and extrapolate based on data
 - Analog for PP: Extrapolate based on data likely already doing this
 - Establish minimum manufacturing and sampling requirements
 - Likely already doing this

THANK YOU

Martell Winters, B.S., RM/SM(NRCM), AAMI CISS(RAD)

mwinters@nelsonlabs.com

