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Asteroids (and one dwarf planet)
visited by spacecraft
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Small bodies in the Main Asteroid Belt or near-Earth space - fragments

The two most massive bodies - intact



Shape models for asteroids constructed from radar observations
and bulk densities from mass/volume estimates
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Most small bodies are angular fragments with variable macroporosities - collisional rubble



Orbital inclination (deg)

Present orbital distribution of asteroids

'y
G0 = 7
Hungaria Main belt Cybele Hilda Trojan
" Inner  Mid | Outer |
40 —
20
Earth  pars ‘
1 4

Semi-major axis (AU) Trapped in

Controlled mostly by orbital resonances with Jupiter, Lagrangian points

which serve as escape hatches for asteroids/meteorites
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Asteroid spectral classification, and relation to meteorites
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Orbital distribution of asteroid spectral classes

Lots of overlap, but melted and metamorphosed asteroids tend to be concentrated in the inner belt,
aqueously altered bodies in the middle, and bodies in which ice never melted in the outer belt
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Asteroid structural models Differentiated
(achondrite and iron)
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Comet nuclel (and a Kuiper Belt Object)
visited by spacecraft — fragments or not?
(not to scale)
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Intensity

Spectra and samples of comets
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Kuiper Belt
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Migrations In the early solar system
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An example of a unique ‘small’ body: asteroid Vesta

GRaND: Percentage of
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e — Harzburgite Vesta: completely differentiated,
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Another unique body: Ceres,
pervasively altered by fluids,
partially differentiated
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Ceres has erupting liquid brines and organics persisting today

sodium carbonate
ammonium salts




Some perspectives from meteorites

Meteorite breccias demonstrate that asteroids trade rocks,
probably less likely for comets (KBOSs)




Astrobiologically interesting(?)
samples come from aqueously
altered carbonaceous chondrite
asteroids

But, with the exception of Ceres, aqueous fluids only
existed ~4.5 billion years ago
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Organics In carbonaceous chondrites
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Some takeaways — background on small body science

Asteroids exhibit a range in thermal history, which correlates roughly with orbital distance, but significant
mixing has occurred.

Heating of small bodies by short-lived radionuclide decay occurred very early and produced liquid water
in some ice-bearing bodies, or metamorphism/melting/differentiation in ice-free bodies; comets appear
to be relatively unaltered; no effective heat source persists today except impacts.

Most asteroids, and possibly KBOs(?), are collisional rubble, with only a few intact bodies surviving, and
reaccreted rubble piles are common, as revealed by low bulk densities.

Migration of giant planets in the early solar system may have scattered small bodies outward to the
Kuiper Belt and and inward to the Main Belt.

Resonance escape hatches in the Main Belt offer a means of scattering/sampling modern asteroids.
Two of the largest, best-studied small bodies reveal melting and differentiation of silicate and metal

(Vesta) or pervasive aqueous alteration and fractionation of ice/silicate (Ceres); these processes occurred
early in solar system history, although aqueous fluids continue to erupt on Ceres.



Some possible takeaways relating to your study

Organic matter is ubiquitous in comets and asteroids; it is inherited from interstellar space,
as revealed by extreme isotopic fractionations, but has been further processed in the nebula
and/or within small bodies after accretion.

Organic compounds in meteorites and IDPs are aliphatic or aromatic, often occurring as
complex macromolecules, but they show no evidence of life, past or present.

Ongoing aqueous eruptions on Ceres (if you consider it to be small) offers the only known liquid
water (possibility for extant life?) in small bodies.

The fact that most asteroids are collisional fragments and the common occurrence of asteroids
with rubble-pile structures indicate that catastrophic collisions have affected most small bodies.

Meteorite breccias that are samples of regoliths (on Vesta, and on chondritic asteroids)
demonstrate that small bodies are already contaminated with foreign material.



Science perspectives on your task

How unique are small bodies, and can we risk
contaminating some of them by spacecraft missions?

 Most small bodies are not unique, but large, intact asteroids and some comet
nuclei may be unique.

e Although sampling is biased and limited, what we have learned from meteorites,
IDPs, and a few returned samples of asteroids and comets suggests that we can
recognize terrestrial biologic contaminants.

 Many, perhaps most, small bodies may already be cross-contaminated with
exogenic organic (albeit abiotic) material.
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