

JPL Biotechnology and Planetary Protection Group Overview

Max Coleman, Ph.D. Group Supervisor

Moogega Cooper, Ph.D. Former Group Supervisor

© 2024. California Institute of Technology. Government sponsorship acknowledged.

Reviewed and determined not to contain CUI.

<1999	Research, Govt. Science, Industry, Academia
1999	Summer academic JPL visitor – reviewed all PP activities
1999	Co-authored report recommending single JPL PP Group
2003	Joined JPL as Center for Life Detection Director and Supervisor of the Astrobiology Group
2003 –	2011 Astrobiology Research
2011 -	2024 Astrobiology and Life Detection Instrument Research
2024	Appointed Supervisor of BPP Group

<2010	Studied extremophile destruction mechanisms and plasma sterilization efficacy.
2010	Supported over 10 NASA missions, including MSL, InSight, and Mars Sample Return.
2016	Planetary Protection Lead, Mars 2020 Mission
2020	Planetary Protection Lead, Europa Lander
2021	Group Supervisor, Biotechnology & Planetary Protection Group
2023	Containment Assurance Lead, Mars Sample Return Program

Biotechnology and Planetary Protection Group -1

- Charter Statement (Objectives, abbreviated)
 - Preserve the scientific integrity of current and future solar system exploration.
 - Ensure mission compliance with internationally agreed planetary protection requirements.
 - Advocate and educate the scientific, project and programmatic communities regarding the role of planetary protection.
 - Adopt and develop new technologies to improve planetary protection practice.

Biotechnology and Planetary Protection Group - 2

- Goals (abbreviated)
 - To enable NASA Planetary Protection (PP) Compliance for future NASA JPL missions
 - Life detection
 - Sample Return
 - Other
 - R&D technology and capabilities to support spacecraft design and implementation
 - Play an integral role in humans to Mars

JPL Flight Project Mission Support*

Project	Category	Launch Yr
Vikings	IV	1975
Galileo	II	1989
Mars Global Surveyor	Ш	1996
Mars Pathfinder	IV	1996
Cassini	II	1997
Deep Space 1	Ш	1998
Mars Climate Orbiter	Ш	1998
Deep Space 2	IVa	1999
Mars Surveyor 98 Lander	IVa	1999
Stardust	II/V	1999
Odyssey	Ш	2001
Mars Express	Ш	2003
Mars Exploration Rovers	IVa	2003
Rosetta	II	2004
Deep Impact	II	2005
Mars Recon. Orbiter	Ш	2005
Dawn	Ш	2007
Phoenix	IVc	2007

Project	Category	Launch
Juno	II	2011
Mars Science Laboratory	IVc	2011
TGO - Electra Transcievers	Ш	2016
InSight	IVa	2018
MarCO (Mars Cube One)	Ш	2018
Mars 2020	IVb, V(r)	2020
Europa Clipper	Ш	2024
Mars Sample Return (MSR)	III, IVa, V(r)	Planned

^{*}Does not include project support on missions that were cancelled prior to launch (e.g. Europa Lander) or determined to not require PP support (e.g. Kepler)

JPL Flight Project Mission Support*

Project	Category	Launch Yr	Project	Category	Launch
Vikings	1\/	1975	luno	II	2011
Vikings			IV 197	75	2011
Mars Global Surveyor	III	1996	TGO - Electra Transcievers	III	2016
Mar Phoenix			IVc 2	007	18 18
Deep Space 1	III	1998	Mars 2020	IVb, V(r)	2020
Mars Cli Deep Sp Mars Scie	nce Lak	oratory	IVc	2011	ned
Mars Surveyor 98 Lander	IVa	1999	-1 -1		1
			000 000		
Stardust Odyssey Mars 202	20		IVb, V(r)	2020)
Odyssey Mars Express	III	2003	IVb, V(r)	2020	
Odyssey Mars 202 Mars Express	III	2003	IVb, V(r)		
Odyssey Mars 202 Mars Express Mars Explora Rosetta	III	2003 er)24
Odyssey Mars Express	III	2003			6
Odyssey Mars 202 Mars Express Mars Explora Rosetta Deep Impact	Clippe	2003 er 2005			6

^{*}Does not include project support on missions that were cancelled prior to launch (e.g. Europa Lander) or determined to not require PP support (e.g. Kepler)

Introducing us

<1999	Research, Govt. Science, Industry, Academia
1999	Summer academic JPL visitor – reviewed all PP activities
1999	Co-authored report recommending single JPL PP Group
2003	Joined JPL as Center for Life Detection Director and Supervisor of the Astrobiology Group
2003 –	2011 Astrobiology Research
2011 -	2024 Astrobiology and Life Detection Instrument Research
2024	Appointed Supervisor of BPP Group

<2010	Studied extremophile destruction mechanisms and plasma sterilization efficacy.
2010	Supported over 10 NASA missions, including MSL, InSight, and Mars Sample Return.
2016	Planetary Protection Lead, Mars 2020 Mission
2020	Planetary Protection Lead, Europa Lander
2021	Group Supervisor, Biotechnology & Planetary Protection Group
2023	Containment Assurance Lead, Mars Sample Return Program

JPL Planetary Protection Brief History



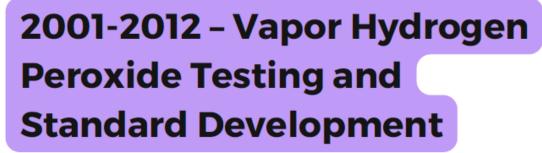
1959 - Spacecraft Sterilization and Planetary Quarantine Begin at JPL

Richard W. Davies and Marcus G.
Comuntzis of JPL gave a joint paper
on spacecraft sterilization and inhouse biological research <u>begins</u>.

1970s - Spacecraft cleanliness monitoring, sterilization, and environmental controls

Spacecraft prototype cleanliness assessments, cleanroom, and sterilization developments using Viking and Mariner hardware

1980-2013 - Heat Microbial Reduction tests and standard development


Utilized microbial isolates collected directly from Viking through MSL to inform the NASA microbial reduction standard.

2000-2005 - Molecular Method Testing and Standard Development

JPL utlizes ongoing flight projects and spacecraft assembly cleanrooms to test and develop ATP and LAL Assay standard protocols for later adoption NASA-wide.

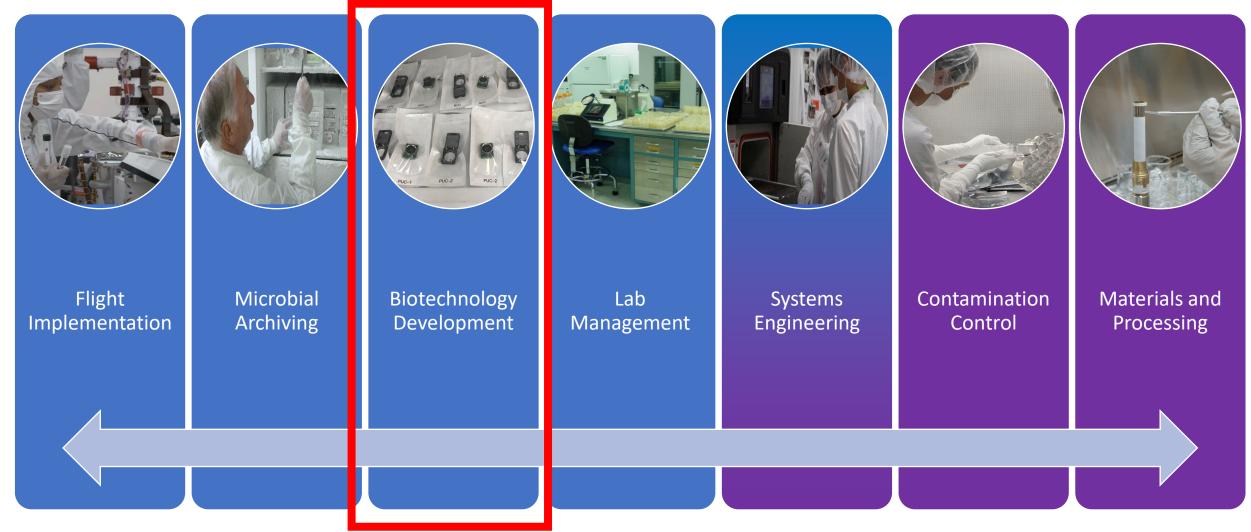
Hydrogen peroxide qualification testing in support of full adoption as a NASA standard sterilization

1990s-Present - Nucleic Acid-based testing and standard development

Low-biomass spacecraft and cleanroom samples collected for detailed interrogation using Nucleicacid-based methods.

2018 Insight Launch

2020 Mars 2020 Launch

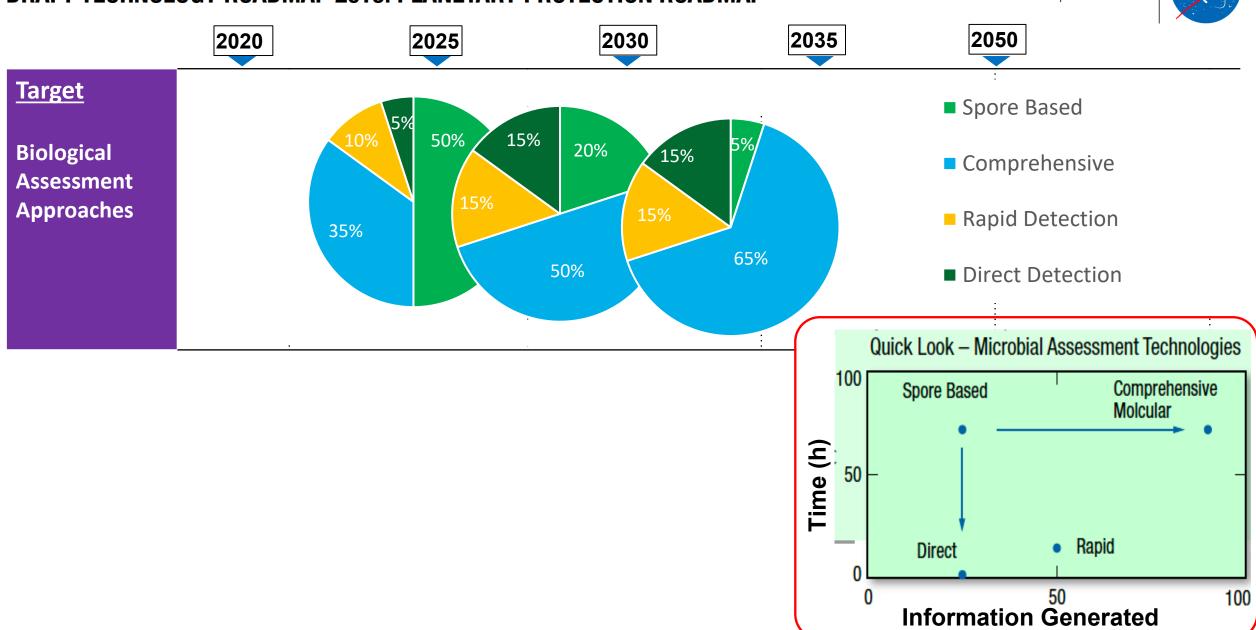


Mars Sample Return

Future Technology
Development

Technology development in continued support of future planetary protection and life-detection goals.

JPL Spectrum of Planetary Protection Expertise



BPP Group

Collaboration w/ BPP Group

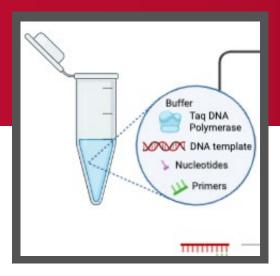
DRAFT TECHNOLOGY ROADMAP 2019: PLANETARY PROTECTION ROADMAP

Flight Project Needs

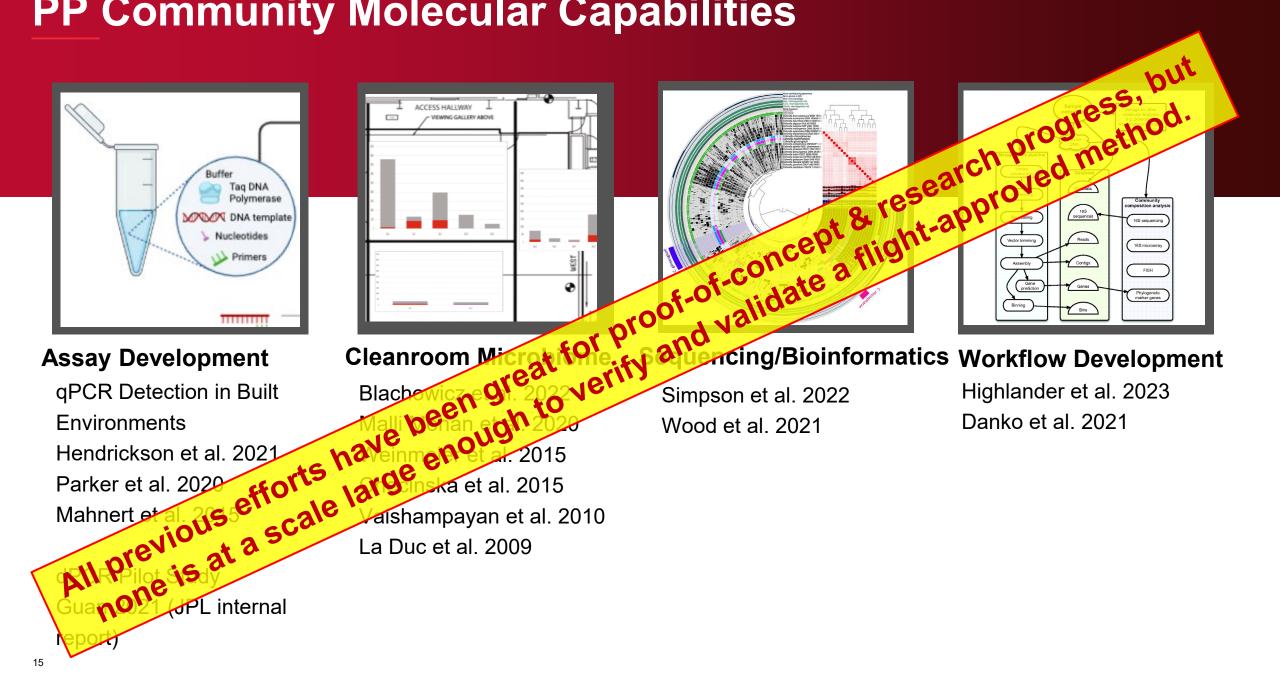
METAGENOMICS

DETECTION

- Low-biomass
 hardware requires
 sensitive
 contamination
 detection methods.
- Limit of detection and thresholds for cleanliness need to be defined.


QUANTIFICATION

- Contamination levels guide assembly and cleaning practices.
- Enables statistically significant measurements.


IDENTIFICATION

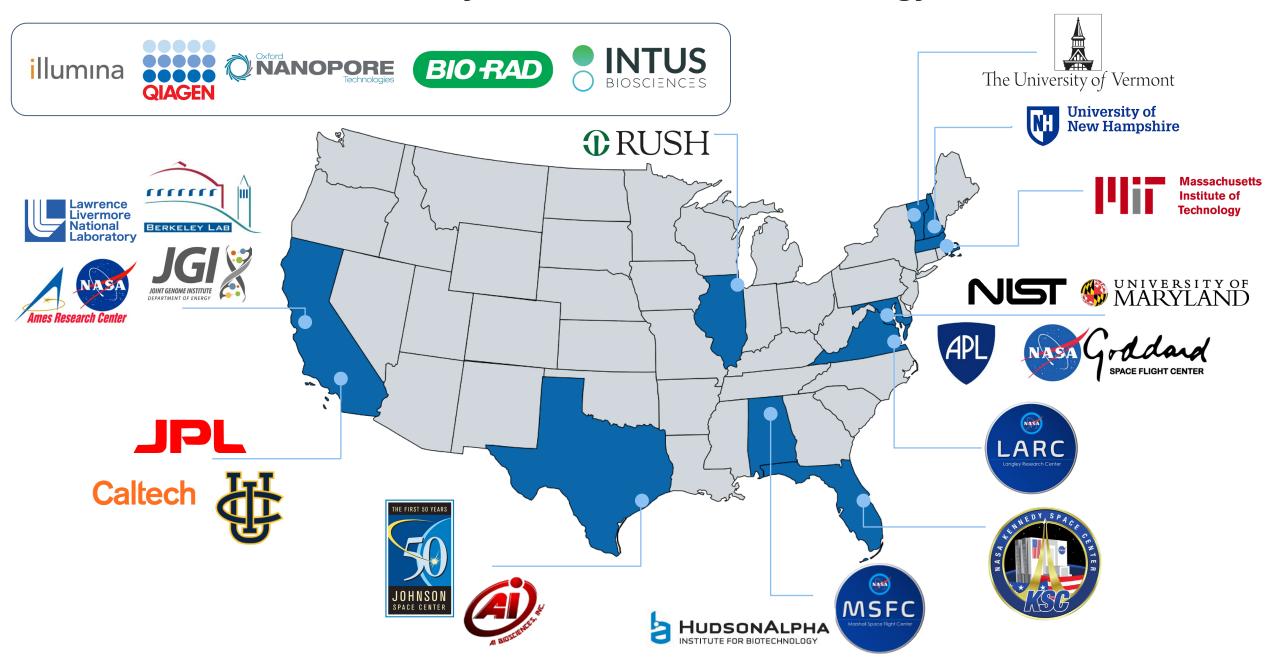
- Spacecraft "Passenger list"
- Informs PP models
- Needed for return sample science
- Advances PP research

PP Community Molecular Capabilities

Strategy for advancing molecular methods for planetary exploration

Apply expertise in metagenomics at NASA Centers, industry and academia that can be brought to bear in advancing the technology.

JPL and its partners have had a specific focus on the methods for handling low biomass found in planetary clean rooms and expected in planetary environments.


Structure a directed development program with four program elements to validate and verify technology for flight use:

- Sample Collection
- Sample Processing
- Bioinformatics
- Relevant Organism Assessment


Community workshops:

- JPL 2022 Metagenomics for Planetary Protection
- NASA Ames 2024 Metagenomics in Spaceflight

Partners in Planetary Protection Molecular Biology Research

JPL Spectrum of Planetary Protection Expertise

BPP Group

Collaboration w/ BPP Group

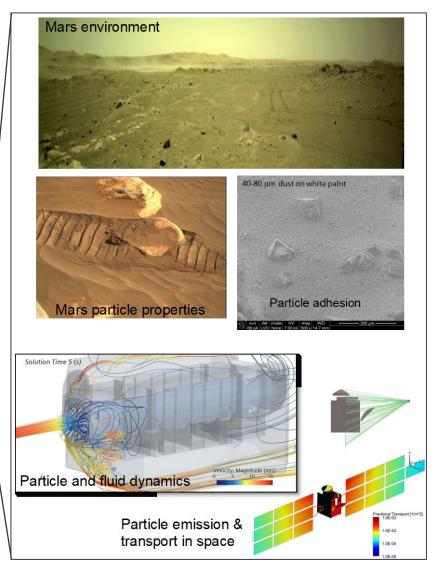
Contamination Control Enhancements to PP Implementation

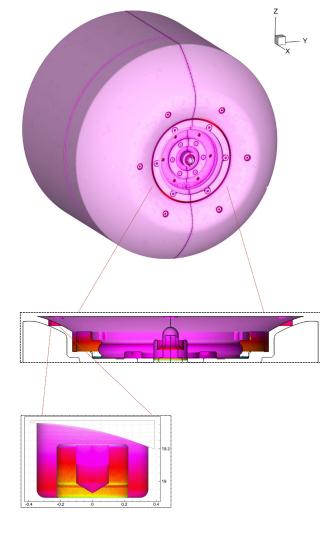
Operational strategies, e.g.

- Hardware assembly to minimize crosscontamination.
- Contamination control through strategic operations

Mechanical design e.g.

- Dust covers
- Fastener counterbores


Particle transport and fluid dynamics modeling


•Informs hardware design and operations

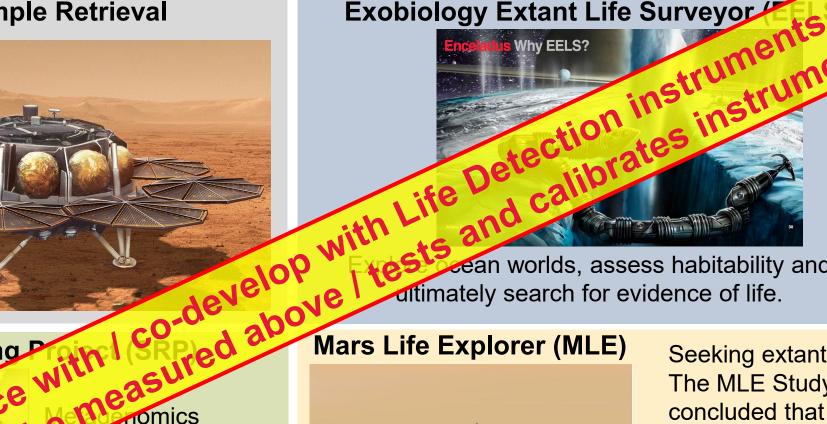
Future Developments/opportunities, e.g.

•Updates to the current scientific knowledge that impact PP risk assessments

- 1. Cooper, Moogega et al. (2024) Mars Sample Return Orbiting Sample as Primary Containment Vessel Backward Planetary Protection Design Considerations. 45th COSPAR Scientific Assembly. Held 13-21 July 2024.
- 2. Hoey, William et al. (2024), 3-D Ray-tracing Analyses and Design of the Mars Sample Return Orbiting Sample for Sterilization by Ultraviolet Radiation. 45th COSPAR Scientific Assembly. Held 13-21 July 2024.
- 3. Hoey, William, et al. "Launch recontamination: planetary protection models for particle transport in spacecraft payload fairing environments." 44th COSPAR Scientific Assembly. Held 16-24 July 44 (2022): 3287.
- robey, without, et al. Launch recontamination: planetary protection models for particle transport in spacecraft payload fairing environments. 44th COSPAR Scientific Assertion, relict 10-24 July 44 (2022) 5267.
- Shallcross, Gregory, et al. "Launch recontamination: the evaluation of particle adhesion and removal mechanisms in spacecraft payload fairing environments." 44th COSPAR Scientific Assembly. Held 16-24 July 44 (2022): 3283.
 Mikellides, et al. "Experiments in particle resuspension and transport for the assessment of terrestrial-borne biological contamination of the samples on the mars 2020 mission, Planetary and Space Science, Volume 181, 2020, 104793.

Potential future infusion Opportunities/environments and challenges


Mars Sample Return Sample Retrieval


Lander (SRL)

Compare culture and molecular.

Identify microbial species for better risk estimation.



ean worlds, assess habitability and

Mars Sample Receiving

PP must keep pace sets the basel

nomics ethods for trace bio-contaminants for more robust scientific interpretation.

https://smd-cms.nasa.gov/wpcontent/uploads/2023/10/mars-life-explorer.pdf Seeking extant life. The MLE Study Team concluded that new approaches (e.g., nanopore genomics and proteomics), could be done within the anticipated PP budget.

Information from these efforts will be infused into Mars in-situ life detection and future icy worlds missions

Summary

Decades of Expertise:

Established standards in sterilization and biological assessment since the 1950s.

Current and Future work focused on Innovative Molecular Methods:

- Characterizing spacecraft bioburden in low-biomass environments.
- Faster, more accurate, and cost-effective than NASA Standard Assays.
- Enhances forward contamination prevention and life-detection measurements.

Leverages partnerships with Contamination Control for Advanced Contamination Modeling:

Developed cutting-edge models for microbial transport and spacecraft recontamination.

Thank you

