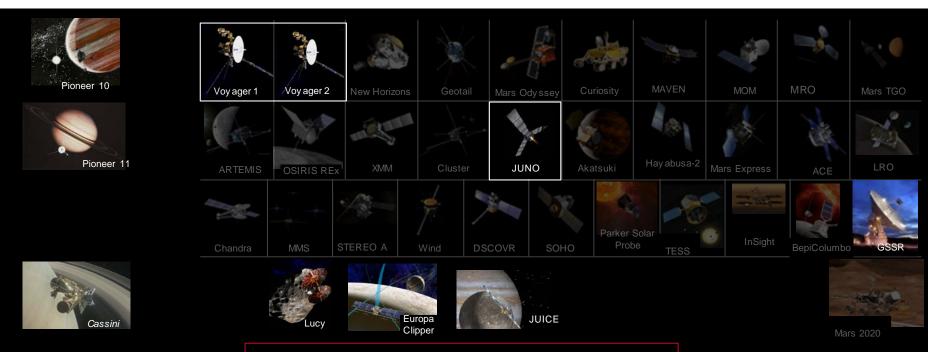


The Deep Space Network Status and Future

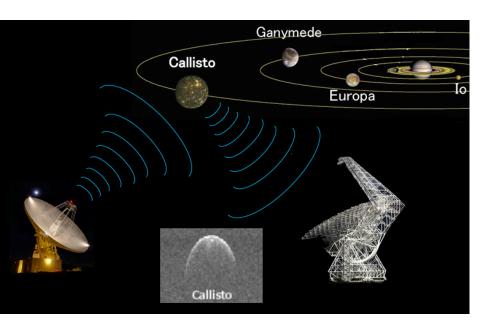
Joseph Lazio, Bradford Arnold, Brian Giovanelli, Michael Levesque, Jeff Berner, Amy Smith

The Deep Space Network



Deep Space Network and Missions

Don't leave Earth without the DSN!


Deep Space Network and Giant Planet Systems Missions

Don't leave Earth without the DSN!

- Giant planet science with the DSN
- Status and near-term
- Longer term

Ranging to the Galilean Satellites

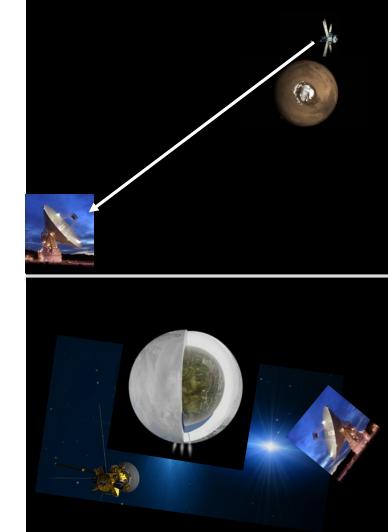
Jupiter's tidal dissipation constrains interior structure

Goldstone Solar System Radar-Arecibo-Green Bank Telescope ranging to Galilean satellites

- Aiming for 2 km uncertainties in orbits (5x improvement)
- Detect secular acceleration of Galilean satellites from Jovian tides
- Determine tidal dissipation parameter k_2/Q
- Juno measures k₂

Radio Science

a.k.a. Gravity Science


Apparent even with early missions that occultations by planetary atmospheres would affect radio communications

 Or one person's annoyance is another's data --- Study atmospheric properties!

"Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere" (Kliore et al. 1965, *Science*)

- "Preliminary Results on the Atmospheres of Io and Jupiter from the Pioneer 10 S-Band Occultation Experiment" (Kliore et al. 1974, Science)
- Can also study planetary interior!
 - "Gravitational Parameters of the Jupiter System from the Doppler Tracking of Pioneer 10" (Anderson et al. 1974, Science)

Turn the DSN+spacecraft into one giant science instrument!

Radio Science and Gravity Science

Juno Science Objectives via Gravity Science

Origin

Determine the abundance of water and place an upper limit on the mass of Jupiter's dense core to decide which theory of the planet's origin is correct

Interior

Understand Jupiter's interior structure and how material moves deep within the planet by mapping its gravitational and magnetic fields

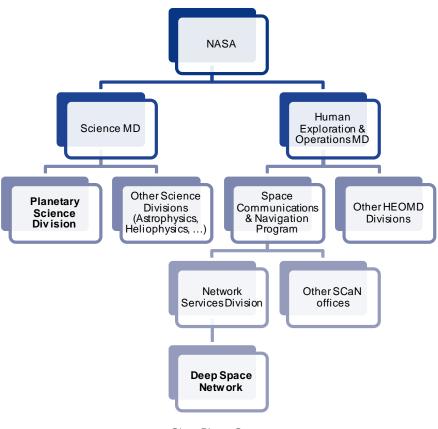
- Giant planet science with the DSN
- Status and near-term (ca. 2025)
 Notionally funded plans
- Longer term

DSN Aperture Enhancement Project (ca. 2023)

✓ = uplink+downlink; ✓= downlink

Additional Near-Term Improvements

- 70 m transmitters and facilities
 DSS-43 (Canberra) finishing in 2021 February
- Additional antenna arraying
- Delay/Disruption Tolerant Networking (DTN) throughout DSN
- Low latency delivery of high data For lunar missions
- Multiple Spacecraft Per Aperture (MSPA) capabilities
- Three Links per Operator


Maintenance

NASA Inspector General report "NASA's Planetary Science Portfolio" (Report No. IG-20-023, 2020 September 16)

- "NASA has not adequately funded Deep Space Network (DSN)
 repair, maintenance, and modernization efforts. ... Although DSN
 is meeting its current operational commitments, in our opinion,
 budget reductions have impacted the Network's performance and
 threaten its future reliability."
- DSN concurs with recommendations in this report
- DSN working with Space Communications and Navigation (SCaN) program in "DSN Road to Green" study

Green = low risk, *not* additional funding

DSN within NASA

- Giant planet science with the DSN
- Status and near-term
- Longer term
 - Feasibility of higher data rates/larger data volumes from the outer Solar System
 - DSS-54 repair
 - Ka-band uplink
 - Goldstone Solar System Radar modernization
 - 34 m (beam wave guide) transmitter and control systems

Longer Term

Feasibility of higher data rates/larger data volumes from the outer Solar System

- Challenge: Large distances
- "Knobs to turn"
 - Wavelength (X vs. Ka vs. laser)
 - ➤ Ground antenna (or antennas) aperture G_R
 - Spacecraft antenna aperture G_T
 - Cassini = 4 m diameter
 - Yes! but mass
 - Spacecraft transmitter power P_T
 - Better coding viz. Galileo

Link budget

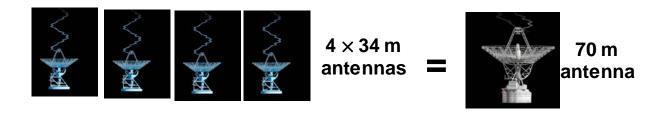
$$P_R = \frac{G_R G_T P_T}{4\pi R^2}$$

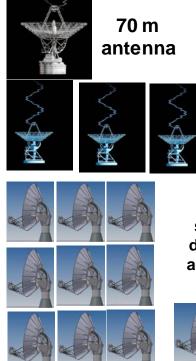
Laser (Optical) Communications

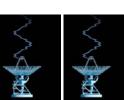
Hybrid RF-Optical Antenna

- Larger bandwidths = higher data rates
 Ka band better than X band
- DSS-23 (Goldstone) intended to be Hybrid RF-Optical Antenna
 - Inner panels replaced by mirrors
 - Available ca. 2027
- Laser communications often designed around high data rates from Mars
 - Significant outer Solar System challenges
 - ? Acquisition (beacon)

DSN Aperture Enhancement Project (ca. 2027)






Part I – Additional Antenna Arraying

- Voyager and New Horizons already use antenna arraying
- On-going developments aimed at additional capabilities
 E.g., simultaneous arrays of 70+34 and 3×34
- Limited number of antennas in DSN result in scheduling challenges

Part II – Additional DSN Antennas

34 m antennas

smaller diameter antennas

Continue DSN Aperture Enhancement Project, adding additional antennas

- Consistent with recommendation from V&V
- Additional robustness
- Additional flexibility
 - Array antennas when needed for high gain (outer Solar System)
- Voyager and New Horizons already use antenna arraying, but limited number of antennas in DSN result in scheduling challenges
 Giant Planet Systems Panel

jpl.nasa.gov

Part IIIa – Partnerships with Other Space Agencies

Part IIIb – Partnerships with Radio Telescopes

Radio
telescopes
with current
or planned Xand/or Kaband
capabilities

Summary

Deep Space Network

- **DSN** is and has been integral to Giant Planet science
 - Spacecraft telemetry
 - Radar and Radio Science
- DSN adding new antennas, and additional improvements, planned in near term
- Significant issues with deferred maintenance
- Multiple opportunities and challenges for higher data rates/larger data volumes from Giant Planets in longer term

Goldstone

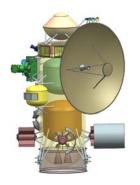
backup

(Inter-)National Radar Assets

(DSN)
70 m antenna, 500 kW
transmitter, 4 cm
wavelength (X band)

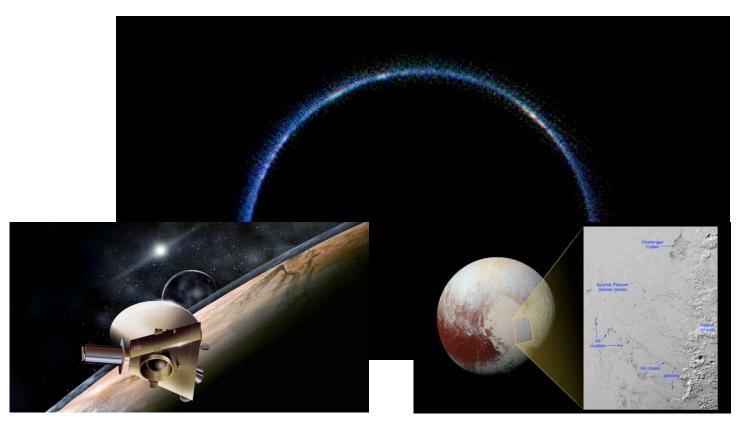
Arecibo (NAIC)
300 m antenna, 1 MW
transmitter, 13 cm
wavelength (S band)

Green Bank Telescope (GBO) 100 m antenna, receive-only



Radio Science and Gravity Science

Uranus Orbiter with Probe and 50 kg payload



Ice Giant Mission Concept Science Objective

1. Constrain the structure and characteristics of the planet's interior, including layering, locations of convective and stable regions, internal dynamics

DSN-REX

New Horizons

Future Antenna Downtimes

Canberra Complex

Antenna	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
DSS-43 (70 m)										
DSS-34										
DSS-35										
DSS-36										

Future Antenna Downtimes

Goldstone Complex

Antenna	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
DSS-14 (70 m)										
DSS-23										
DSS-24										
DSS-25										
DSS-26										

Future Antenna Downtimes

Madrid Complex

Antenna	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
DSS-63 (70 m)										
DSS-53										
DSS-54										
DSS-55										
DSS-56										
DSS-65										

