VENUS FLAGSHIP MISSION PLANETARY DECADAL STUDY

MARTHA GILMORE, WESLEYAN UNIVERSITY

PATRICIA BEAUCHAMP, JPL

RICHARD LYNCH, GSFC

AND THE VENUS FLAGSHIP MISSION STUDY TEAM

Planetary and Astrobiology Decadal Survey
October 13, 2020

Wesleyan University

VENUS FLAGSHIP MISSION CONCEPT SCIENCE TEAM

Study Team

Science Team

Sushil Atreya, University of Michigan Patricia Beauchamp, JPL-Caltech Penelope Boston, NASA ARC Mark Bullock, Science & Technology Corp. Shannon Curry, U.C. Berkeley Martha Gilmore, Wesleyan University Robbie Herrick, University of Alaska Jennifer Jackson, Caltech Stephen Kane, U.C. Riverside Alison Santos, NASA GRC David Stevenson, Caltech Colin Wilson, Oxford University Robert Lillis, U.C. Berkeley (Collaborator) Janet Luhmann, U.C. Berkeley (Collaborator) Joshua Knicely, University of Alaska (Student)

Main Technical Team at GSFC

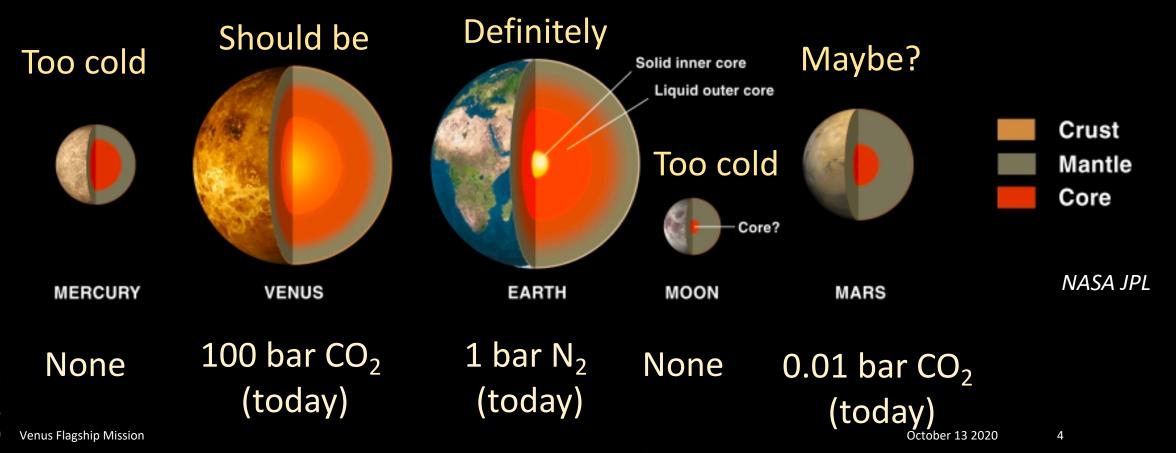
Naeem Ahmad Eric Cardiff Cornelis du Toit Amani Ginyard Kyle Hughes Art Jacques Andrew Jones Richard Lynch Paul Mason Ryo Nakamura Tony Nicoletti Eric Queen Glenn Rakow Rafael Rincon Adan Rodriguez Bruno Sarli Marcia Segura Thomas Spitzer David Steinfeld Robert Thate Steve Tompkins Sarah Wallerstedt Miguel Benayas Penas

GSFC MDL Team

Maryam Bakhtiari-Nejad Dick McBirney Porfy Beltran Frank Kirchman Blake Lorenz John Panek Steve Levitski Patrick Coronado Mark Underdown Kaitlyn Blair Camille Holly Mike Xapsos Bob Beaman Luis Gallo John Young Iames Sturm Bobby Nanan Jennifer Bracken Sara Riall

Mission Design at GSFC, Richard Lynch, Lead, M. Amato; Adriana Ocampo, NASA HQ liaison
Host of generous domestic and international colleagues, collaboration between several NASA centers sharing science, instrument and engineering expertise – THANK YOU!

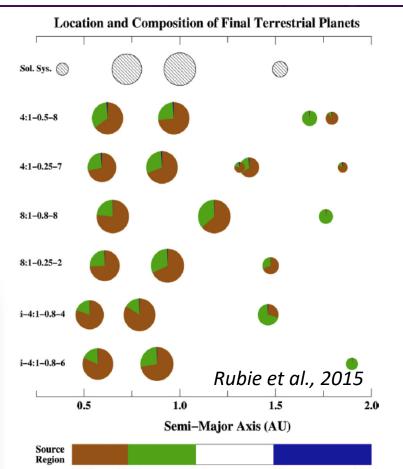
Erica Aguirre, Abby Allwood, Chi Ao, Shahid Aslam, Sami Asmar, Kevin Baines, Charles Baker, Don Banfield, Bruce Bills, Dave Blake, Jeremy Brossier, Paul Byrne, Gordon Chin, Sam Clegg, Glynn Collinson, Jim Cutts, Doris Daou, Darby Dyar, Larry Esposito, Sabrina Feldman, Justin Filiberto, Stephanie Getty, Jim Greenwood, Jeff Hall, Paul Hartogh, Chris Heirwegh, Joern Helbert, Scott Hensley, Laurie Higa, Gary Hunter, Noam Izenberg, Jacob Izraelevitz, Andrew Johnson, Kandis-Lea Jessup, Attila Komjathy, Tibor Kremic, Siddharth Krishnamoorthy, Sebastian Lebonnois, Yang Liu, Earl Maize, Darby Makel, Larry Matthies, Suman Muppidi, Dragan Nikolic, Adriana Ocampo, Joe O'Rourke, Bob Pappalardo, Brian Paczkowski, Richard Quinn, Ann Parsons, Michael Pauken, Jason Rabinovitch, Bruce Milam, Miguel San Martin, Dave Senske, Rainee Simons, Suzanne Smrekar, Christophe Sotin, Eric Sunada, Melissa Trainer, Allan Treiman, Ethiraj Venkatapathy, Panagiotis Vergados, Larry Wade, Michael Way, Chris Webster, Thomas Widemann.

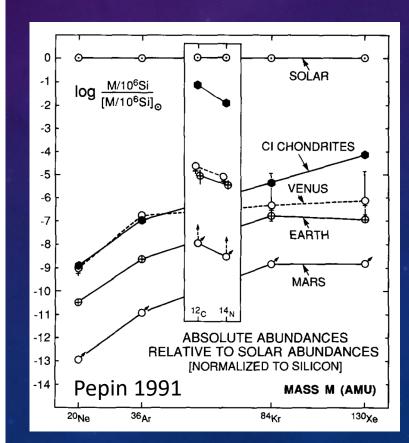

Science/Engineering Team meetings 2-4x/week, 2.5 days at GSFC Feb, 2 week Design run virtually in April

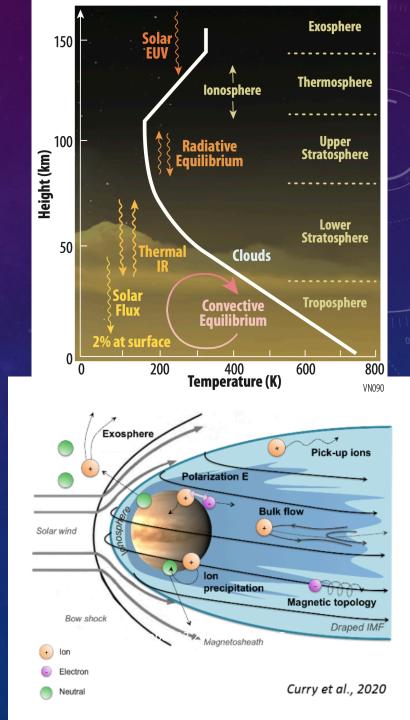
Venus Flagship Mission October 13 2020 2

Habitable planets must be large enough to:

Stay geologically active (long enough for life to develop)


Generate and maintain an atmosphere (long enough for life to develop)


Deuterium on Venus: Observations From Earth


Catherine de Bergh, Bruno Bézard, Tobias Owen, David Crisp, Jean-Pierre Maillard, Barry L. Lutz

Absorption lines of HDO and H_2O have been detected in a 0.23-wave number resolution spectrum of the dark side of Venus in the interval 2.34 to 2.43 micrometers, where the atmosphere is sounded in the altitude range from 32 to 42 kilometers (8 to 3 bars). The resulting value of the deuterium-to-hydrogen ratio (D/H) is 120 ± 40 times the telluric ratio, providing unequivocal confirmation of in situ Pioneer Venus mass spectrometer measurements that were in apparent conflict with an upper limit set from International Ultraviolet Explorer spectra. The 100-fold enrichment of the D/H ratio on Venus compared to Earth is thus a fundamental constraint on models for its atmospheric evolution.

What we don't know about the closest Earth size planet could fill a book....or a field.

S. Kane:

"Venus is the only exoplanet we will ever touch"

nocky i lances
Orbital Period
days
Distance to Star
Astronomical Units (AU)
Planet Radius
relative to Earth
Planet Mass relative to Earth

Mercury

87.97 days

0.387 AU

0.38 R_{earth}

0.06 M_{earth}

venus
224.70 days
0.723 AU
0.95 R _{earth}
0.82 M _{earth}

Earth	Mars
365.26 days	686.98 days
1.000 AU	1.524 AU
1.00 R _{earth}	0.53 R _{earth}
1.00 M _{earth}	0.11 M _{earth}

Photo: NASA / JPL-Caltech 13 2020

Since Magellan:

Details about upper atmosphere dynamics and composition from VEx and Akatsuki, plus important observations for which these payloads were not optimized

Venus may be geologically active

Smrekar et al., 2010; Davaille et al., 2017; Marcq et al., 2012; Shalygin et al., 2015; Filiberto et al., 2020; Gülcher et al., 2020

Venus may have felsic (silica-rich) crust

Gilmore et al., 2015; 2017

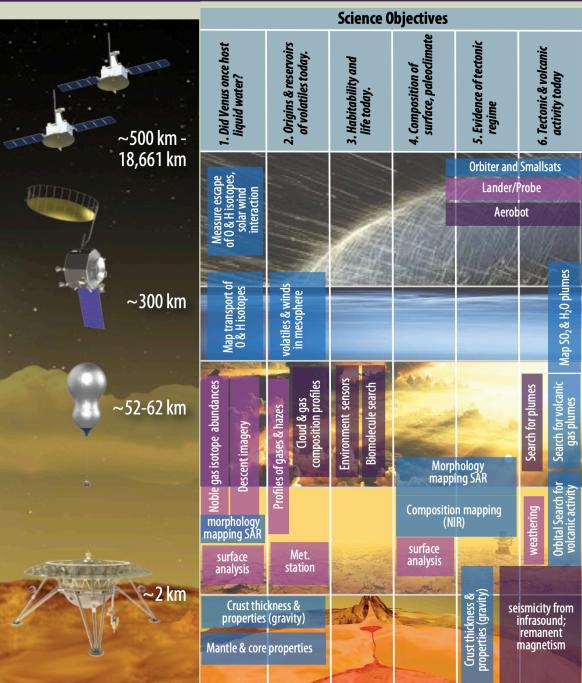
New GCM modeling showing Venus ocean may have lasted billions of years

Way et al., 2016, Way and Del Genio, 2020

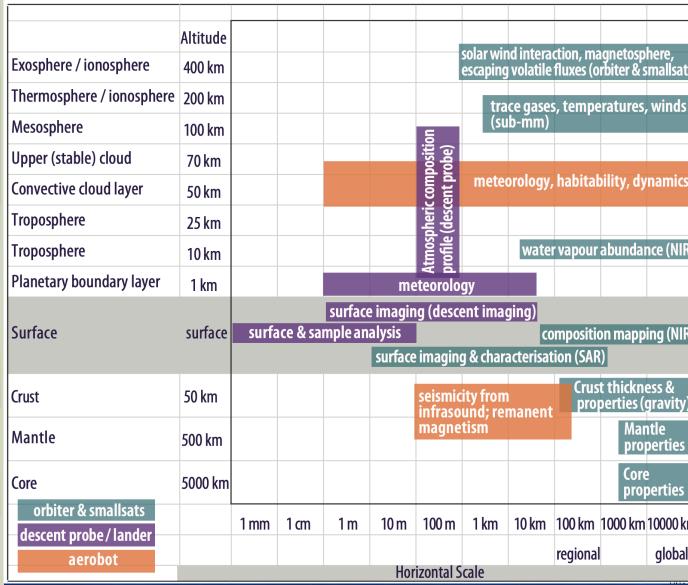
Hypothesis and possible detection of life in the Venus clouds Morowitz and Sagan, 1967; Limaye et al., 2018; Greaves et al., 2020; Seager et al., 2020

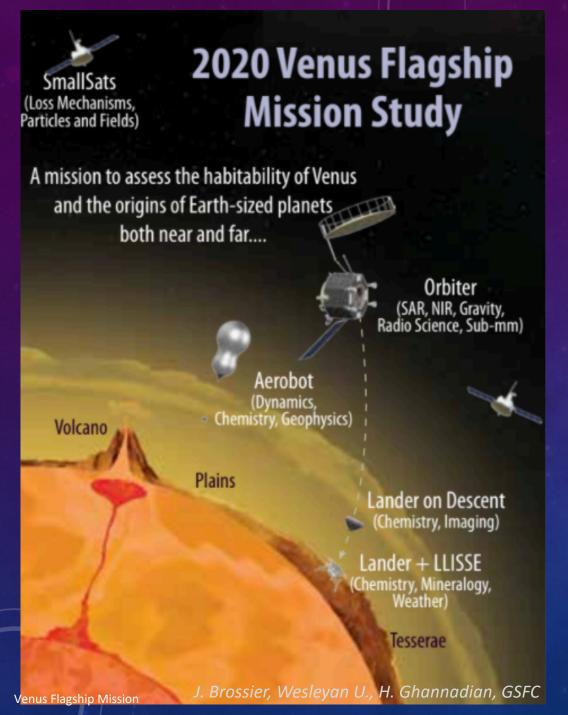
A MISSION TO EXPLORE THE HABITABILITY OF VENUS

Pl: Martha Gilmore, Wesleyan University; D-Pl: Patricia Beauchamp, Jet Propulsion Laboratory, California Institute of Technology


y	NASA
_	

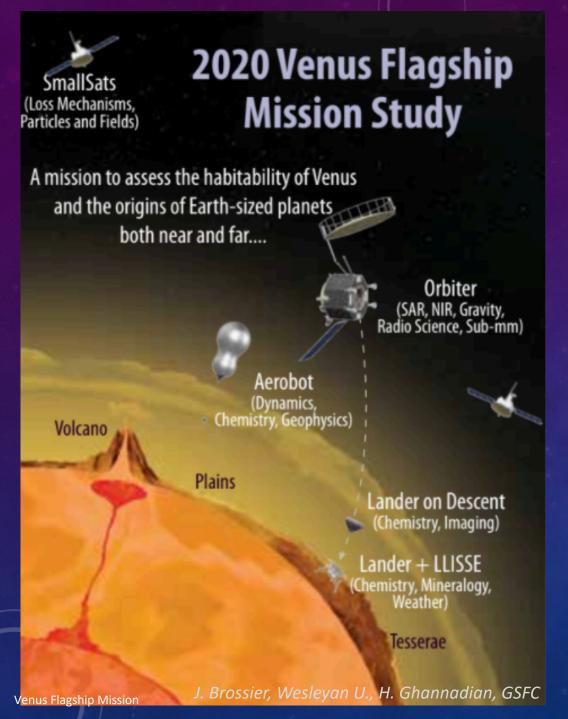
VN024


Science Objectives	
Determine if Venus once hosted liquid water at the surface.	
Identify and characterize the origins and reservoirs of Venus's volatiles today.	
Place constraints on whether there are habitable environments on Venus today and search for organic materials and biosignatures.	
Constrain the composition of the surface and chemical markers of past and present climate.	
Determine if Venus shows evidence of a current or past plate tectonic regime.	
Determine whether Venus is tectonically and volcanically active today.	
	Determine if Venus once hosted liquid water at the surface. Identify and characterize the origins and reservoirs of Venus's volatiles today. Place constraints on whether there are habitable environments on Venus today and search for organic materials and biosignatures. Constrain the composition of the surface and chemical markers of past and present climate. Determine if Venus shows evidence of a current or past plate tectonic regime.


Altitude Ranges Processes to be Studied (approximate) **Exosphere** Escape to space 200 km Photodissociation to Thermosphere H^+, OH^-, O^+ 100 km H₂O & SO_x cycles in Mesosphere mesosphere 70 km Volatile cycling in **Cloud Layers** the clouds 50 km Thermochemistry in troposphere **Troposphere Surface** Weathering 0 km Active volcanism? Crust Tectonism? -50 km Volatile cycling in Crust, Mantle, Core -6050 km ober 13 2020 Mantle and Core

MISSION ASSETS

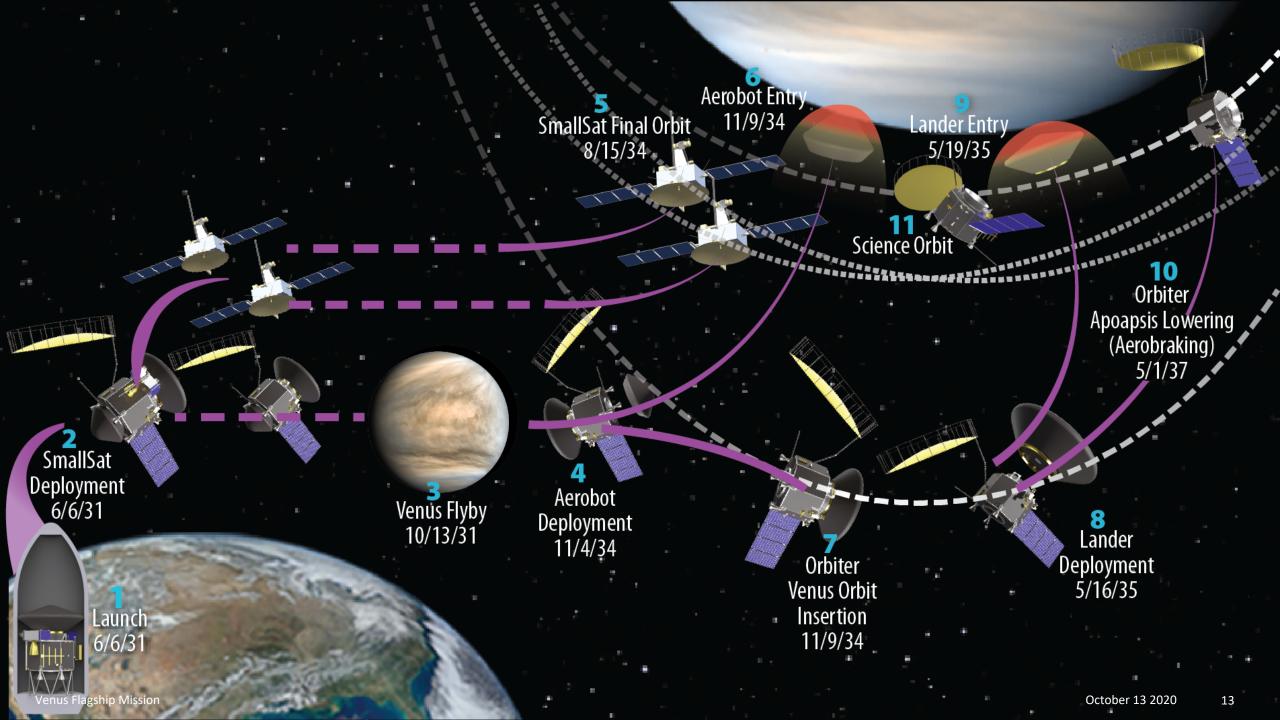
SYNERGISTIC OBSERVATIONS



Key elements of Design

Launch 2031. Synergistic measurements between multiple assets:

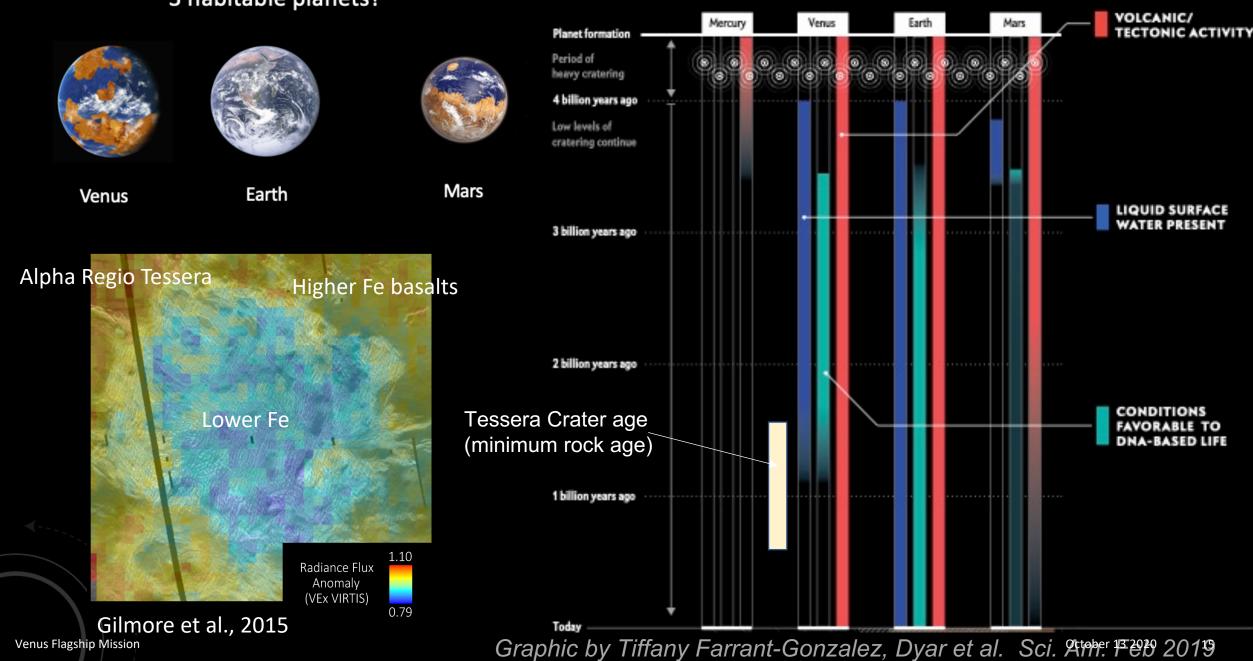
- Orbiter and 2 SmallSats support in situ assets prior to science campaign
- Lander 7 hour lifetime on tessera terrain after 1 hour of measurements on descent
- Aerobot 60+ days, variable altitude between 52 and 62 km altitude
- Long-lived lander (LLISSE) 60+ days
- Assumed no prior Venus missions, but flexible to accommodate them.
- The overall mission concept was derived from the three major science goals and two cost-driven requirements that were derived early in the study: 1) launch all elements on a single rocket and 2) limit the g-load for Venus entry to ≤ 50g in order to maximize the use state-of-the-art instruments that had high heritage or were assessed to have high technology levels. Both of these requirements were accomplished.

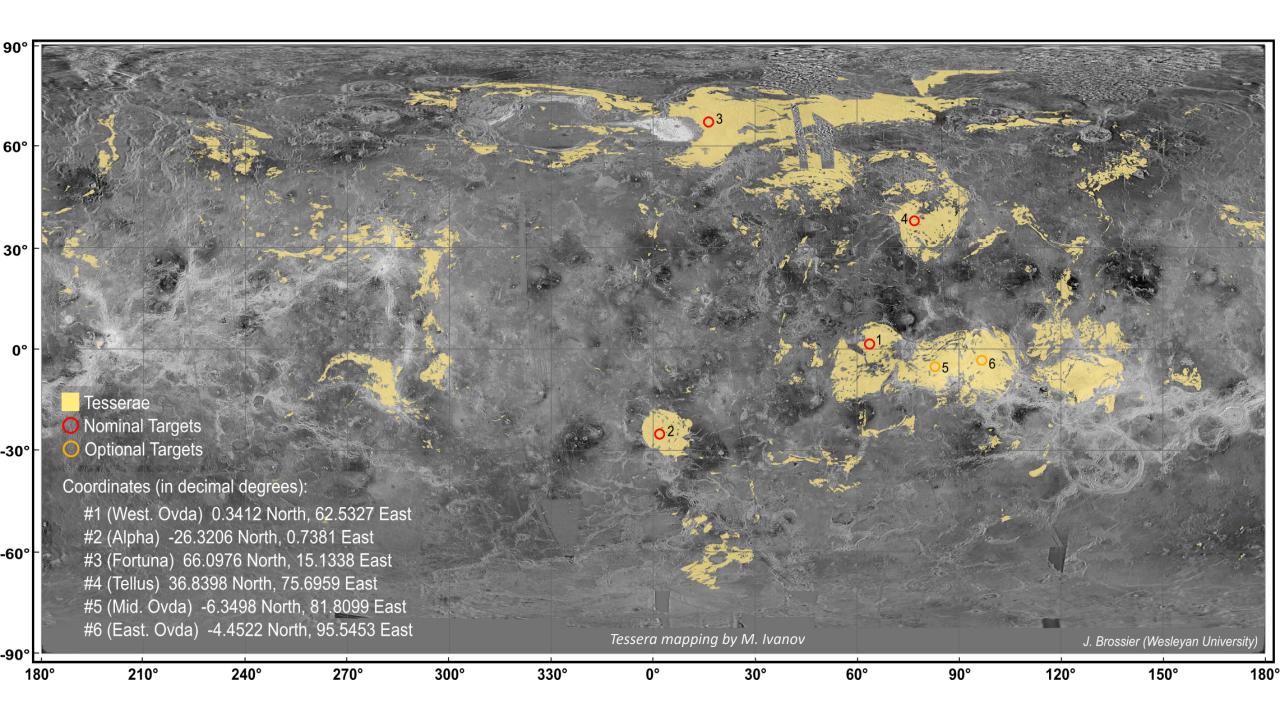


Key Trades

- Definition of the elements that are needed to fulfill the science objectives.
- Evaluation of launch architectures
- Determination of how to provide communication coverage for the aerobot and the lander.
- Selection of propulsion systems for the smallsats and orbiter
- Evaluation of methods to reduce instrument g loads.
- Determination of the aeroshell shape
- Determination of the orbiter orbit.
- Determination of launch dates.

VFM PLATFORMS Two SmallSat orbiters Aerobot CASTON THE PLEASE STORES Orbiter and Falcon 9 Heavy carrier Expendable Lander/Descent spacecraft w/5 m Fairing Probe and spacecraft Venus Flagship Mission 12 October 13 2020 LLISSE


FELOOF

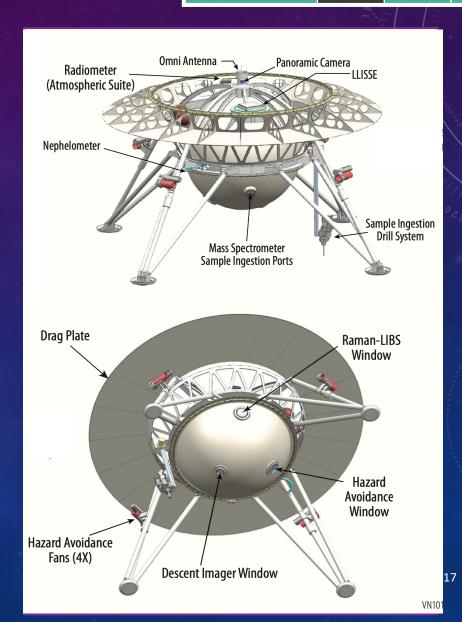


Lander	Aerobot	Orbiter	SmallSats	
Neutral Mass Spectrometer (NMS)	Aerosol Mass Spectrometer with Nephelometer (AMS-N)	Synthetic Aperture Radar (SAR)	Magnetometer (Mag) Electron electrostatic	
Tunable Laser Spectrometer (TLS) Atmospheric Structure Suite	Fluorimetric Microscope (FM) Meteorological suite (P, T, Radiometer, 3-d	Near IR Imager (NIR-I)	analyzer (ESA-e) lon electrostatic analyzer (ESA-i)	
[P, T, Radiometer] (AS) Descent NIR Imager (DI)	Wind Sensor Dosimeter) (MET) Visible Imager (student experiment) (VI)	Sub-mm Spectrometer (S-mm)	Langmuir Probe (LP)	
Nephelometer (Neph)	Visible Imager (student experiment) (VI) Magnetometer (Mag)	Magnetometer (Mag)	Electric Fields Detector (E-FD)	
Neutron Generator/Gamma Ray Spectrometer (GRS)	Instrument Key	lon Electrostatic Analyzer (ESA-i)	Solar Energetic Parti- cle Detector (SEPD)	
X-Ray Diffractometer (XRD)	Atmospheric	Electron Electrostatic Analyzer (ESA-e)	EUV Sensor (EUV)	
Raman-LIBS Instrument (R-LIBS)	Mineralogy and Geology Magnetic Fields	2 each Neutral Mass		
Panoramic Camera (PC)	Particles	Spectrometer (NMS)		
X-ray Fluorescence Spectrometer (XFS)	Aerosols			
Long-Lived In-Situ Solar System				

Venus Flagship Mission October 13 2020 14

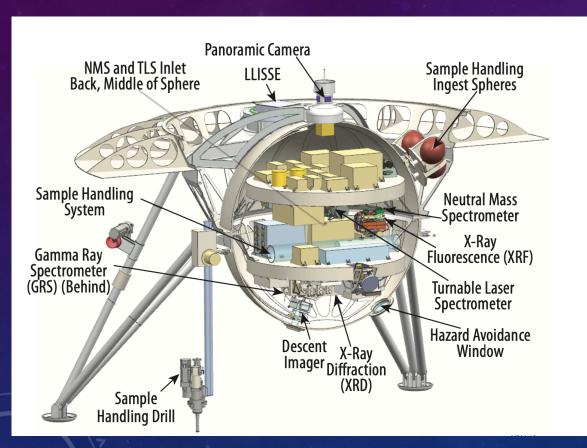
Our neighborhood 4 billion years ago 3 habitable planets?

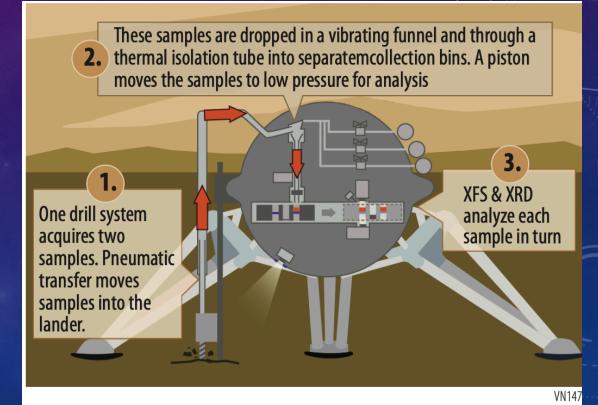
LANDER

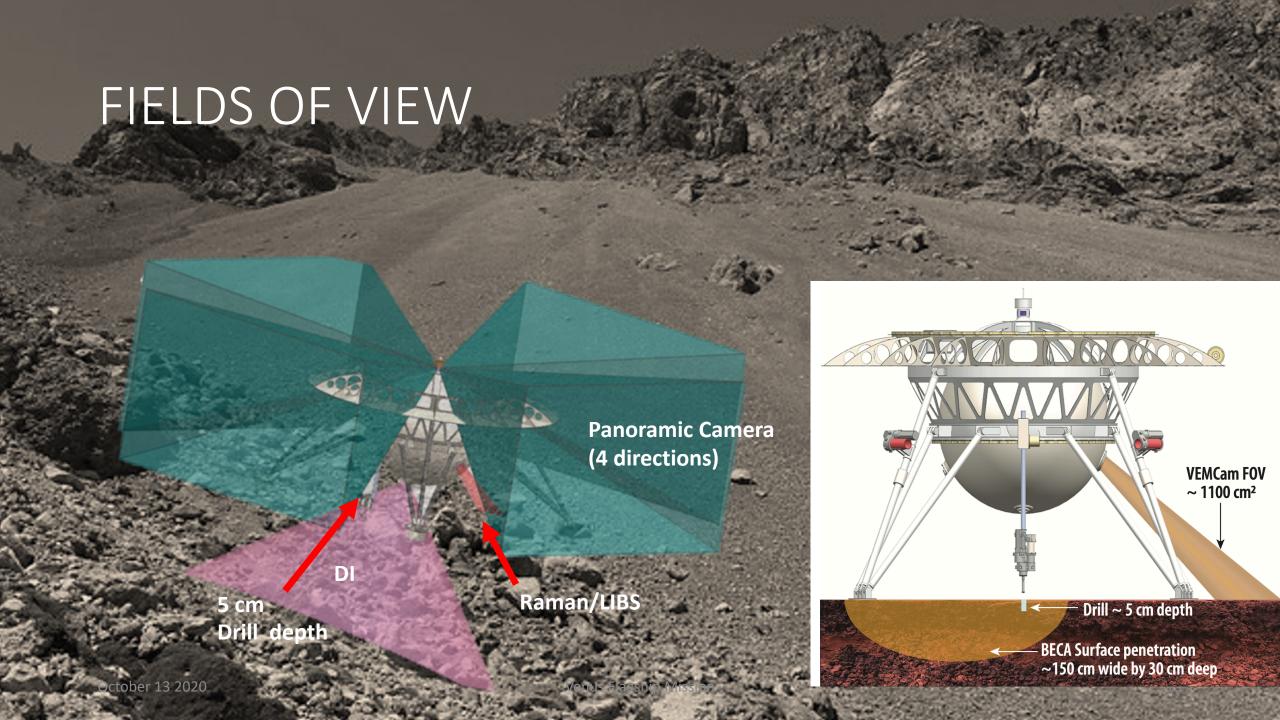

Science: Mineralogy, geochemistry and morphology of Venus tessera terrain, constrain surface-atmosphere interactions, long-duration near surface atmosphere characterization

Ingestion of samples into the lander for elemental chemistry and mineralogy

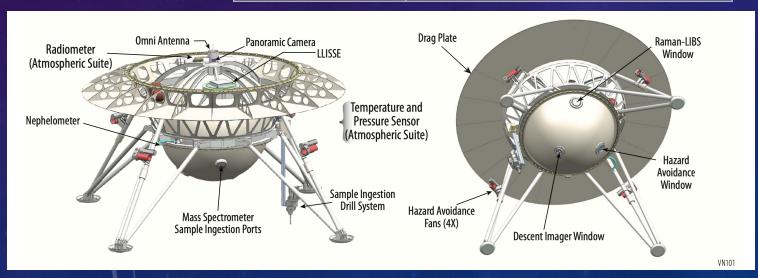
AND

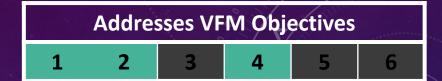

- "Mobility" achieved with Raman/LIBS by analyzing many targets for chemistry and mineralogy
- Gamma-ray spectrometer to get integrated measurement
- LLISSE Long-Lived In Situ Solar System Explorer, T.
 Kremic, GRC atmospheric measurements over 60 days

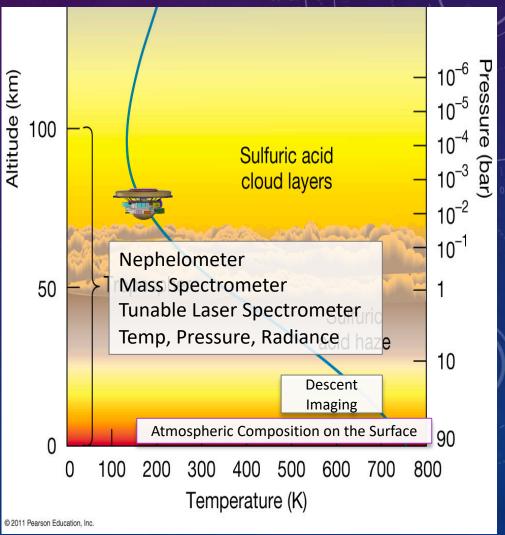

Addresses VFM Objectives					
1	2	3	4	5	6


SAMPLE HANDLING

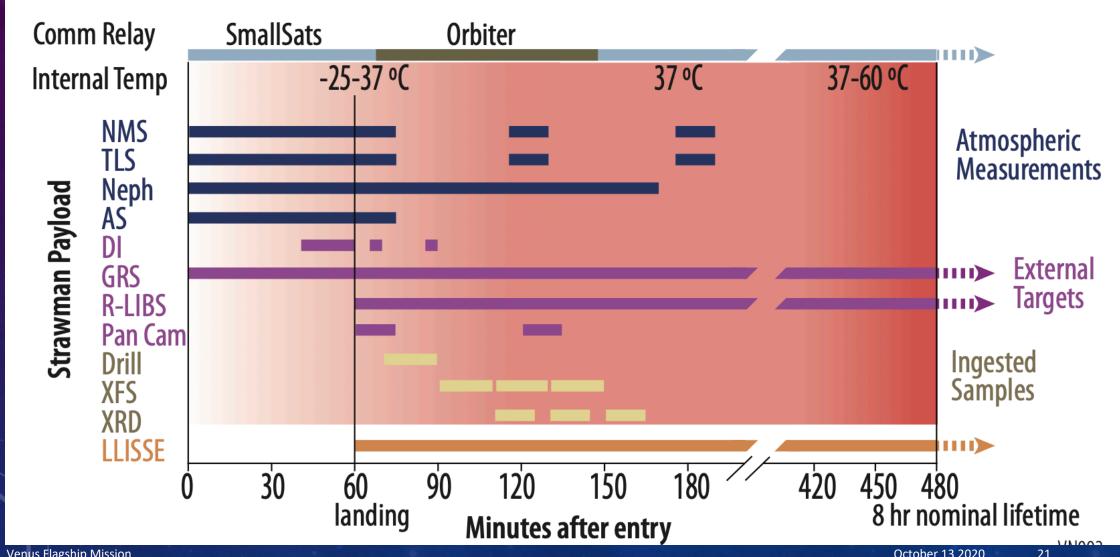
3 individual samples collected by drill Ingested and analyzed by X-ray Florescence, then dropped into X-Ray Diffractometer


Figure B-84. Schematic of drill and sample transfer system modified from JPL graphic




LANDER DESCENT SCIENCE

Composition, dynamics, imaging of the atmosphere to and <u>on</u> the surface.


Instrument	Measurement
Mass Spectrometer	Noble gases and their isotopes
Tunable Laser	Major and trace gases and their
Spectrometer	isotopes
Nephelometer	Cloud particles
Descent Camera	NIR
MET Suite	P, T, winds, radiance

LANDER OPERATIONS

Venus Flagship Mission October 13 2020 21 (Manatum)

SAFE LANDING IN TESSERA TERRAIN

Goal

Land in tessera and acquire and ingest 3 surface samples Sample ingestion depends on gravity for sample delivery

Challenges

Potentially uneven surface

Surface materials could be rocks, regolith or sediment

Solutions

Landing site analyses

Slope map analyses

Maps of mantling materials

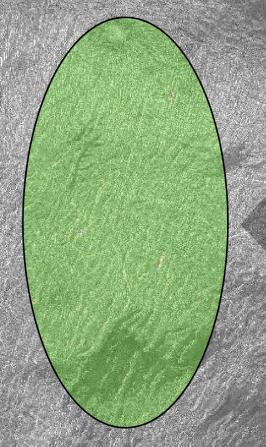
Hazard Detection and Avoidance

Real time processing of descent images and LiDAR

Use of fans to redirect the lander to avoid steep slopes

Mechanisms

Landers Design to tolerate 30° slopes


Operations

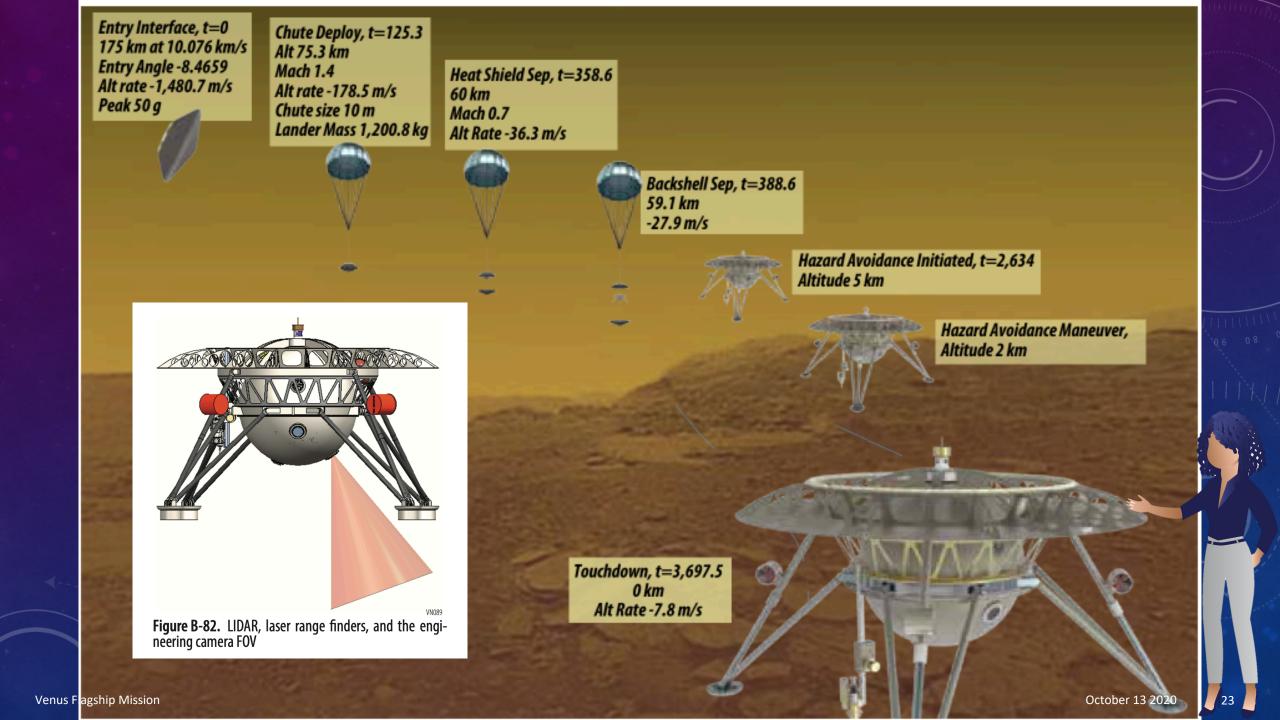
Drill has flexibility to access unknown surface

Antenna points close to zenith

venus Flag Red ยากdant instrumentation for rock chem/mineralogy

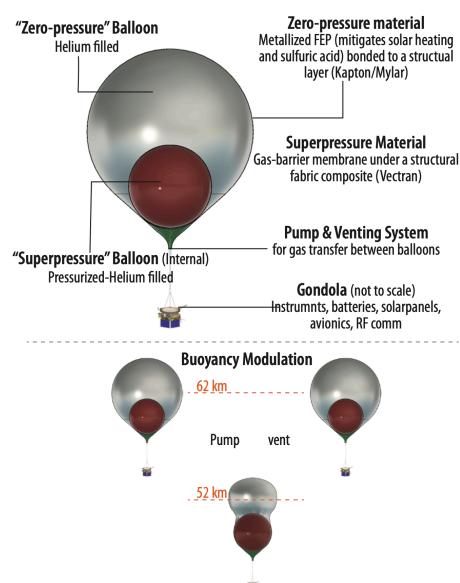
Manatum Tessera Western Ovda

Coodinates


lon: 67.5497 lat: 2.7013

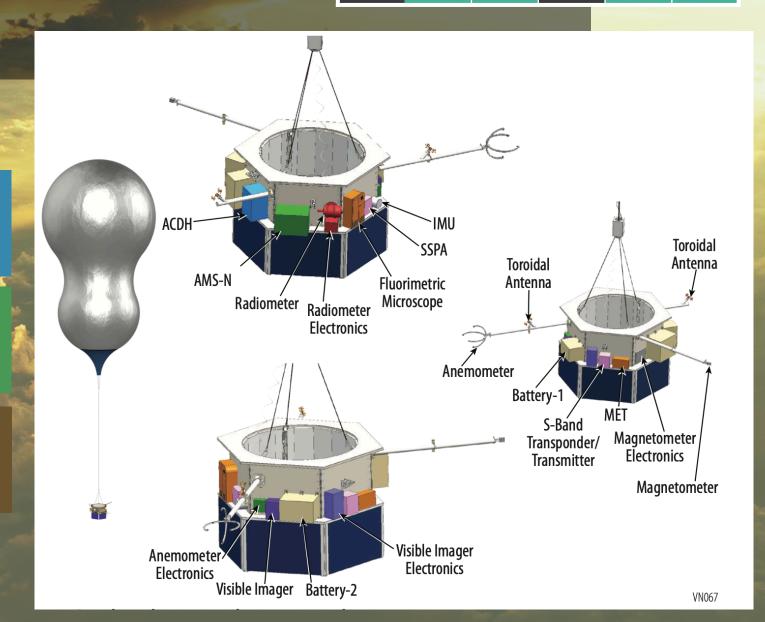
Size

a: 300 km (S-N) b: 150 km (W-E)


Slopes (degrees)

below 15° 15° - 25° 25° - 30° 30° - 35° above 35°

ENTRY, DESCENT AND FLOAT

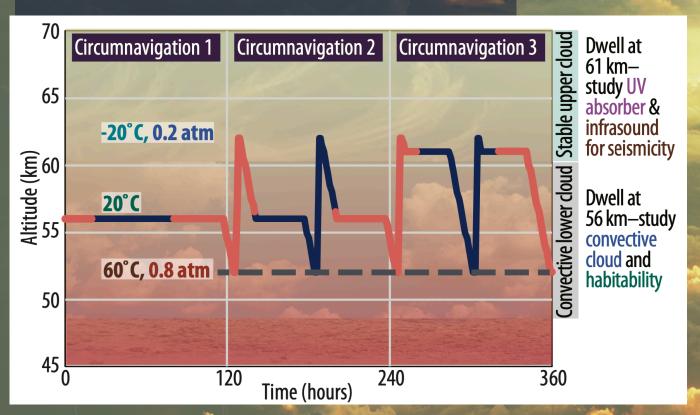


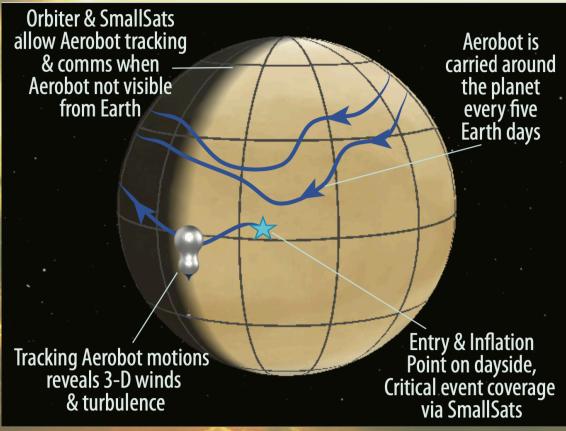
Addresses VFM Objectives

AEROBOT PAYLOAD

Science goals:

- **Chemistry**: Measure composition and microphysics of cloud particles, including search for biomolecules.
- Meteorology: Measure cloud-level dynamics & radiances & role in volatile transport.
- **Surface science**: Measure seismicity by infrasound; search for remanent magnetism.

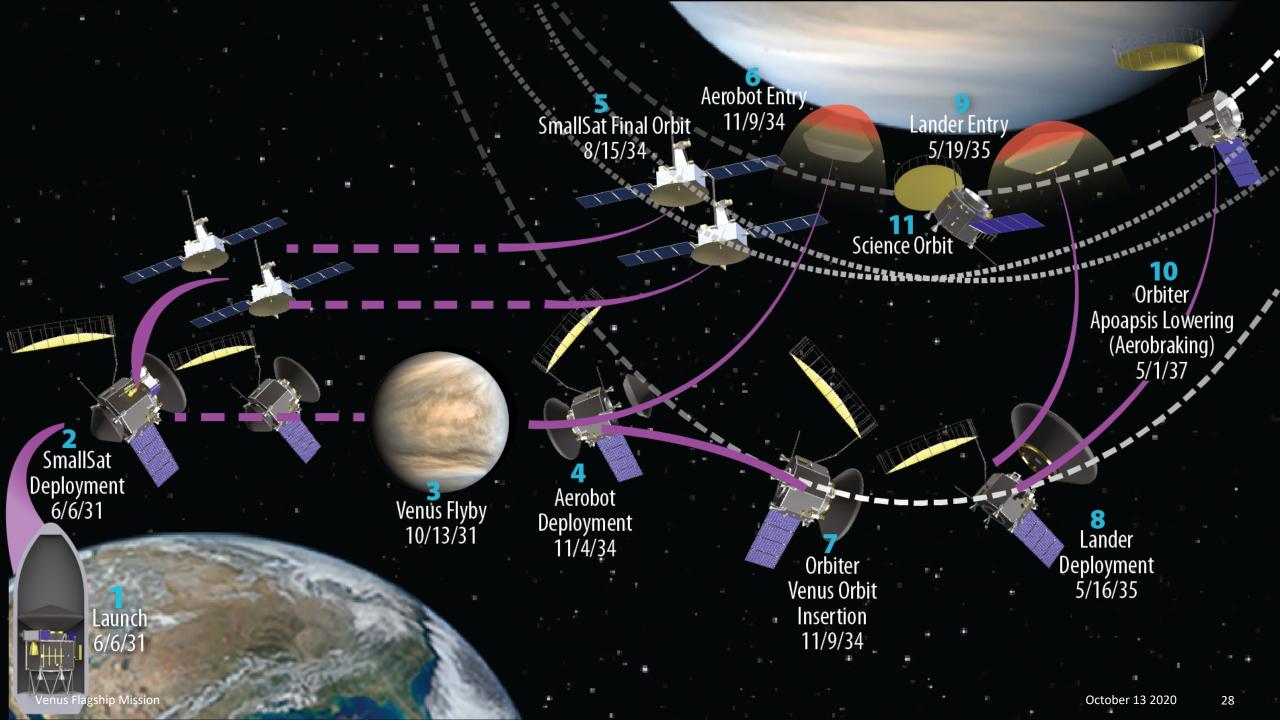



VFM SCIEMCE OBJECTIVE I.3 PLACE CONSTRAINTS ON WHETHER THERE ARE HABITABLE ENVIRONMENTS ON VENUS TODAY AND SEARCH FOR ORGANIC MATERIALS AND BIOSIGNATURES.

Science Goals	Science Objectives	Science Investigations	Measurement Approach	Measurement Requirement	Performance Requirement	Strawman Instruments	Functional Requirements
and liquid us has ever	2 Diago		Measure environmental parameters which determine habitability	Environmental sensors: P, T, UV, radiation	Measure temperature, pressure, turbulence. Measure UVA, UVB, UVC up- and downwelling light. Measure ionizing radiation levels. Measure H ₂ SO ₄ vapor & droplet abundances	MET Suite, Radiometer, EUV Detector, Radio Occultation	Aerobot, SmallSat constellation
istory of volatiles I determine if Ven :n habitable.	constraints on whether there are habitable environments on Venus today	A. Assess the present-day habitability of the Venus cloud environment	Measure composition relevant to habitability	Measure composition of cloud particles; characterize availability of biologically important elements including C, H, N, O, P, S in gaseous, liquid and/or solid form	Measure effective size of particles to a resolution of 0.1 μ m Measure refractive index to a resolution of < 0.02 Identify non-spherical (non-liquid) particulates Mass spectrometer with dedicated aerosol sampling inlet. Measure CHNOPS species to a sensitivity of 1 ppm, to determine chemical environment of cloud droplets	Nephelometer and Aerosol Mass Spectrometer (AMS-N)	Aerobot
stand th	materials and biosignatures.	any extant or recently dead organisms or fragments present in the	biomolecules or larger fluorescing organic objects in the altitude range of	Identify fluorescent biomolecules, e.g. chlorophyll or other photosynthetic pigments that could allow for photosynthetic activity	Collect 7 samples over 60 days, at variable altitudes, using images (fluorescence and dark-field) of cloud droplets on 10, 1.0 and 0.2 um pore-size filters with $<$ 0.5 μ m spatial resolution at 265, 370, 470, and 530 μ m to determine the difference between bio-content on day and night-sides during the course of each circumnavigation	Fluorimetric Microscope (FM)	Aerobot

Venus Flagship Mission October 13 2020 26

AEROBOT FLIGHT PLAN



Later circumnavigations: obtain vertical profiles at all times of day and night. Choose dwell altitude to study different cloud layers.

First circumnavigation: dwell at ~20°C to complete initial chemical characterization including noble gases.

12 navigations over 60 day lifetime

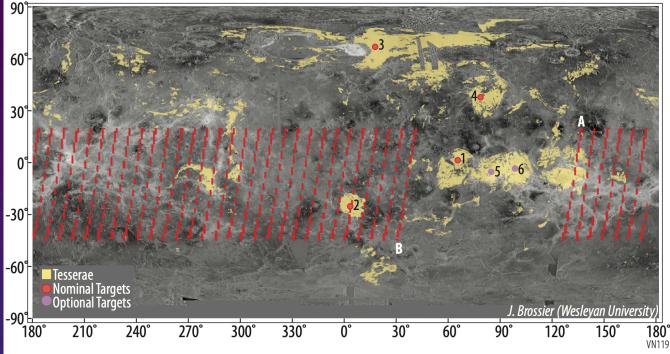
VFM ORBITER

Addresses VFM Objectives

1 2 3 4 5 6

Science: Morphology and composition of Venus surface, gravity field, particles and fields, upper atmosphere composition.

After lander release aerobrake to circular mapping orbit.


Provides critical comm for aerobot and lander

Targeted SAR images of ~5% of the surface to accomplish science objectives. Specifics of mapping campaign will consider status of Venus missions currently in consideration in Discovery and by ESA.

Venus Flagship Mission October 13 2020 29

ORBITER PHASES

Orbit Parameters (Venus Inertial Frame)	Orbiter Elliptical	Orbiter Circular
Apoapsis (km)	116,108.4	300
Periapsis (km)	300	300
Eccentricity	0.945	0
Inclination (°)	90	90
Orbital Period	5 days	1.55 hours
RAAN (°)	334.4	334.4
Argument of Periapsis (°)	188.6	188.6

Figure B-39. SAR Ground Coverage during the Elliptical Polar Orbit. For the baseline missions, coverage starts at 120° longitude (point A) and moves eastward to point B. Coverage can be increased by extending the length time the Orbiter is in the initial elliptical orbit.

Table B-18. Orbiter Data Generation by Orbit

	Circula	Circular Orbit Elliptical Orbit			Mission Total		
			Pre-Aerobraking Orbit		Aerobraking Orbit		
Instrument	Gbit/Orbit	Total	Gbit/Orbit	Total	Gbit/Orbit*	Total	Gbit
NIR Imager (NIR-I)	0.1	2658	0.1	4.2	0.1	44	2707
Flux Gate Magnetometer (Mag)	0.01	252	0.9	31.5	0.3	126	410
SAR	2.4	53611	103	3707	0.0	0	57318
Sub MM	0.4	10092	35	1261.4	13.4	5046	16399
Mass Spectrometer	0.161	3650.0	12.7	456.3	4.8	1825	5931
Ion Electrostatic Analyzer (ESA-i)	0.19	4365	15.2	545.7	5.8	2183	7094
Electron Electrostatic Analyzer (ESA-e)	0.02	555	2	69.4	0.7	277	902
	3.3	75183	169	6075	25.2	9501	90760

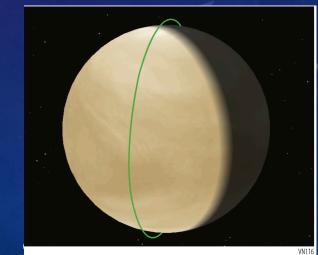
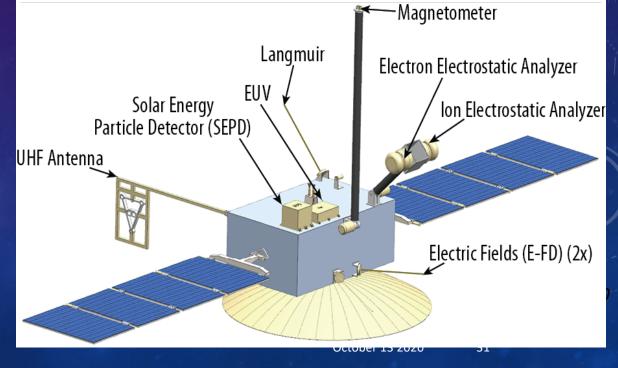
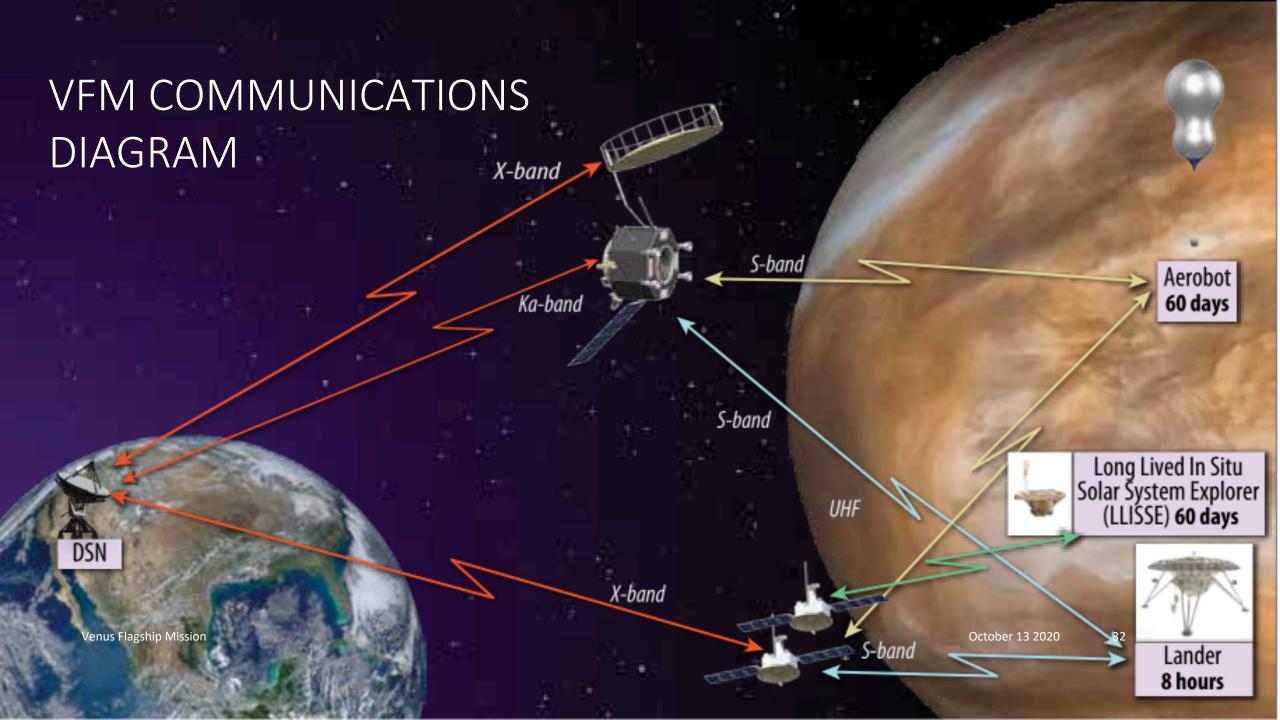


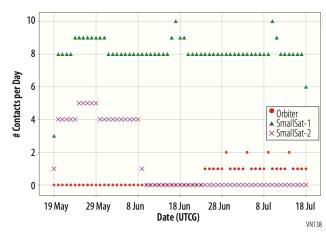
Figure 5. Final Polar Science Orbit

TWO SMALLSATS

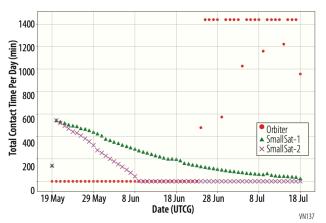

Addresses VFM Objectives					
1	2	3	4	5	6

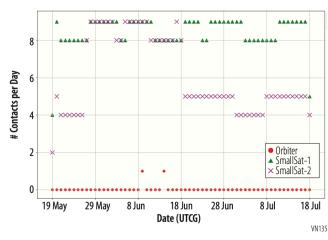

Science: Understand evolution of Venus atmosphere and magnetosphere via measurements of the interaction the with solar wind.

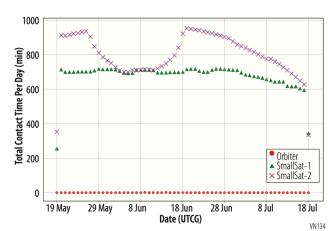
- Elliptical orbits with periapses in both Northern and Southern hemispheres during solar cycle 26
- Critically aid in tracking, comm and data return of in situ elements

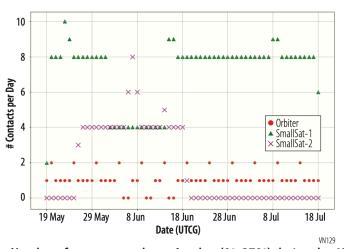

661	18,661
00	500
578	0.578
2.5	65
ours	6 hours
51.0	339.9
6.7	359.5
	00 578 2.5 ours 51.0

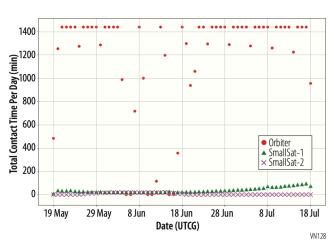
	250	Venus Flagship Mission
SSN)	200-	
Sunspot Number (SSN)	150-	
spot Nu	100-	
Sun	50-	
	0 -	Solar Cycle 24 Solar Cycle 25 Solar Cycle 26
	- U	2010 2012 20152017 2020 2022 2025 2027 2030 2032 2035 2037 2040 Curry/SSL




EXAMPLE AEROBOT COMMUNICATIONS

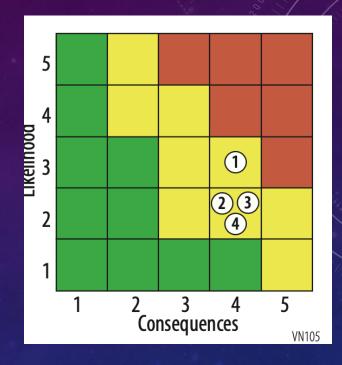

Number of contacts per day to Aerobot (0°, 0°) during the 60-day period


Total contact time per day to Aerobot (0°, 0°) during the 60-day period.


Number of contacts per day to Aerobot (0°, 90°) during the 60-day period.

Total contact time per day to Aerobot (0°, 90°) during the 60-day period.

Number of contacts per day to Aerobot (0°, 270°) during the 60-day period


Total contact time per day to Aerobot (0°, 270°) during the 60-day period

RISK AND TRL

- 1. Landing
- 2. Landing Terrain Relative Navigation and Hazard Avoidance Subsystem
- 3. Lander Pressure Vessel complexity
- 4. Mission Complexity

- Continued Investment in:
 - Variable Altitude balloon
 - Instruments and Sample Acquisition Handling
- See VFM Study Technology Development Plan

Venus Flagship Mission October 13 2020 34

COST AND SCHEDULE

	Mass (MEV Dry, kg)		(\$M, wit reserve									
Orbiter	1930	\$761										
SmallSats (2), Wet Mass	600		\$280									
Aerobot	1443		\$771									
Lander	2002	!	\$1,238									
Total Dry Mass	5965	-										
Orbiter Propellant	3548		-									
Launch Vehicle Adapter	71	-										
Science/Management			\$662									
Total	9584		\$3712									
Study Beginning	2022	2023	2024	ſ								

																0rbi	ter	Ellip	tica	al	Ork	oite	r Ci	rcu	la	r	S	ma	IIS	at	1		Sı	ma	allSa	ıt 2		111								
	Orbit Parameters (apogee, perigee, inclination, etc.)																																													
	Apo	apsis	(km)																	1	116,	108.	4				300					18	,66	51				18	3,66	1						
	Per	iapsis	(km)																		30	00					300					5	00)				500								
	Ecc	entrici	ty																		0.	95					0					0.	57	8				0.578								
		inatio		J)													90 90 22.5													65																
		ital Pe																	5 days 1.6 hours 6 hours 6 ho																											
	RAAN (deg)															33	4.4				3	34.4	4				2:	51.0	0					39.9												
	Argument of Periapsis (deg)													188.6 188.6 86.7 3													359.5																			
	Mission Lifetime														10 years 6 yea												ırs																			
	Maximum Eclipse Period (minutes)															22.2 22.3 87.7 90.0																														
	Launch Site																					Cap	e (ar	nav	era	l, Fl	-																		
	Total Mass with contingency (includes instruments)													1,930.2 300.0 300												00.0																				
	Propellant Mass without contingency												3,193.2 112.5 112.5																																	
	Pro	pellan	t cont	ing	ency															354.8 12.5																										
	Pro	pellan	t Mas	s w	ith co	ntinge	ncy													3,548.0 125																										
	Lau	nch Ad	lapte	r M	ass w i	th cor	ting	enc	у										3,548.0 125 125 71																											
	Tot	al Laur	rch M	ass																								9	9,5	84.	.6															
	Lau	nch Ve	hicle																					Fal	lcon	9 F	leav	/y E	xp	en	dal	ble :	5 m	ı fa	airi	ng						11				
	Lau	nch Ve	hicle	Lif	Capa	bility																								594												0				
																													2.1	09.	4											ŭ				
	Launch Vehicle Mass Margin Launch Vehicle Mass Margin (%)											T											2.0																							
)26	5	20	027 2028 2029 2030 2031			2	2032		2 203)3	3	2034			-		2035			5		/		204			20	0																	
3	4	1 2	3 4	1	1 2	3 4	. 1	7	3	4	1	2	3 4	1 1	1	2	3 /	1	1	2 :	2 4	1	1	1	3 4	1	1 1)	3	1	1	12	1	3	4		1	ľ	<u>)</u> :	2 2	1	1	7			
	7	1 2		1	1 2				,	T	-				-		د ا	ur	ch	1	7						1	-	<u> </u>	-	ľ	-	+	,				1	-			+	_			
\perp				\perp													LO	ıuı	ļŲ	<u> </u>						\perp	\perp	_					\perp						\perp	\perp	\perp	4				

71111	Dilialidats (2 <i>),</i> v	vet mass	000		320U					Laun	ch Site															Cap	e Cana	averal	, FL								
	Aerobot 1443					\$771						Mass w					instrur	ment	s)						1,930	.2				300.0		3	300.0				
	Lander		200	2		\$1,238						ellant M			conting	gency									3,193					112.5			112.5				
	Total Dry Mass		596			+ 1,233						opellant contingency 354.8 opellant Mass with contingency 3,548.0													12.5 125			12.5 125									
		4									Propellant Mass with contingency Launch Adapter Mass with contingency															123											
	Orbiter Propella		354 71			-					Total Launch Mass															71 9,58						8					
	Launch Vehicle			-					_	ch Vehic													Fal	con 9	Heav			le 5 m 1	airing		11						
	Science/Manag	ement			\$662			Launch Vehicle Lift Capability 11,694.0															0														
_	Total		958	4		\$3712				Launch Vehicle Mass Margin Launch Vehicle Mass Margin (%)														2,109.4 22.0													
The second second		Deginging			2022			2025		2026							20	1 -	1020		2021	T	^		202	<u> </u>	20		_	202	- 11	/	2042	1 2	0.41		
VFM S	tuay	Beginning	202		2023	2024	4	2025		2026	<u> </u>	202	<u> </u>	202	8	20	29	4	2030		2031	1 4	032		203.	3		034		2035) ///	<u> </u>	2042		043		
		TRL	1 2 3	4 1	2 3 4	1 2 3 4	4 1	2 3 4	4 1	2 3	4 1	<u> 1 2 3</u>	4	1 2 :	3 4	1 2	3 4	1	2 3 4	<u> 1</u>	2 3 4	1	2 3	<u>4 1</u>	2 3	3 4	<u>1 2</u>	<u>. 3</u>	4 1	23	4	1	<u> 2 3 4</u>	4 1	2 :		
			PrePh/	1-12	m																♣ Lau	unch															
ATP 1/	22		ATP		PhA-	16 m																															
IPDR 2	/25, MPDR 6/25						Ph	B - 25	m																												
ICDR 8	/26, MCDR 12/26											PhC-	- 31	m							Trans	it to	V														
IRR 12,	/28, LRR 5/31							PDR	M	PDR					IRR		F	Pha	se D -	42	m																
10 yea	rs								l	CDR	١	MCDR									LRR					Ph	ase	E - '	120	m							
																																	P	hase	e F		
1/ 14		Small-Sats Deploy														Small-Sats Lan Orbit Venus							ande	r De Entr	ploy												

Key Mission Milestones Orbiter Science Aerobot Deploy & Entry Venus Flyby

A FLAGSHIP COMPLEMENTS OTHER VENUS MISSIONS

- VERITAS would be pathfinder for VFM lander site selection and hi-res SAR targets. Possible VFM descope: NIR emissivity/gravity.
- **DAVINCI+** would inform VFM descent profile at another location. VFM does unique surface atmospheric science. *Possible VFM descope: None*
- EnVision at Venus concurrently with VFM could provide the SAR and NIR emissivity to support VFM objectives.
- VENERA-D lander will visit the plains

VERITAS - launch 2026

FLAGSHIP FIRSTS

The Venus Flagship mission will provide major, unprecedented advancements in our understanding of the formation, evolution and habitability of terrestrial planets and would be the first mission to trace volatile inventory, phase, movement, reservoirs and loss over Venus history.

- first landing in tesserae thought to represent the oldest rocks on Venus
- first measurement the mineralogy and precise geochemistry of tessera terrain; the first inventory of all major atmospheric noble gases and their isotopes
- first measurement of global surface composition from orbit; first co-located mapping of winds and composition in the mesosphere and thermosphere
- first measurements of lower atmosphere composition with modern, high-accuracy, high-resolution instruments
- first simultaneous multipoint measurements in Venus exosphere and ionosphere
- first measurement of seismicity and remanent magnetism of Venus first deployment of uncooled ambient temperature electronics to enable long-life operation at the Venus surface.
- Complementary & descopable with respect to proposed smaller Venus missions.

Venus Flagship Mission October 13 2020 37

VENUS TOUCHES US ALL

How do Earth, the planets, and the heliosphere interact?



How did life begin and evolve on Earth?

How did the solar system evolve?

How did the sun's family originate?

What are the characteristics of the Solar System?

How do we find habitable planets?

Venus is the closest planet to Earth in size and heliocentric distance. Yet it stands in striking contrast to our home planet in terms of its habitability. Still largely untapped for its scientific value, Venus is the key to understanding what leads to conditions hospitable to life on terrestrial planets. We therefore recommend that NASA institute a funded, coherent Venus Program of missions, scientific research and technology developments, culminating in a Venus Flagship mission.

© Robb Rosenfeld