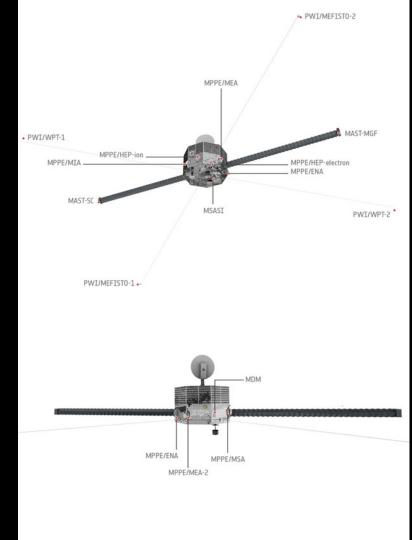


BepiColombo Venus flybys

27 Oct. 2020

ESA UNCLASSIFIED - For Official Use



Johannes Benkhoff

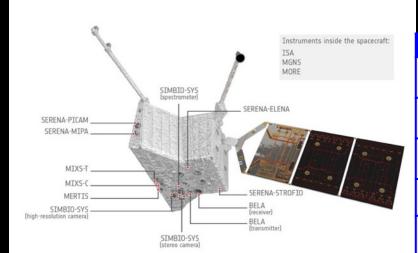
Valeria Mangano

BepiColombo - short overview

- Joint ESA & JAXA mission to explore Mercury
- Launched: 20 October 2018
- Arrival at Mercury: end 2025
- Solar Electric Propulsion
- 9 planetary flybys 1 @ Earth, 2 @ Venus, 6 @Mercury
- Two Spacecraft stacked together during cruise on a Transfer craft called MTM
- Comprehensive Science Payload
- Enthusiastic Science Team

Instruments

isti uli	IIGII	L(S)
Instrumer	nt desci	ription


MGF	Provide a detailed description of Mercury's magnetosphere and of its interaction with the planetary magnetic field and the solar wind.
MPPE	Study low- and high-energetic particles in the magnetosphere. MEA- Electron Analyzer MIA – Ion Analyzer HEP-ion – High Energy Particles HEP-electron – High Energy Particles


PWI Make a detailed analysis of the structure and dynamics of the magnetosphere. MEFISTO, WPT - two sets of electric field sensors LF-SC and DB-SC -- two kinds of magnetic field sensors

ENA – Energetic Neutrals Analyzer MSA – Mass Spectrum Analyzer

MSASI Measure the abundance, distribution, and dynamics of sodium in Mercury's exosphere.

MDM Study the distribution of interplanetary dust in the orbit of Mercury.

MPO – Instruments

RFI A

MGNS

	Mercury.
MORE	Determine Mercury's gravity field as well as the size and

Characterise the topography and surface morphology of

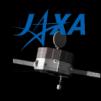
Elemental composition of Mercury's surface distribution of

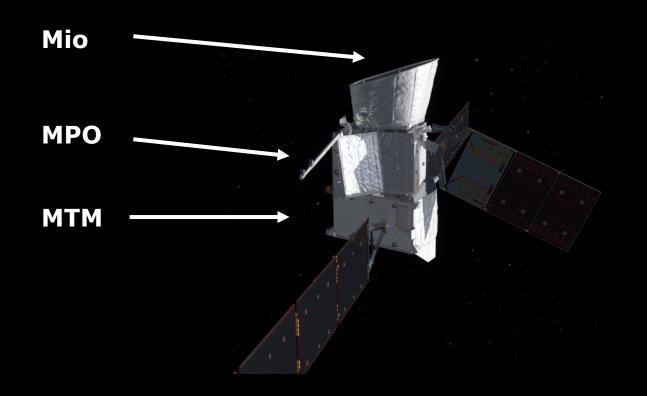
Instrument description

physical state of its core. **ISA** Study Mercury's interior structure and to test Einstein's Theory of Relativity. **MPO-MAG** Describe Mercury's magnetic field and its source.

Study of Mercury's mineralogical composition, global **MERTIS** temperature maps.

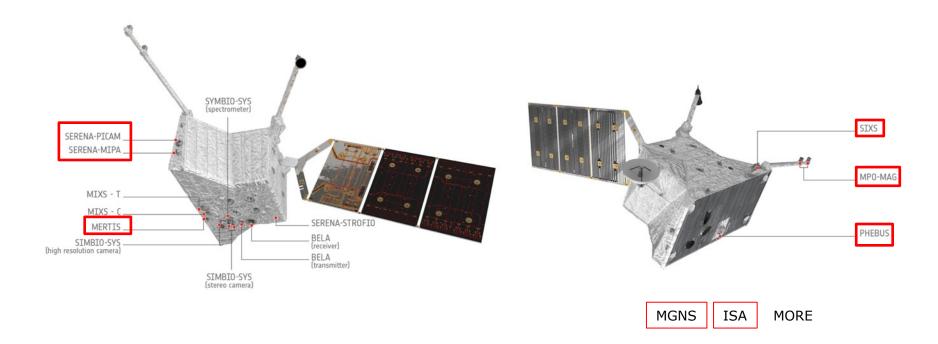
volatiles in polar areas Use X-ray fluorescence analysis a global map of the **MIXS** surface atomic composition.


PHEBUS Characterisation of the composition and dynamics of Mercury's exosphere. Study the interactions between the surface, exosphere, **SERENA**

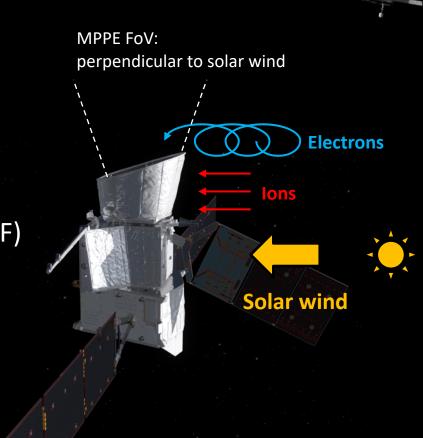

magnetosphere & the solar wind. **SIMBIO-SYS** Provide global, high-resolution, and IR imaging of the

surface **SIXS** Perform measurements of solar X-rays and particles at high time resolution.

BepiColombo: cruise configuration



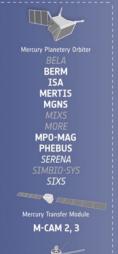
BepiColombo – MPO Instruments (cruise) CSA



BepiColombo: Mio cruise science

- MPPE/MEA: solar wind electron temperature
- MPPE/HEP-e: solar energetic particles (SEP)
- MGF: interplanetary magnetic fields (IMF)
- PWI

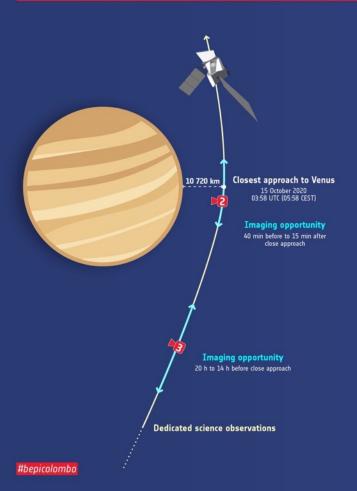
Monitoring Camera Observations



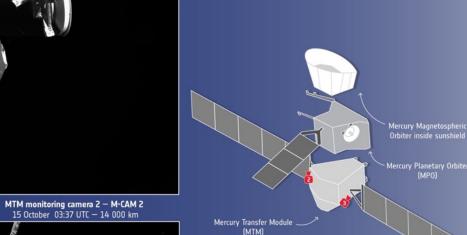
BEPICOLOMBO'S FIRST VENUS FLYBY 22 October Orbit correction manaeuvre Closest approach to Venus 10 720 km 05:58 CEST **Imaging opportunity** 40 min before to 15 min after close approach Coordinated observations by JAXA's Venus Climate Orbiter, Akatsuki **Imaging opportunity** 20 h to 14 h before close approach Venus flyby 15 October 2020 10 720 km Coordinated Venus observations from Earth **Dedicated science observations**

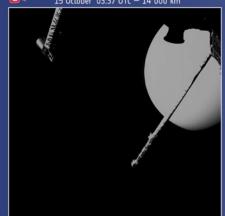
Instruments during flyby:
ACTIVE. SOME SENSORS ACTIVE. NOT ACTIVE

Mercury Magnetospheric Orbiter


MPPE

PWI

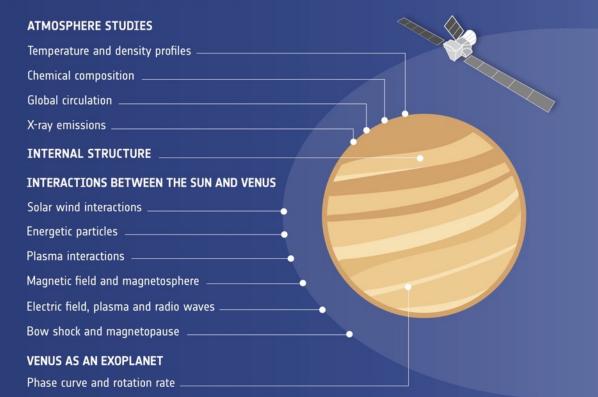



BEPICOLOMBO'S FIRST VENUS FLYBY IN IMAGES

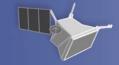
MTM monitoring camera 3 — M-CAM 3 14 October 07:25 UTC - 600 000 km

VENUS FLYBY SCIENCE OPERATIONS

BepiColombo teams are planning to operate up to eight out of eleven science instruments on the Mercury Planetary Orbiter and three out of five on the Mercury Magnetospheric Orbiter during the two flybys of Venus



First flyby 15 October 2020 10 720 km



Second flyby 10 August 2021

Flyby distances at closest approach

Instruments active during flyby

Mercury Planetery Orbiter

BELA

ISA MERTIS MGNS

MORE

MPO-MAG PHEBUS SERENA

SIMBIO-S\ SIXS

Mercury Magnetospheric Orbiter

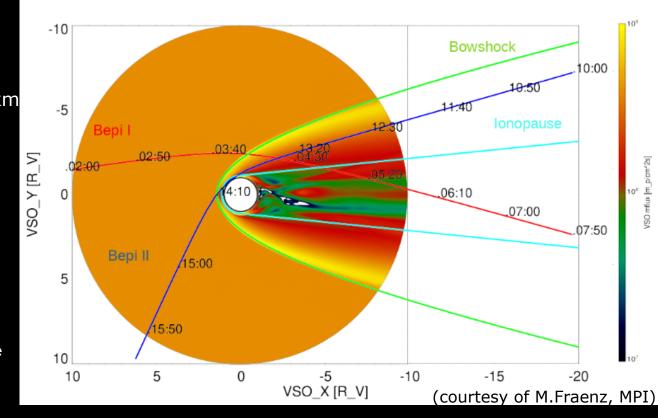
MDM

MM0-MGF MPPE

MSASI

PWI

Flybys geometry (X-Y plane)



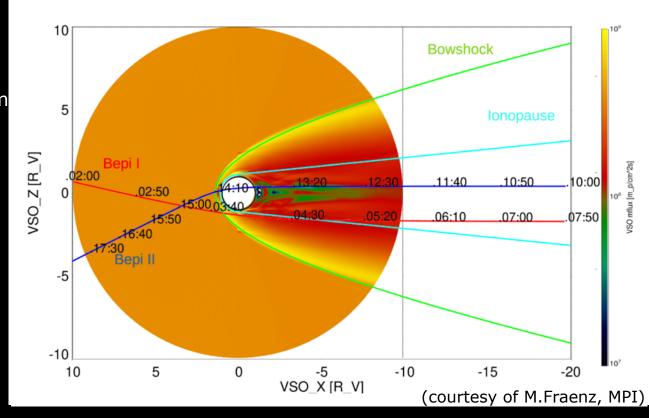
First flyby (Bepi I)

- October 15th 2020
- Closest approach: 10671 km
- Time of CA: **03:58 UTC**
- Approaching from dayside

Second flyby (Bepi II)

- August 11th 2021
- Closest approach: 552 km
- Approaching from nightside

Flybys geometry (X-Z plane)



First flyby (Bepi I)

- October 15th 2020
- Closest approach: 10671 km
- Time of CA: **03:58 UTC**
- Approaching from dayside

Second flyby (Bepi II)

- August 11th 2021
- Closest approach: 552 km
- Approaching from nightside

Operating instruments at Venus

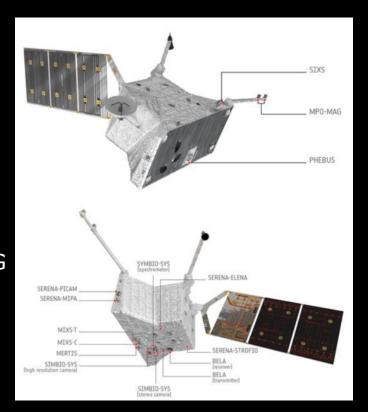
MPO:

BERM

ISA

MERTIS

MGNS

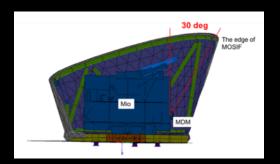

MORE

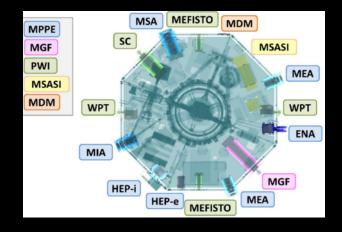
MPO-MAG

PHEBUS

SERENA

SIXS




MMO:

PWI

MPPE

MGF

Instrument operations plan

MPO:

MERTIS: from 12-Oct 20.58.32 to 15-Oct 01.14.32

PHEBUS: from 15-Oct 03.44.42 to 04.30.52 (observation starts at 03.58.32)

MPOMAG remains ON in background science configuration (at 16Hz); on 14-Oct 03.48.32 at 03.53.32 was configured at 128Hz 16-Oct at 03.58.32, then back to 16Hz

MGNS: remains ON throughout in background science configuration.

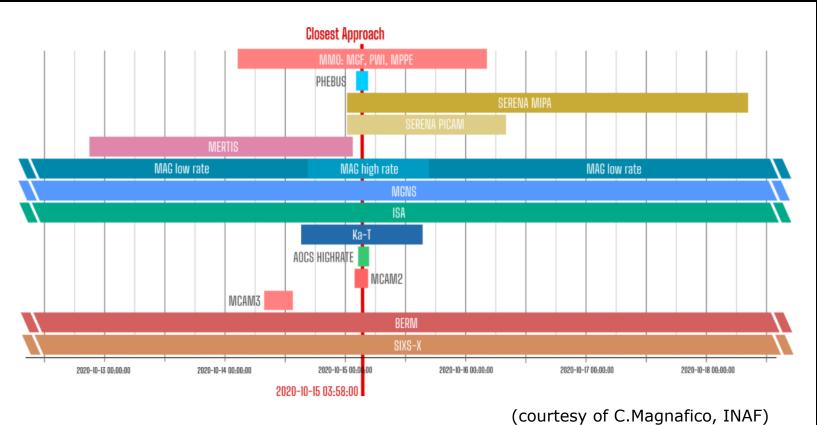
ISA: remains ON throughout in background science configuration. Special S/C

data is activated on their request on 15-Oct from 03.58.31 to 04.18.31

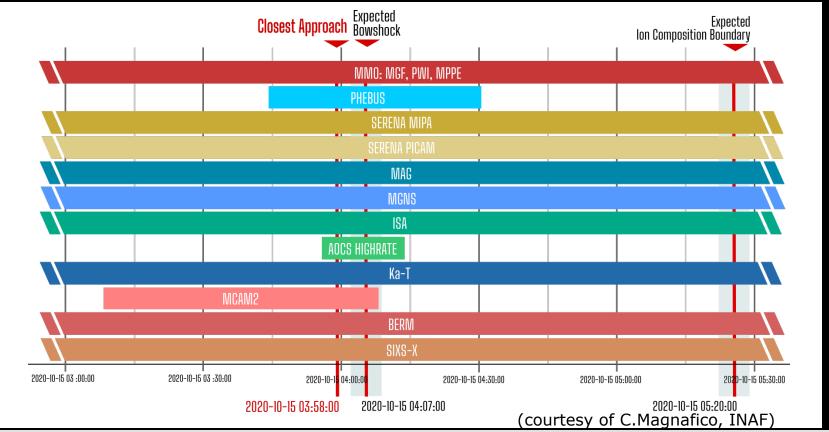
SERENA: from 15-Oct 00.13.32 to 18-Oct 03.53.32

SIXS-X: from 8-Oct until 19-Oct at 23.59.30

MMO (MGF, PWI, MPPE): 14-Oct 02.45 to 16-Oct 04.43



Instrument operations timeline at CA

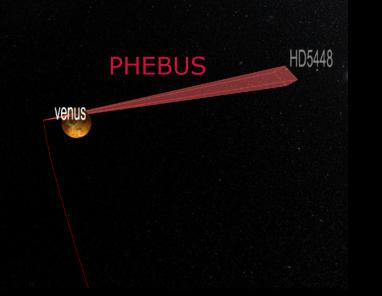


Instrument operations timeline at CA

Scientific objectives at Venus

#1 Atmosphere:

- **MERTIS** \rightarrow radiometer TIR (7-14 µm) + spectrometer TIS (7-40 µm)
 - Upper-cloud SO2, cloud aerosol properties, temperature
 - + research for phosphine signatures at IR
- **PHEBUS** → spectrometers NUV (55-155 nm), FUV (145-315 nm) + 2 NUV (404 and 422 nm)
 - global average cloud top SO2 abundance, bulk and trace gas species profiles, NO emission (in occultation)
 - + Dayside disk integrated albedo (faraway from Venus)
- **MGNS** → neutron (10-3 eV 10 MeV) and gamma-ray (100 keV-10 MeV) spectrometers
 - Identification of C, O, N and H2O profiles through the neutron escape



Atmospheric Investigations

→ Direct observations of Venus atmosphere with MERTIS + observation from the evening limb with PHEBUS

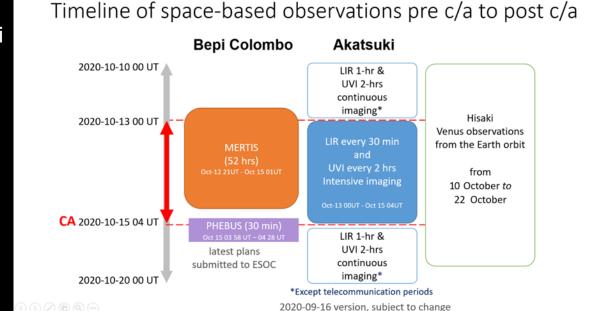
(from http://bepicolombo.esac.esa.int/itl-viewer/venus_flyby_1/)

Atmospheric Investigations

2020 August- October Science Summary (Bepi Instruments):								
		Instrument	Date; Δ to CA(*)	Mode	Sequencing	Key Observable	Science goal	
Ven Fari Awa Can	r-	PHEBUS FUV channel Visible channel	28 August - 2 September 2020	Nadir observing of Venus disk averaged flux	6 consecutive days	Disk integrated albedo, global average cloud top SO ₂ abundance	Multi wavelength study of long-term albedo variation and its impact on solar heating rates; SO_2 and NUV albedo relationship	
		MERTIS	12-15 October, 2020;	Nadir	CA -55 to	Upper-cloud SO2, cloud aerosol properties, temperature	Impact of convection on absorber distribution in upper cloud; data needed to study correlation with NUV albedo (from Akatsuki)	
	se	PHEBUS- FUV channel	15 October, 2020; Ingress	occultation	@CA <i>to</i> +30 min from c/a	Bulk and trace gas species profiles	Atmospheric structure between 80- 200 km Identity and trace zonal transport processes in thermosphere (~110 km)	
		MGNS	12-15 October, 2020;		continuous	Neutron escape	Identification of C, O, N and H ₂ O profiles indicative of the balance of chemical processing, vertical mixing and diffusion processes	

→ Coordinated
 observations of Venus
 atmosphere of MERTIS,
 PHEBUS and MGNS
 started already in
 August → 2 periods

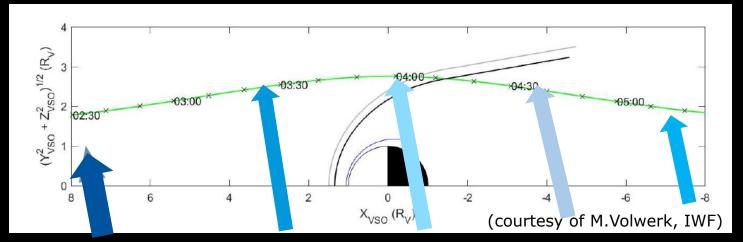
(from https://www.cosmos.esa.int/web/bepicolombo-flyby/atmospheric-investigations)



Atmospheric Investigations

→ Coordinated observations with JAXA Akatsuki, Hisaki and Earth-based telescopes (here only for CA): multi-vantage point measurements of Venus atmospheric properties

(from https://www.cosmos.esa.int/web/bepicolombo-flyby/atmospheric-investigations)



Magnetospheric Investigations

→ Crossing of many different magnetospheric regions and boundaries gives the possibility to investigate different mechanisms and structures

Exosphere

Foreshock B

Bow shock IC Boundary Tail

Scientific objectives at Venus

#2 Ionosphere & Induced Magnetosphere:

MPO:

MER-MAG → magnetometer (16-128 Hz)

- discontinuities of bow shock and other boundaries crossings; measurements of draped dayside magnetic field, low frequency wave activity inside the ion composition boundary; potential measurements of flux ropes, possible confirmation of the tail lobes with opposite magnetic field polarity;

SERENA → ion monitors (few eVs - 15 keVs) with mass, direction and energy range detection

- density and velocity of the ions populating the different regions crossed

SIXS-X \rightarrow X-ray sensors (\sim 1s @ 1- 20 keV)

- monitor the flare activity on the Sun, weak charge exchange induced X-ray emission from the interaction between the solar wind and the Venus exosphere

Scientific objectives at Venus

#2 Ionosphere & Induced Magnetosphere:

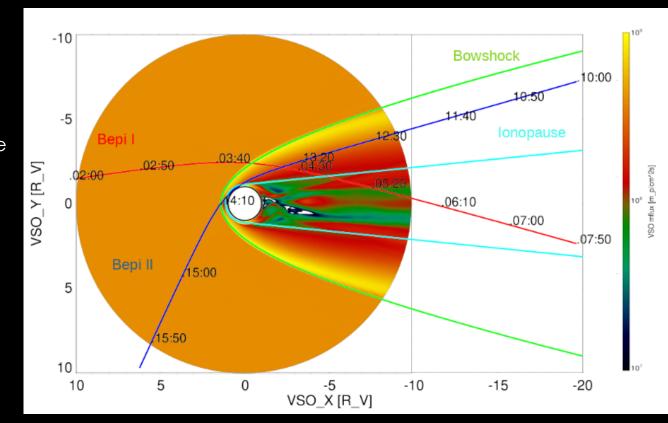
MIO:

MPPE → ion electron sensors (5 of 7 operating)

PWI → plasma wave sensors (2 operating)

MGF → magnetometer

- electron shielding effects, atmospheric pick-up ions and energetic neutral atoms as derived from solar wind backscattering and/or ion sputtering over the exobase;
- magnetic and electric fields around Venus (with possible detection of upstream foreshock waves, proton cyclotron waves, magnetosheath turbulence...)
- **+ ISA** accelerometer → may measure possible acceleration effects derived from the crossing of bow shock and other boundaries

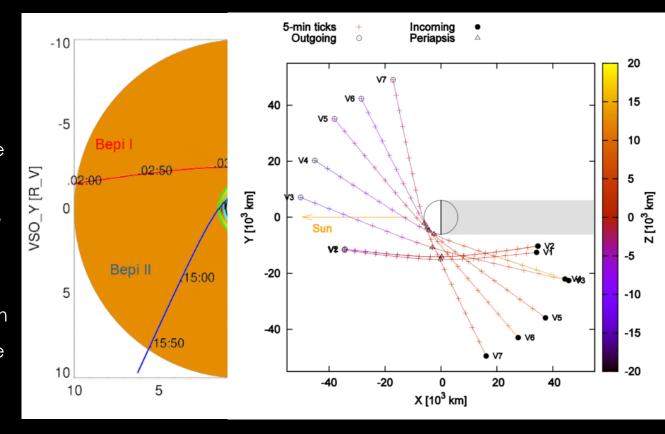


2nd Venus flyby

Second flyby (Bepi II)

- August 10th 2021
- Closest approach: 552 km
- Approaching from nightside

2nd Venus flyby



Second flyby (Bepi II)

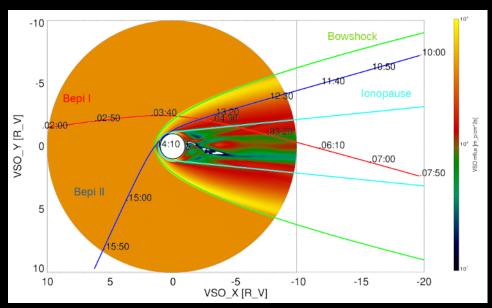
- August 10th 2021
- Closest approach: 552 km
- Approaching from nightside

Solar Orbiter will also have a flyby at Venus on:

- August 9th 2021
- Closest approach: ~8000 km
- Approaching from nightside (with similar trajectory)

Bepi and SolO: coordination plan

→ A great occasion to coordinate observations from two different points of view


(in space and in time)

 Possibility to monitor SW upstream when Bepi is inside the magnetosphere

 Possibility to monitor effects of SWinduced magnetosphere interactions at different locations in the tail and in the boundary crossings

- ...

NB. Solar Orbiter Venus flyby geometry is very similar to the Bepi I shown here

Bepi flybys: info & coordination

Visit and/or contact us at:

https://www.cosmos.esa.int/web/bepicolombo-flyby/venus1flyby

