Venus” Late accretion and evolution

Modelling Volatile exchanges through time

Cedric Gillmann



Comparative planetology: when did Venus
and Earth diverge?
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* Main differences:
e Very little water on Venus
 Earth’s CO, is inside, While Venus' is in its atmosphere

* When and Why did Venus and Earth diverge?
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! ~100s Myr ~3.5 Gyr Present-day.

Total loss = mean age of
Venus’ surface




We model the
mechanisms
affecting volatiles

To have

d to model all
what it went
through since then.

We test those
evolution scenarios
against present-day
observation.
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Initial state for the evolution: the magma ocean

* One or several magma oceans are
created during accret| 0 s s

the atmos; ohere, they can be short- or TN R
Iong-/li ed. co

* The Magma ocean controls the early
compositional differentiation of the
interior and affects the initial volatile
budget of the planetary body. i e

— It sets the initial composition for the Rt
interior and atmosphere. Solid mantle

' 0y

« When the Magma ocean freezes, it
stops most largescale exchanges
between the layers of the planet.

Lammer et al., 2018



Early evolution and Hydrodynamic escape

ient: Likely to remove

ALTITUDE (km) EUV. Flux
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Fractionates no
non-unique scenarios).

Preferentially removes H over O |

Siice0cean s leading to an excess of Oxygen.

B ~

 We need a way to get rid of O!



Total escape flux (s™)
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Present-day non-thermal escape rates are one of the few

direct observation about evolution processes we have.

Present Day
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A link with volcanism
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Convection regime and consequences

e Surface
conditions make
a difference. _
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Low surface
temperatures
trigger a mobile
lid regime.
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.- - Late Acéretion
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' The last 0.5-2% of Earth’s accretion, after the core was formec
' consequences on planets’ volatile distribution/evolution.
- Usually investigated throught isotopic studies.



Another major player, early on...
* Effects of impacts

Volatile de ivery by the
impactors can replenish

means an additional loss

process. the atmosphere. T eEs and can cause
melting.
* |t seems relevant only for * Potentially the larger
a very large number of effect but depends on * Release depends on
small impacts, though. composition. mantle and atmosphere

conditions.



Late Veneer, a complex but key component
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——Scenario B: 9 impacts (R > 500 km)
——3Scenario C: 82 impacts (R > 125 km)
~ |——Scenario D: 244 impacts (R > 50 km)
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|t delivers volatiles and affects the mantle (depletion?)



Accreting wet material is

Volatile delivery dominates early evolution

difficult, as mentionie

before.
Erosioh is marginal.
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Conclusions

— Despite the lack of measurements, through devious means
(modelling the Iong term.eva ve could obtain constrains on
the nature angd

“results are con5|stent W|th |sotop|c measure en )
Late Accretion was probably mostly Enstatite Chondrlte \K/ th Ic
volatile content.

— Water was likely already delivered to terrestrial planets early on,
during the main accretion phase, and in the case of Earth, before the
moon-forming impact.

» We are investigating the role of surface oxidation as a oxygen sink.



Future exploration

— Venus science could beneflt from refinements in any area, due to the
relatively I|m|ted observa 3 DOSSESS, espeC|aIIy when it

1OWn. Venus
interior models are based on Earth s. We need to know how different
the interiors of those planets are from each other.

— Any new clues of interior structure, composition, volatile content
and past behaviour would be appreciated. Missions like VERITAS,
DAVINCI+ and ENVISION could help with that.

— Going further, measurements of remnant magnetic field would be
useful, and not yet included on future missions.



