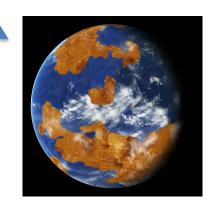

The Climate Evolution of Venus

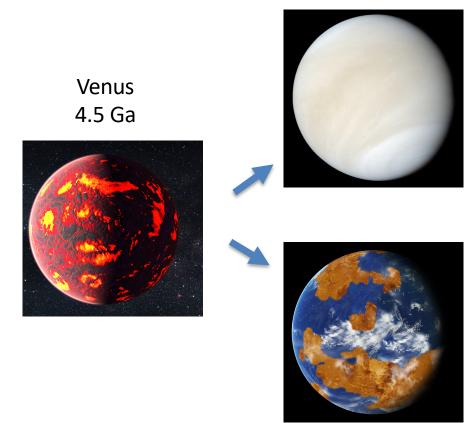
Michael Way
NASA Goddard Institute for Space Studies

NAS Decadal Survey: The Origin and Evolution of Venus


Two views

Venus

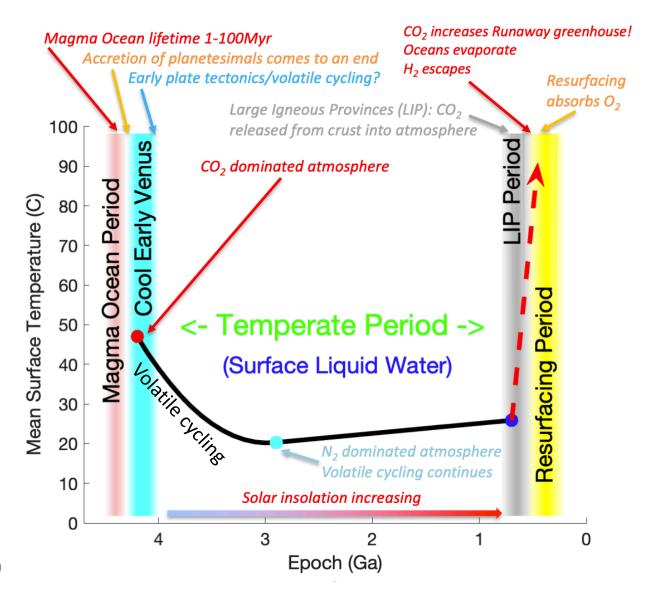
4.5 Ga


- Magma Ocean 100Myr
- Primordial water lost
- Bone dry for 4+ Gyr
- PV D/H from this epoch

Ingersoll 1969 -> Hamano 2013 & fellow travelers

- Magma Ocean 1-5Myr
- Water condenses on surface
- ~1–3Gyr 'habitable phase'
- PV D/H from this epoch
- Sun's luminosity increases: Runaway?
- Great Climate Transition Event?

Pollack 1971 -> Grinspoon 2003 -> Way+ 2016, Way & Del Genio 2020


Two views

- Easily explains present day state
- H2 -> escapes to space
- O2 absorbed in magma ocean
- Never had plate tectonics
- Why still thick atmosphere!?

- Can we explain present day state?
- Where is the Oxygen?!
- What is the evidence?

Annotated from:
Way & Del Genio 2020
JGR Planets, 125,
e2019JE006276.
https://doi.org/10.1029/2019JE006276

Wish List to quantify our picture

- Venus in-situ missions:
 - Cloud layers: for extended periods of time with a mass spec
 - Surface: to examine the chemical composition of the rocks
 - Atmospheric column: updated high resolution version of PV LNMS
- → Allow us to quantify abundance and escape properties of Nobel Gases and other critical atmospheric components.
- Venus orbital mission to:
 - Make high resolution radar mapping of the Tesserae terraines
- → Allow us to put Surface landers on the oldest and most interesting Tesserae to quantify their properties.