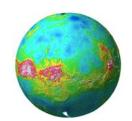

Surface and Interior (Comparative Planetology) Geodynamics & Habitability

Sue Smrekar

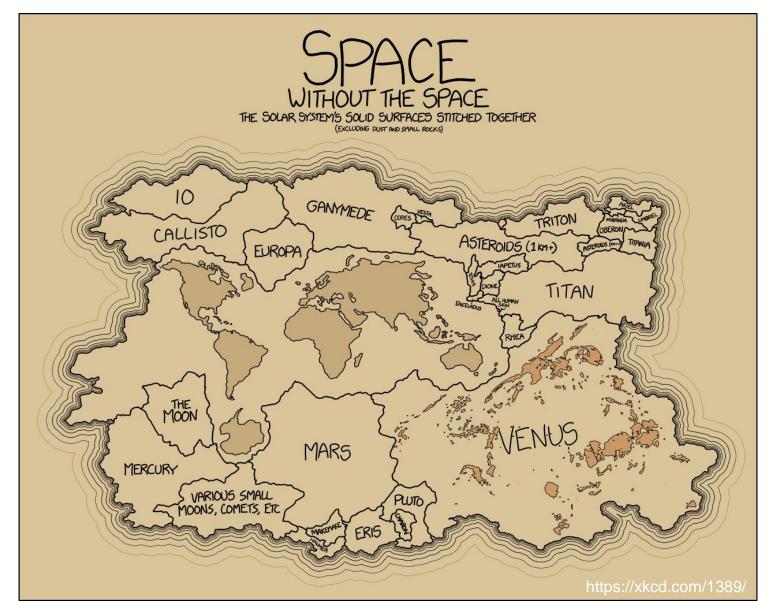
Jet Propulsion Laboratory
California Institute of Technology

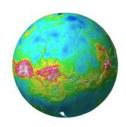
Decadal Survey 2023 Venus Panel April 21, 2021

Recommendations

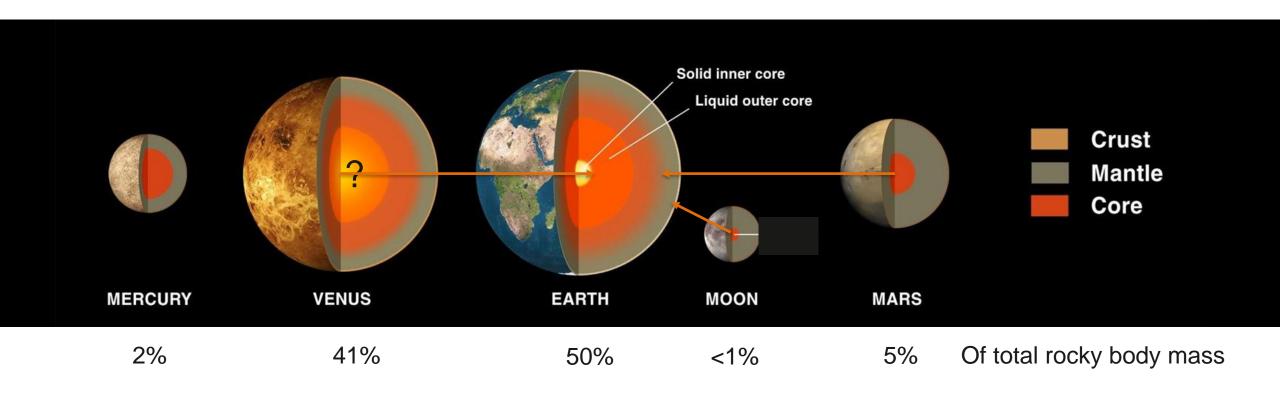

Address fundamental open science questions for rocky planet evolution and habitability:

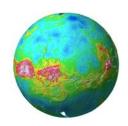
- Volcanic history: catastrophic or no? influences all data interpretation
- What process are active? provides a window into the interior
- Tectonic/geodynamic system (today? In the past?) critical for evolution
- Why no dynamo? Critical for thermal/chemical evolution
- Volatile history (see also talks on tesserae, noble gasses, etc.)

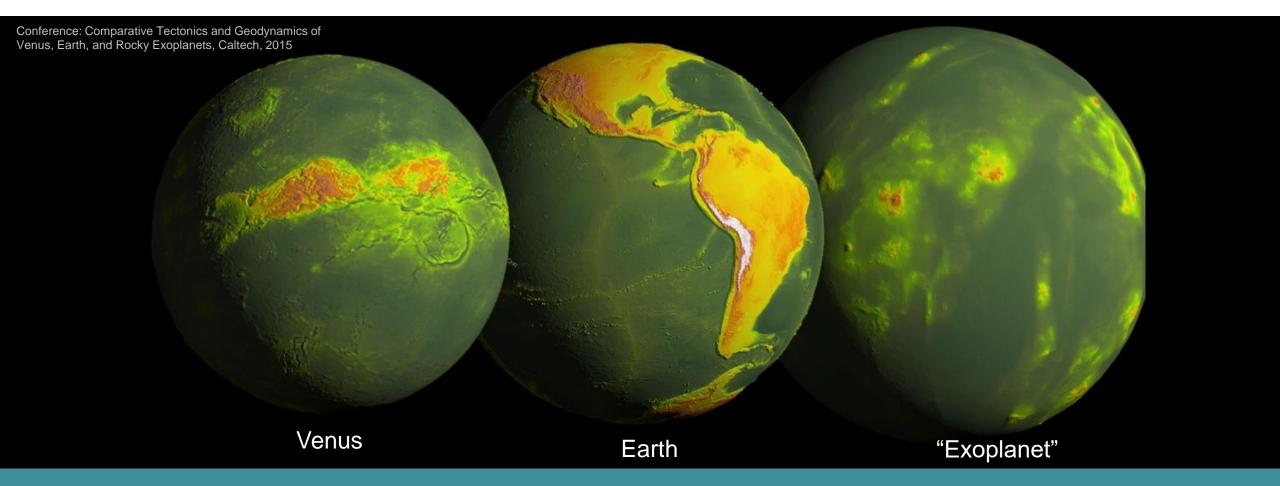

Measurements needed:


- Orbital
 - Topography, SAR imaging, NIR spectroscopy, Gravity
- Landed (and/or Aerial platforms)
 - o Geochem: Elemental composition (Major, minor, trace (?)) and Mineralogy
 - o Geophys: Seismology, Heat flow, Electromagnetic sounding, Magnetometry, Gravimetry

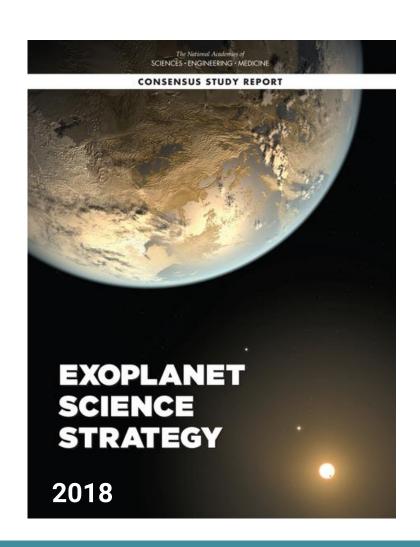
Venus exploration would benefit greatly from a logical sequence of missions.



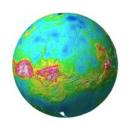

Venus represents 41 % of mass of rocky planets...


Only Venus and Earth share similar P,T states

Venus as an Archean analog


Venus has similar interior pressure, high surface and lithospheric T (due to its greenhouse). Subduction and continents may occur on Venus and elucidate their formation on Early Earth.

How to find a habitable exoplanet...

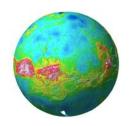

Factors expected to impact habitability:

- Oceans on the planetary surface
- Secondary atmosphere
- Tectonic/volcanic activity, weathering processes
- Internal energy budget
- Magnetic field
- Feedback between processes

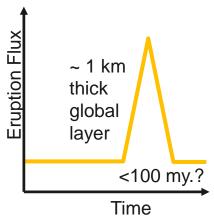
Geodynamic evolution a key question for discovering Earth 2.0

Venus in context

How to find a habitable exoplanet...


Factors expected to impact habitability:

- (Past) Oceans on the planetary surface (Tesserae!)
- Secondary atmosphere (Volcanic history, water outgassing)
- Tectonic/volcanic activity & weathering processes (Volcanism, deformation, weathering)
- Internal energy budget (Heat flow estimates- gravity & topo)
- (Likely past) Magnetic field (Core size, mantle viscosity)
- Feedback between processes

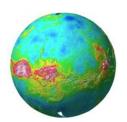

Only Venus is likely to be active today... and thus provides a control case for Earth

Venus in context 7

Venus 'resurfaced' 500 m.y. ago?

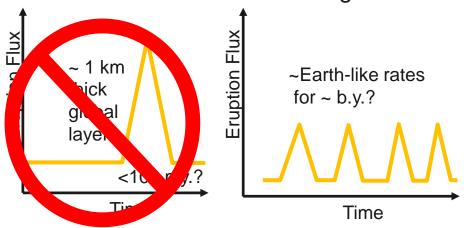
Mechanism 1: Volcanic resurfacing

Mechanism 2: Global foundering/overturn of lithosphere

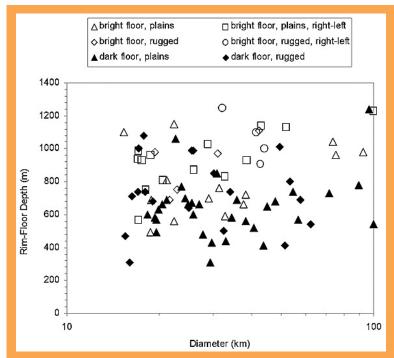

Cool idea!

Produces massive climate change!

Weird geodynamics: episodic plate tectonics


Pervades Venus science

Persistent paradigm: Venus resurfaced 500 m.a. and is geologically dead today


Venus 'resurfaced' 500 m.y. ago? NO!

Mechanism 1: Volcanic resurfacing

Persistent volcanism in small patches fits geologic data (extended ejecta, volcano distribution) better

New understanding requires global high resolution & precision topography, high resolution SAR imaging

80% of craters have dark floors-Are they volcanically flooded? Stereo topo suggests they are shallower, and thus infilled.

Herrick and Rumpf, 2011

Incorrect paradigm inhibits new theories

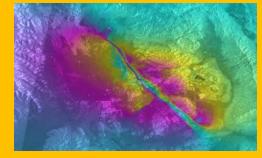
How do we detect activity on Venus?

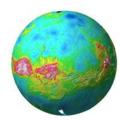
VOLCANOS:

Requires high SNR NIR imaging with multiple observations within days

Requires high SNR NIR imaging

Requires: orbital/aerial observations of waves or extend duration lander

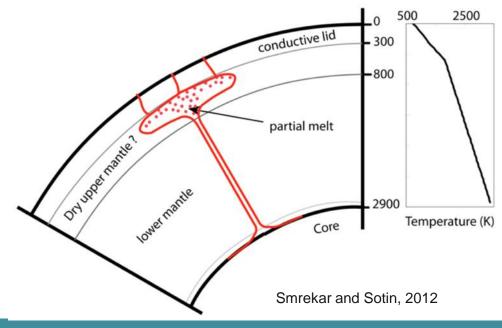

RADAR CHANGE DETECTION:


Requires a difference in dialectric properties (change in surface roughness) between subsequent radar images

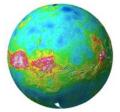
ACTIVE FAULTING OR VOLCANIC DEFORMATION:

Requires
InSAR,
precision
navigation,
large downlink

Habitability: Activity provides chemical disequilibria for life.



Volcanism/tectonism link surface, atmosphere, and interior

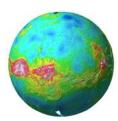


Venus example:

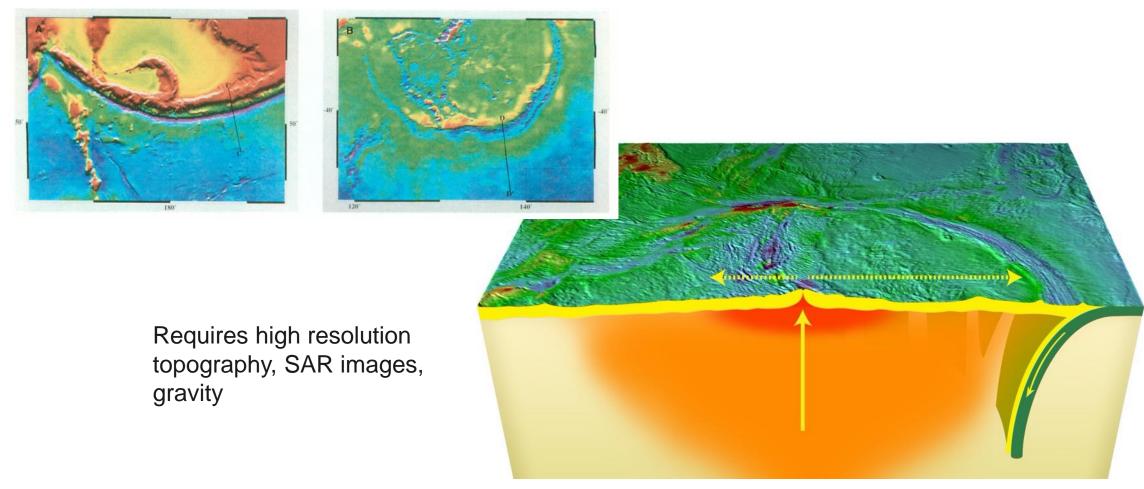
- Does all recent volcanism due to pressure release melting come from deep mantle plumes?
- Is lower mantle water (or other volatiles) needed to enable melting? Is the upper mantle desiccated?

Determining what processes are active today provides constraints on thermal and volatile evolution

What is Venus' current geodynamic state?

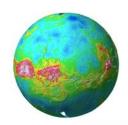


Habitability: Does Venus represent an entirely different geodynamic regime? Evolution: Is Venus losing heat & creating tesserae terrains, coronae, etc. through this mechanism?

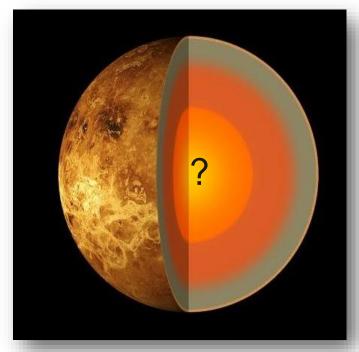

Stagnant Lid

Mobile Lid

(Plate Tectonics)



Does Venus have subduction?



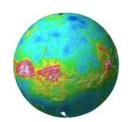
Habitability: Subduction recycles volatiles that stabilize long term climate..

Is this how plate tectonics started on Earth?

What is the size and state of the core?

Why doesn't Venus have a dynamo??

What is the structure and viscosity of the mantle?

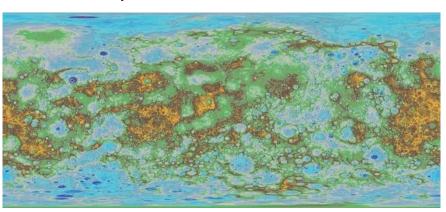


Constraints on core size & state (and thus composition) and mantle viscosity requires: High precision Moment of Inertia, Love # & phase lag derived from a high resolution gravity field (e.g. Dumoulin et al. 2017)

Margot et al. 2021: core size to ±300 km Searching for remanent crustal magnetization/a weak dynamo requires: magnetometry from low altitude

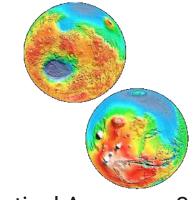
Habitability: Dynamos shield the surface from radiation.

What is the core heat flux contribution to thermal evolution? Why are there plumes but no dynamo?



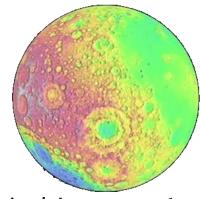
Venus is the missing link in comparative planetology

Earth SRTM Topography



Vertical Accuracy: 6 m Spatial Resolution: 50 m

MOLA Topography

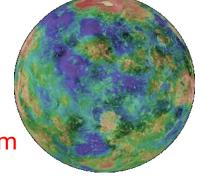

Mars

Vertical Accuracy: 3 m Spatial Resolution: 1-2 km

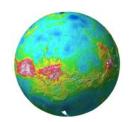
Moon

LOLA Topography

Vertical Accuracy: 1 m Spatial Resolution: 1-2 km


Mercury

Photoclinometry, laser altimetry


Spatial Resolution: ≥2 km

Vertical Accuracy: 80 m
Spatial Resolution: 20 km

Venus datasets are orders of magnitude lower resolution than those for other terrestrial planets

Recommendations

Address fundamental open science questions for rocky planet evolution and habitability:

- Volcanic history: catastrophic or no? influences all data interpretation
- What process are active? provides a window into the interior
- Tectonic/geodynamic system (today? In the past?) critical for evolution
- Why no dynamo? Critical for thermal/chemical evolution
- Volatile history (see also talks on tesserae, noble gasses, etc.)

Measurements needed:

- Orbital
 - Topography, SAR imaging, NIR spectroscopy, Gravity
- Landed (and/or Aerial platforms)
 - o Geochem: Elemental composition (Major, minor, trace (?)) and Mineralogy
 - o Geophys: Seismology, Heat flow, Electromagnetic sounding, Magnetometry, Gravimetry

Venus exploration would benefit greatly from a logical sequence of missions.

Thank you!

Venus returns as the Evening Star on May 24

