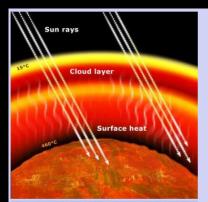
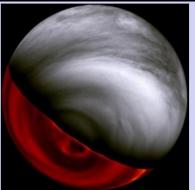

Venus – Comparative Planetology: perspectives from atmospheric science

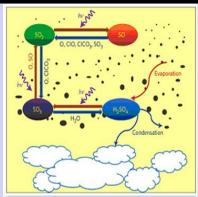
Colin Wilson Oxford University / SSI


Planetary Science Decadal Survey / Venus panel / 22 April 2021

Outline


- 1. Comparative processes
- 2. Comparative planetary evolution
- 3. Needed measurements

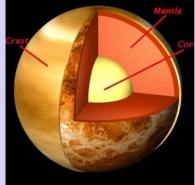
Motivation 1: Comparative processes


• Compare planetary processes to deepen our understanding of fundamental geophysics.

Radiative Balance, Greenhouse effect

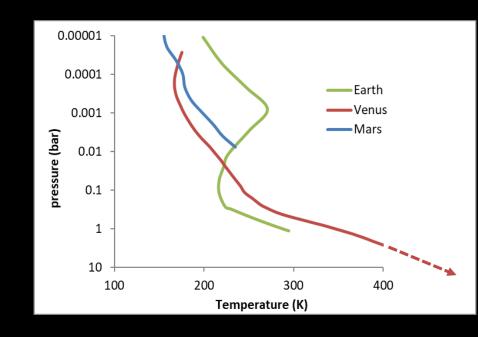
Atmospheric dynamics, weather, turbulence

Atmospheric chemistry, clouds

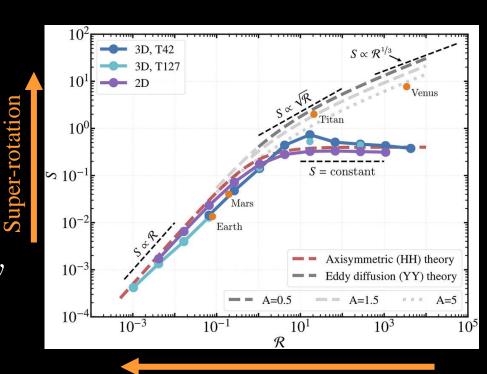

Atmospheric electricity, lightning

Sand and dust transport, weathering

Volcanism, tectonism, exchange with atmosphere



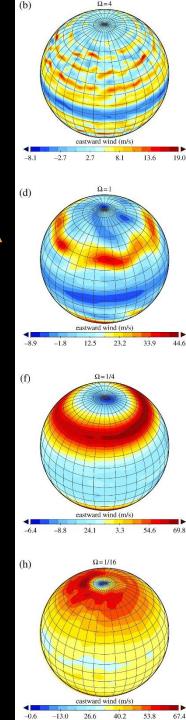
Interior structure and its evolution



Exchanges with space Solar wind & magnetosphere

- Thermal structure
- Super-rotation
- Meridional circulation
- Atmospheric waves
- Cloud-level convection
- Near-surface meteorology
- Measurements: winds, temperatures, densities at all altitudes

- Thermal structure
- Super-rotation
- Meridional circulation
- Atmospheric waves
- Cloud-level convection
- Near-surface meteorology
- Measurements: winds, temperatures, densities at all altitdes


Increasing planetary rotation rate

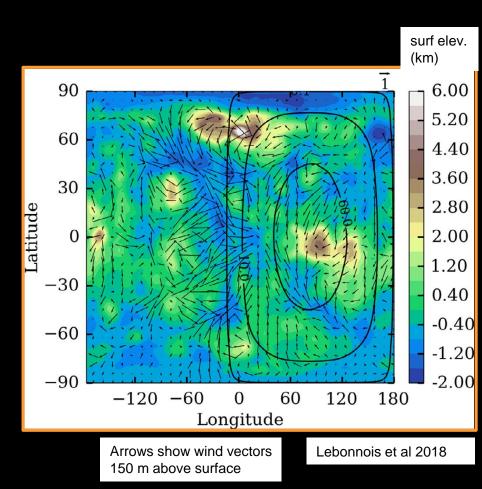
Lewis et al., JAS, 2021

- Thermal structure
- Super-rotation
- Meridional circulation
- Atmospheric waves
- Cloud-level convection
- Near-surface meteorology
- Measurements: winds, temperatures, densities at all altitdes

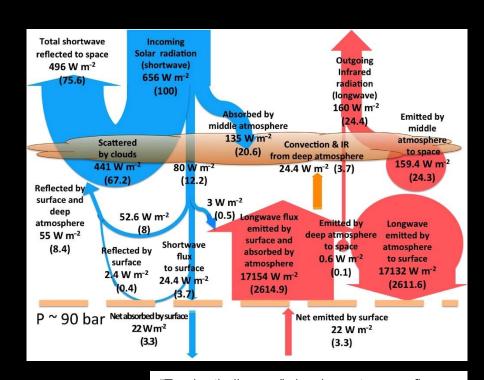
Increasing planetary rotation rate

Colours show Eastward wind speed (Wang et al., 2018)

- Thermal structure
- Super-rotation
- Meridional circulation
- Atmospheric waves
- Cloud-level convection
- Near-surface meteorology
- Measurements: winds, temperatures, densities at all altitudes

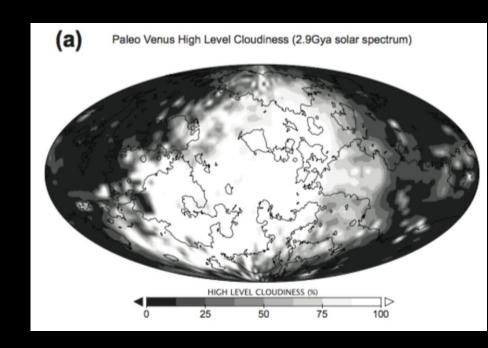


- Thermal structure
- Super-rotation
- Meridional circulation
- Atmospheric waves
- Cloud-level convection
- Near-surface meteorology
- Measurements: winds, temperatures, densities at all altitdes

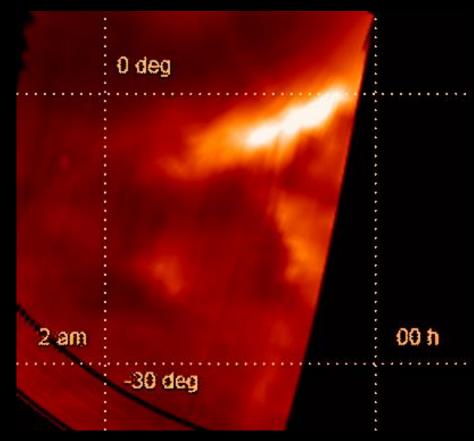

Could such clouds occur on Venus? Credit. M.T. Rader

- Thermal structure
- Super-rotation
- Meridional circulation
- Atmospheric waves
- Cloud-level convection
- Near-surface meteorology
- Measurements: winds, temperatures, densities at all altitudes

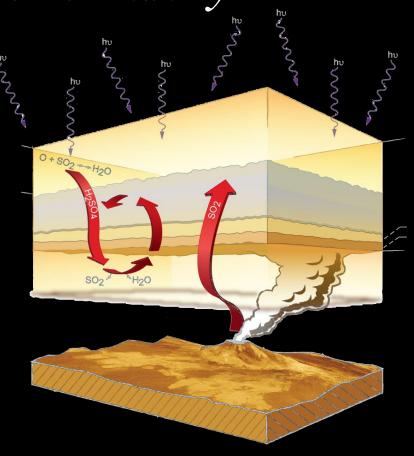
Radiative Transfer


- Greenhouse effect
- Role of clouds
- Non-LTE (airglows etc)
- Measurements: radiative fluxes from orbit and within atmosphere

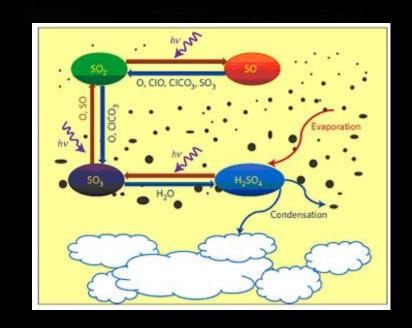
"Trenberth diagram" showing net energy flows in Venus atmosphere. Read et al QJRMS 2016


Radiative Transfer


- Greenhouse effect
- Role of clouds
- Non-LTE (airglows etc)
- Measurements: radiative fluxes from orbit and within atmosphere


Radiative

- Greenhouse effect
- Role of clouds
- Non-LTE (airglows etc)
- Measurements: radiative fluxes from orbit and within atmosphere



- Sulphur & water cycles
- Mesospheric chemistry
- Cloud-level chemistry
- Near-surface chemistry
- Magmatic volatiles
- Measurements: atmospheric composition at all altitudes

- Sulphur & water cycles
- Mesospheric chemistry
- Cloud-level chemistry
- Near-surface chemistry
- Magmatic volatiles
- Measurements: atmospheric composition at all altitudes

- Sulphur & water cycles
- Mesospheric chemistry
- Cloud-level chemistry
- Near-surface chemistry
- Magmatic volatiles
- Measurements: atmospheric composition at all altitudes

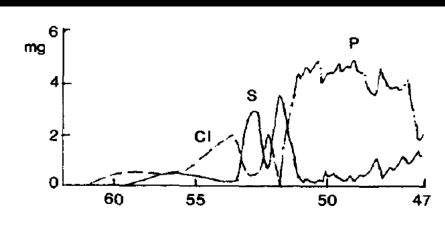
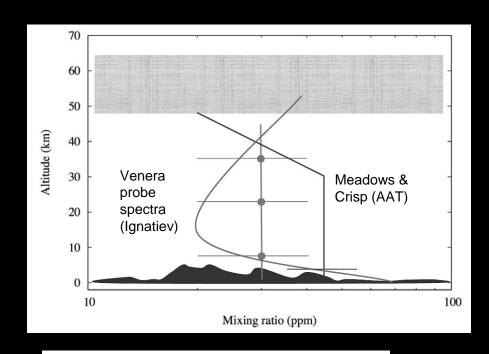
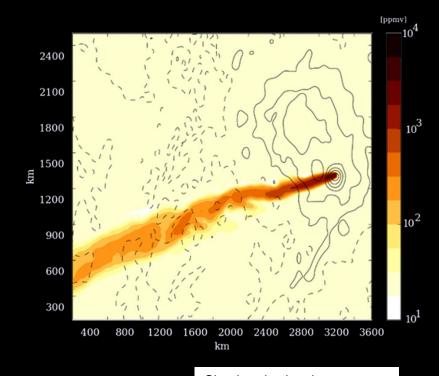



Fig. 1. Accumulation of chlorine, sulfur, and phosphorus on the filter of the Vega 2 X-ray radiometer (Andreychikov *et al.* 1987).

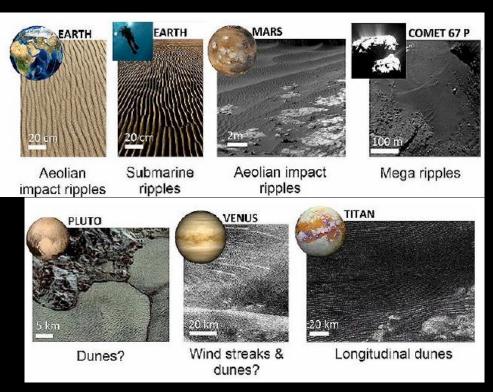
See also:

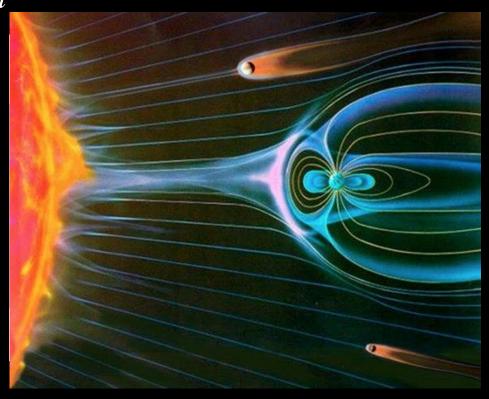
- UV absorber
- "Mode 3" lower cloud particles
- Near-surface particulates
- Phosphine ...


- Sulphur & water cycles
- Mesospheric chemistry
- Cloud-level chemistry
- Near-surface chemistry
- Magmatic volatiles
- Measurements: atmospheric composition at all altitudes

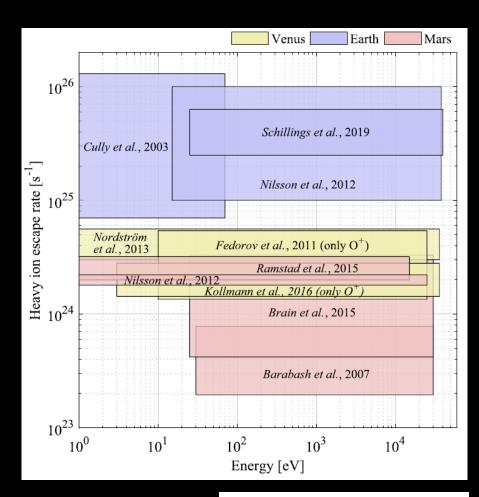
For example: this plot shows different possible profiles of H₂O abundance near the surface. Vertical distribution is very unconstrained.

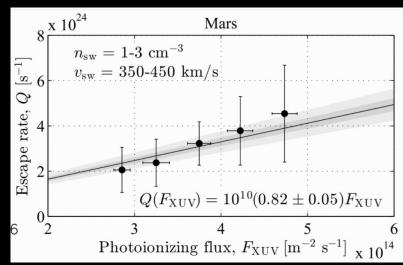
Bézard et al 2007

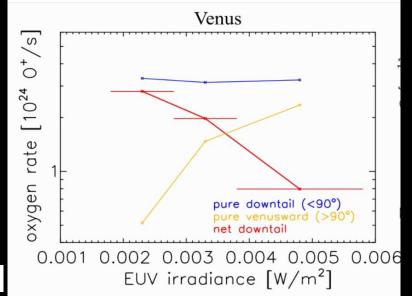

- Sulphur & water cycles
- Mesospheric chemistry
- Cloud-level chemistry
- Near-surface chemistry
- Magmatic volatiles
- Measurements: atmospheric composition at all altitudes


Simulated volcanic gas release. Credit: M. Lefevre

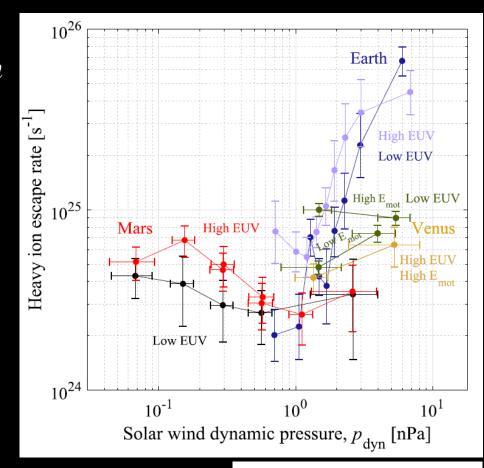
Surface-atmosphere interactions


- Dunes & ripples
- Ejecta & other deposits
- High altitude anomalies
- Measurements: highresolution radar; surface meteorology

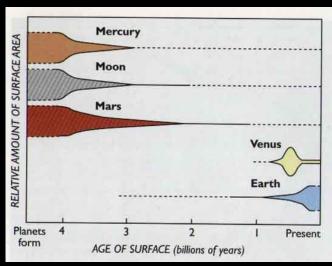

- Escape rates now and through time
- Effect of magnetic field on escape
- Effect of solar activity
- Measurements: ion & neutral abundances & escape flows; magnetosphere / ionosphere / thermosphere structures



- Escape rates now and through time
- Effect of magnetic field on escape
- Effect of solar activity
- Measurements: ion & neutral abundances & escape flows; magnetosphere / ionosphere / thermosphere structures



- Escape rates now and through time
- Effect of magnetic field on escape
- Effect of solar activity
- Measurements: ion & neutral abundances & escape flows; magnetosphere / ionosphere / thermosphere structures



- Escape rates now and through time
- Effect of magnetic field on escape
- Effect of solar activity
- Measurements: ion & neutral abundances & escape flows; magnetosphere / ionosphere / thermosphere structures

Motivation 2: Planetary evolution

- Early Venus was probably much like early Earth

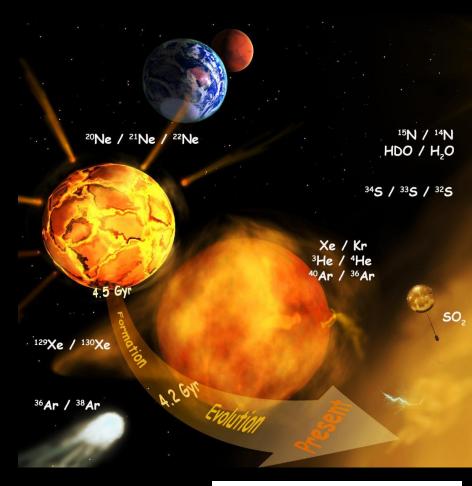
 Hot dense atmosphere rich in CO₂ and water

 Similar initial inventory of volatiles and noble gas isotopes


 Did Venus ever harbor liquid water? Could life have evolved there?
- Venus also illustrates the probable fate of the Earth.
 - In ~ 1 billion years, with a brighter sun, the insolation at Earth will be similar to that at Venus today.

Will we be able to avoid the runaway greenhouse warming that is found at Venus?

How long does a planet stay in the habitable zone?


Atmospheric evolution

- Origin of atmosphere
- Exchange with mantle throughout time
- Atmospheric loss throughout time
- An ageing sun
- Measurements: noble gas and light element isotopic abundances
- Models: coupled interior & atmosphere evolution

Atmospheric evolution

- Origin of atmosphere
- Exchange with mantle throughout time
- Atmospheric loss throughout time
- An ageing sun
- Measurements: noble gas and light element isotopic abundances
- Models: coupled interior & atmosphere evolution

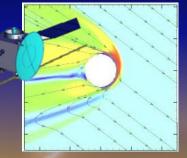
The next decade...

(to enable atmospheric science comparative planetology)

Geophysics orbiters

e.g. EnVision M5 orbiter Radar imagery, topography, polarimetry, radiometry.

Science goal: current & past geological activity


Atmospheric remote sensing

Direct measurement of winds & trace chemistry; airglows.

Science Goal: atmospheric dynamics & chemistry, aeronomy

In situ orbital sensing

Magnetometry, ions & neutral particles Science goals: Study solar wind response & escape processes; aeronomy'; thermosphere composition

Thermosphere Skim

Sample noble gas isotopes homopause (<125 km) Science goal: constrain form evolution scenarios

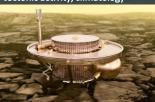
Descent probes

e.g. Venera probes Atmospheric composition & structure; noble gas isotopes. Science goals: Atmospheric dynamics & chemistry; geochemistry

Cloud-level platforms

e.g. EVE M3 proposal Balloons (constant- or variablealtitude), or lifting wing aircraft. Science goals: Atmospheric dynamics & chemistry

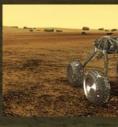
Short-lived lander


(~ 1 hr on surface)
Science goals: Local site
characterization & composition

Long-lived lander

(~1 yr on surface)

Seismology, Meteorology Science goal:s internal structure, tectonic activity, climatology


Far-term (2

Surface exploration

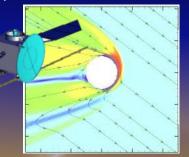
Science Goal: Geological explor

Surface Rovers

Geophysics orbiters

e.g. EnVision M5 orbiter Radar imagery, topography, polarimetry, radiometry.

Science goal: current & past geological activity


Atmospheric remote sensing

Direct measurement of winds & trace chemistry; airglows.

Science Goal: atmospheric dynamics & chemistry, aeronomy

In situ orbital sensing

Magnetometry, ions & neutral particles Science goals: Study solar wind response & escape processes; aeronomy'; thermosphere composition

Thermosphere Skim

Sample noble gas isotopes homopause (<125 km) Science goal: constrain form evolution scenarios

Priority #1:

in situ


measurements

(especially

composition)

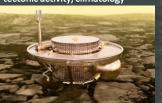
Descent probes

e.g. Venera probes Atmospheric composition & structure; noble gas isotopes. Science goals: Atmospheric dynamics & chemistry; geochemistry

Cloud-level platforms

e.g. EVE M3 proposal
Balloons (constant- or variablealtitude), or lifting wing aircraft.
Science goals: Atmospheric dynamics
& chemistry

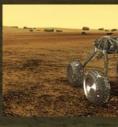
Short-lived lander (~ 1 hr on surface)


science goals. Local site characterization & composition

Long-lived lander

(~ 1 yr on surface)

Science goal:s internal structure, tectonic activity, climatology


Far-term (2

Surface exploration

Science Goal: Geological explo

Surface Rovers

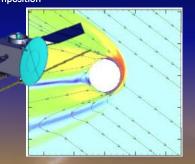
Surface

e.g. En

Radar imagery, topography, polarimet

ent & past geological

Priority #2: orbital measurements (including submm)


Atmospheric remote sensing

Direct measurement of winds & trace chemistry; airglows.

Science Goal: atmospheric dynamics & chemistry, aeronomy

In situ orbital sensing

Magnetometry, ions & neutral particles Science goals: Study solar wind response & escape processes; aeronomy'; thermosphere composition

Thermosphere Skim

Sample noble gas isotopes homopause (<125 km) Science goal: constrain form evolution scenarios

Priority #1:

in situ

measurements

(especially

composition)

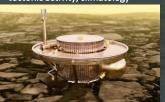
Descent probes

e.g. Venera probes Atmospheric composition & structure; noble gas isotopes. Science goals: Atmospheric dynamics & chemistry; geochemistry

Cloud-level platforms

e.g. EVE M3 proposal Balloons (constant- or variablealtitude), or lifting wing aircraft. Science goals: Atmospheric dynamics & chemistry

Short-lived lander (~ 1 hr on surface)


science goals. Local site characterization & composition

Long-lived lander

(~ 1 yr on surface)

Science goal:s internal structure, tectonic activity, climatology

Far-term (2

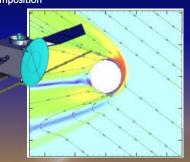
Surface exploration

Science Goal: Geological explo

Surface Rovers

Surface

Geophysics orbiters
e.g. EnVision M5 orbiter
Radar imagery, topography, polarimet
Priority #2: It current & past geological
orbital
measurements
(including Sub-


Atmospheric remote sensing

Direct measurement of winds & trace chemistry; airglows.

Science Goal: atmospheric dynamics & chemistry, aeronomy

In situ orbital sensing

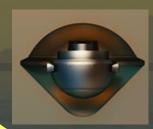
Magnetometry, ions & neutral particles Science goals: Study solar wind response & escape processes; aeronomy'; thermosphere composition

Thermosphere Skim

Sample noble gas isotopes homopause (<125 km) Science goal: constrain form evolution scenarios

Priority #1:

in situ


measurements
(especially

composition)

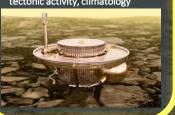
mm)

Descent probes

e.g. Venera probes Atmospheric composition & structure; noble gas isotopes. Science goals: Atmospheric dynamics & chemistry; geochemistry

Cloud-level platforms

e.g. EVE M3 proposal Balloons (constant- or variablealtitude), or lifting wing aircraft. Science goals: Atmospheric dynamics & chemistry


Short-lived lander (~ 1 hr on surface)

science goals. Local site characterization & composition

Long-lived lander (~1 yr on surface)

Science goal:s internal structure, tectonic activity, climatology

Far-term (2

Surface exploration

Science Goal: Geological exploration Low altitude balloons

Surface Rovers

Priority #3: Tech development towards surface meteorology

மு