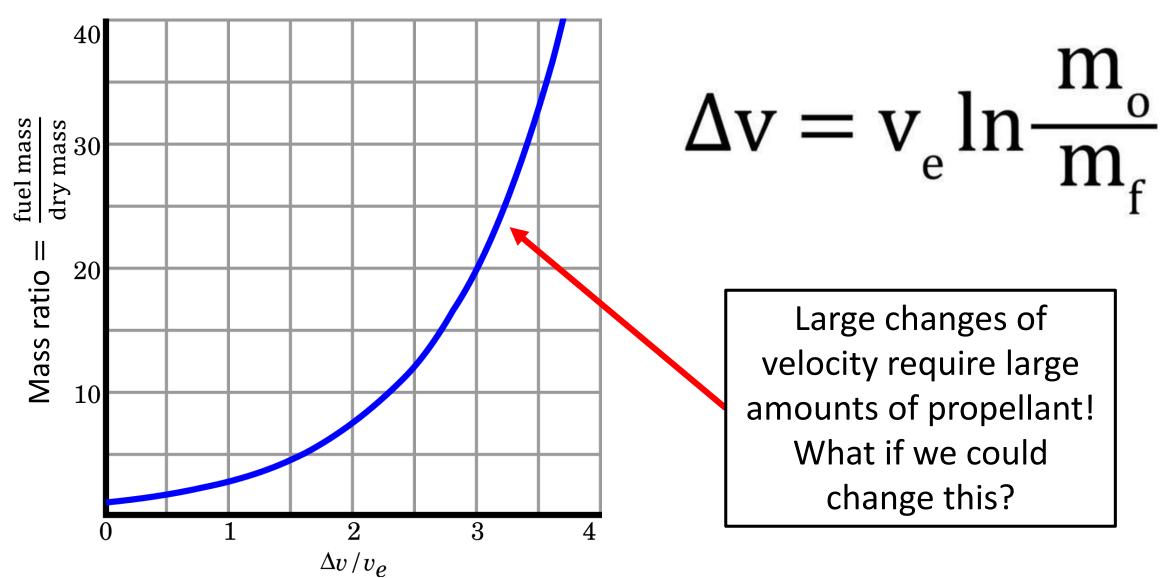


Aerocapture Technology for Venus Missions from SmallSat to Flagship

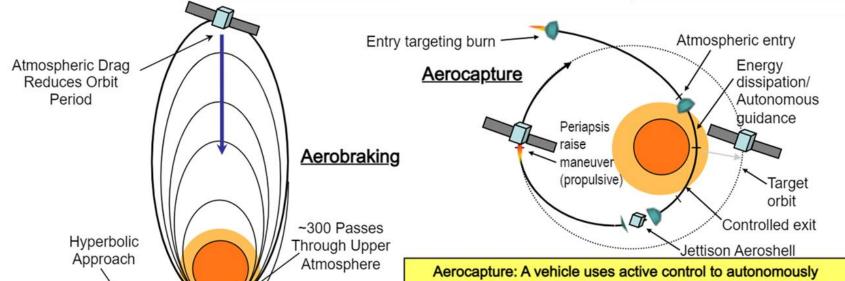
Alex Austin

Jet Propulsion Laboratory, California Institute of Technology Alexander.Austin@jpl.nasa.gov


with contributions from a large team at NASA JPL, NASA Ames, and NASA Langley

Presentation to the Decadal Survey Venus Panel July 14, 2021

The Rocket Equation



Aerobraking vs Aerocapture

Aerobraking was successfully demonstrated on Magellan and Venus Express. It will be used as part of the upcoming **VERITAS** mission.

guide itself to an atmospheric exit target, establishing a final, low orbit about a body in a single atmospheric pass.

Daili	
Cons	Use
Still need ~1/2 propulsive fuel load	Esta
Hundreds of passes = more	pass
chance of failure	Has hype
Months to start science	Flies
Operational distance limited by light time (lag)	Ada day-
At mercy of highly variable upper atmosphere	Fully

Orbit Insertion

Burn

Pros

Little spacecraft design

Gradual adjustments; can

Operators make decisions

pause and resume as

needed (with fuel)

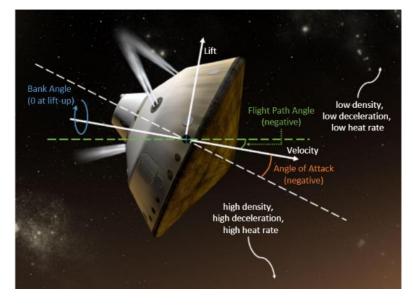
impact

Pros	Cons
Uses very little fuelsignificant mass savings for larger vehicles	Needs protective aeroshell
Establishes orbit quickly (single pass)	One-shot maneuver; no turning back, much like a lander
Has high heritage in prior hypersonic entry vehicles	Fully dependent on flight software
Flies in mid-atmosphere where dispersions are lower	
Adaptive guidance adjusts to day-of-entry conditions	
Fully autonomous so not distance-limited	

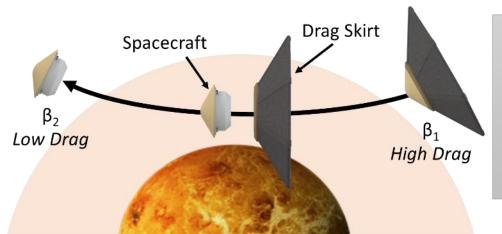
presentation will focus on aerocapture.

This

Credit: Michelle Munk & Thomas Spilker, 6th International Planetary Probe Workshop


Aerocapture Flight Control Approaches

To overcome navigation and atmospheric uncertainties in order to achieve a desired target orbit, a form of flight control is needed during the aerocapture pass through the atmosphere


Lift Modulation

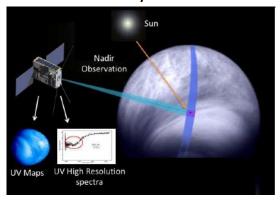
Heritage control method demonstrated on MSL and M2020

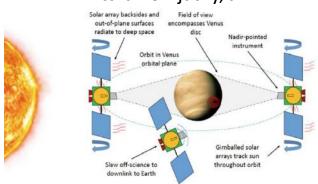
By banking the spacecraft, the lift vector is rotated to target higher or lower atmospheric densities and control the amount of delta-V and target a specific orbit

Drag Modulation

Focus of recent technology development, particularly to enable SmallSat orbiters

By modulating the time that a drag skirt is jettisoned from the spacecraft, the system can receive more or less delta-V and target a specific orbit


Venus SmallSat Orbiter Mission Concepts


There is compelling science that can be done at Venus with SmallSats

PSDS3

CUVE (CubeSat UV Experiment)
PI: Valeria Cottini, University of
Maryland

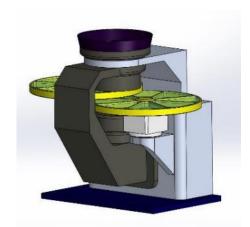
VAMOS (Venus Airglow Monitoring Orbiter for Seismicity) PI: Attila Komjathy, JPL


Venus Bridge

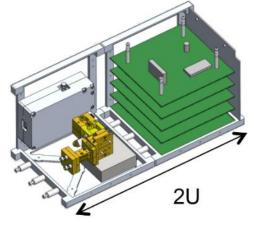
Principal Element	Variation	Purpose	VEXAG Science Goals, Object., & Investig. (GOI)	VEXAG Technology Plan	VEXAG Roadmap	Smallat Concepts PSDS3 Sel
Science Orbiter with	Surface (IR)	Surface composition & weathering. Does Venus have granites? Is there evidence of recent volcanism or past water?	II.A.4, II.B.1,2; III.A.2, 3; III.B.2.	Smallsat & cubesat assessment	Orbital Remote Sensing	VISM
Telecom Relay	Atm (IR)	Middle circulation, planetary waves, airglow. How does the atm. circulate? Are there large quakes?	I.B.1,2,3; II.A.3,4,	identified for next technol. plan		VAMOS
	Atm (UV)	Upper circulation & composition, What is the origin of the UV absorber and energy balance of the atm.?	I.B.2; I.C.1,2,4.	piarr		CUVE
	Ionosphere	lon escape & precipitation What is the current escape rate of the atmosphere?	I.A.2.			VISEN
Telecom r	elay greatly e	enhances data return and hence scientific value of in situ	elements.	DSOC?		
Probe	Skimmer	Atmospheric sample below homopause. Isotopes of noble gases. What is the origin of the atmosphere?	I.A.1,2; II.A.2; III.A.1,	TPS	≈ Deep Probe	Cupid's Arrow
	Descender	Profile of atmospheric state and composition. How did the atmosphere form? What is the structure of the atmosphere?	I.A.1,2; I.B.1-3; I.C.4; II.A.2; III.A.1,4.	TPS	Deep Probe	DoVe VLAD
Aerial Platform	Balloon or Airplane	Global measurements of cloud-level circulation and composition. Investigate seismicity and interior. Questions mirror probe and lander but global scale.	I.A.1,2; 1.B.1,3; I.C.1-4; II.A.2,3; III.A.1, III.B.2,3.	TPS, Aerial Platforms	Sustained Aerial Platform	V. Aerial Platforms Study Grp.
Lander		Atmospheric & geophysical measurements. Imaging. What is the boundary-layer environment and origin of super-rotation? Is there seismic activity?	I.B.1,2; II.A.3; III.B.2-3.	TPS, HTE	"Long- Lived" Geophys. Lander	SAEVe VLAD

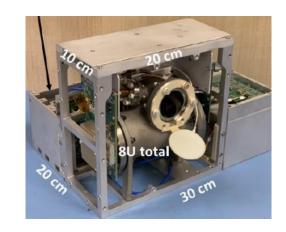
2020 Pre-Decadal Study

PI: Martha Gilmore, Wesleyan
University

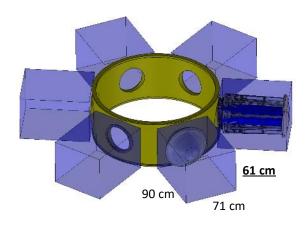


SmallSats: An Expanding Planetary Science Opportunity


Technology development has enabled many small instruments


Compact IR imager (1.5U)

Compact visible camera (1U)



Compact Sub-mm spectrometer (2U)

Compact Mass Spectrometer (4U)

Rideshare launch opportunities provide access to space

EELV Secondary Payload Adapter (ESPA)

- Provides ride to Earth escape, GTO, or cislunar space
- Used on Atlas V, Delta IV, Falcon
 9, and Falcon Heavy

"We're not going to ask whether we need it. You have to convince us that we don't need it."

— Thomas Zurbuchen, NASA associate administrator for science, pledging the U.S. space agency to purchase a secondary payload adapter whenever it buys a launch vehicle for a science mission.

Reaching Orbit as a Secondary Payload



Secondary payload mass and volume constraints create unique challenges for SmallSat orbiters

1. The secondary payload launch opportunity and target orbit will require a certain orbit insertion delta-V

Launching with a mission going directly to Venus...

VERITAS

...has significant differences in the required delta-V for orbit insertion

For SmallSats,
flexibility to
different launch
opportunities is key

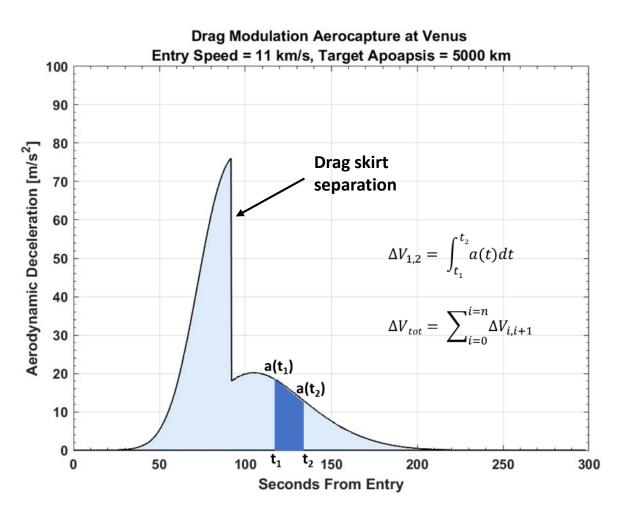
2. The mission must "close" within mass, power, and time constraints

Orbit insertion delta-V at Venus

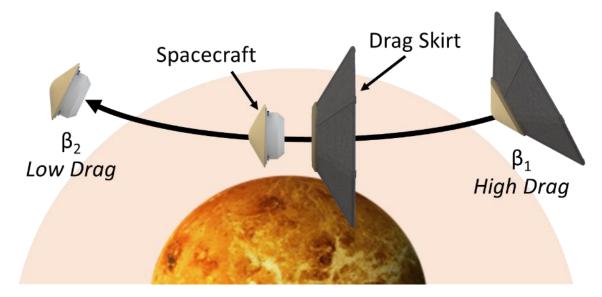
Propellant mass fraction required with 300s Isp chemical propulsion

Primary Mission	5,000 km elliptical orbit	35,000 km elliptical orbit	5,000 km elliptical orbit	35,000 km elliptical orbit
Venus Direct	2.8 km/s	1.5 km/s	61%	40%
Venus Flyby	4.5 km/s	3 km/s	78%	64%

Comparing aerocapture and solar electric propulsion

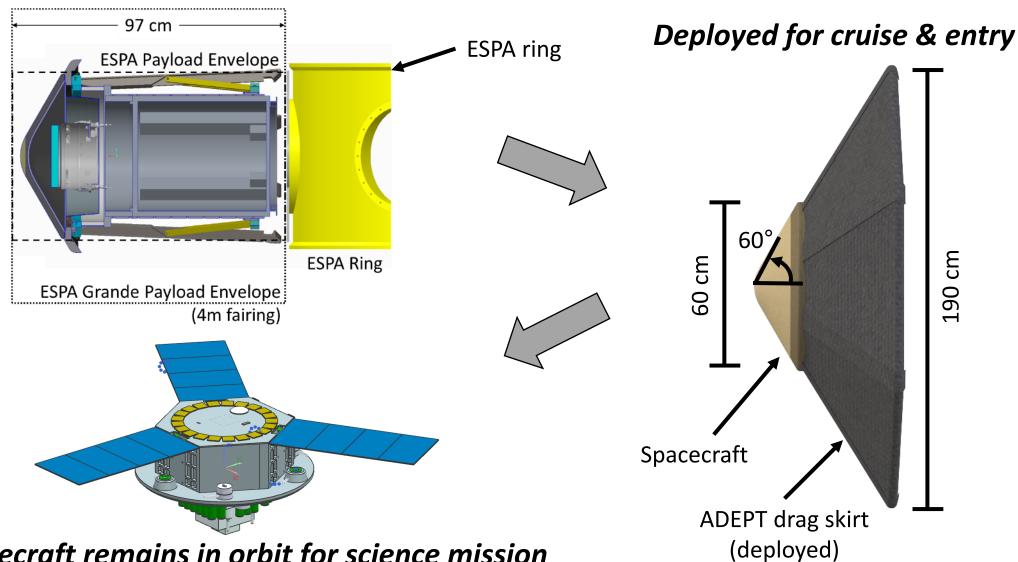

Orbit Insertion Method	Aerocapture	Solar Electric Propulsion
Cruise Time	0.5 – 1 year	3 – 4 years
Required Power	< 100 W	> 800 W
Launch Mass	100 – 150 kg	200 – 500 kg

Drag modulated aerocapture is the fastest, most efficient way for SmallSats to reach orbit as secondary payloads



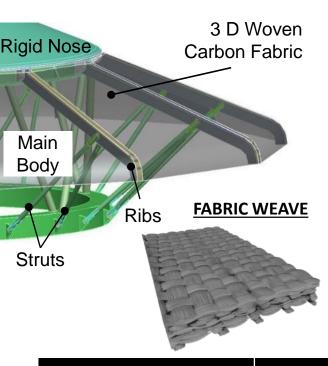
Drag Modulation Flight Control

To overcome navigation and atmospheric uncertainties, a form of flight control is needed during the aerocapture pass through the atmosphere


By modulating the time that a drag skirt is jettisoned from the spacecraft, the system can receive more or less delta-V and target a specific orbit

SmallSat Drag Modulation Aerocapture

Stowed in ESPA volume for launch


Spacecraft remains in orbit for science mission

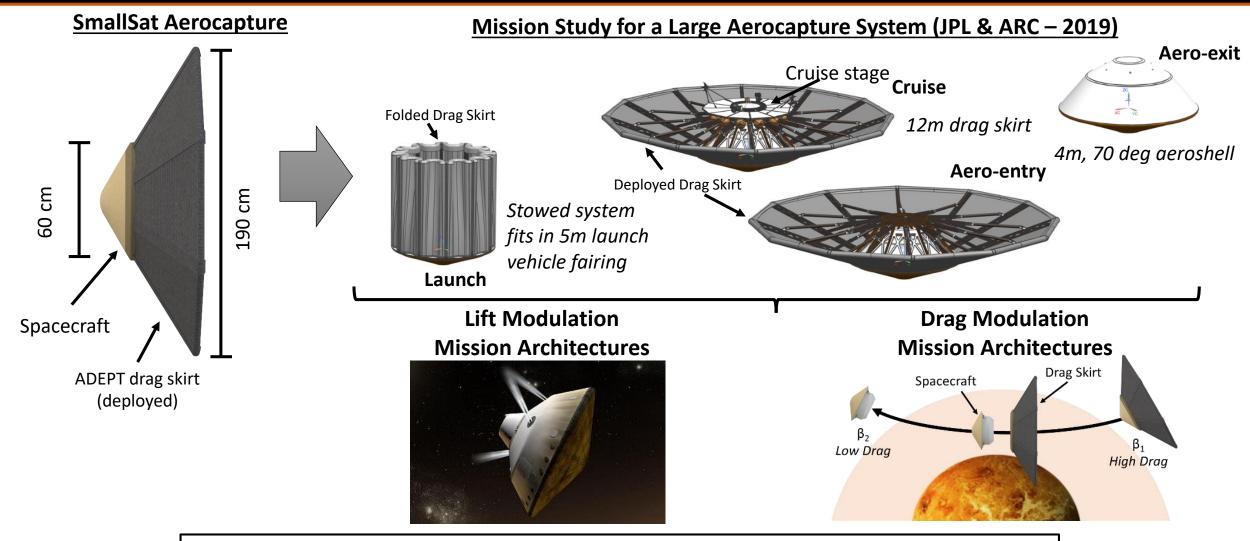
ADEPT Deployable Drag Skirt

Ethiraj Venkatapathy will cover ADEPT and other entry system technologies in his presentation

2 m Deployment Prototype

Electrically driven actuators achieve high fabric pre-tension

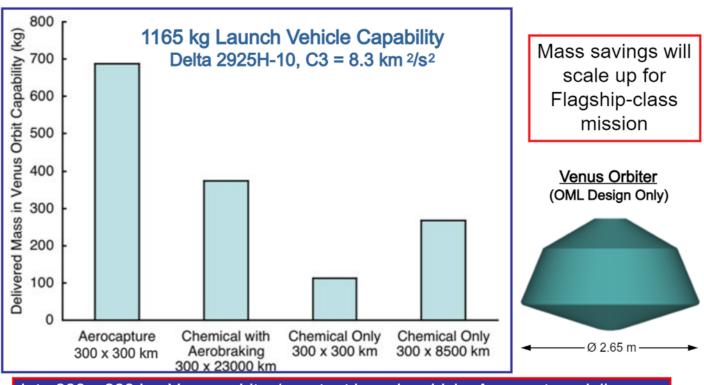
Successful Flight Test of 70 cm SR-1 Demonstrator



ADEPT Designs	SmallSat Class	Discovery or New Frontiers Class	Flagship Class
Design Concepts	SR-1 Aft Drag Skirt	ADEPT VITaL	Human Mars
Diameter Range	< 3 m	6-10 m	>16 m

Small → Large Missions

SmallSat aerocapture lays the groundwork for future larger missions of multiple types, while accomplishing meaningful, cost effective science



Benefits to Larger Missions

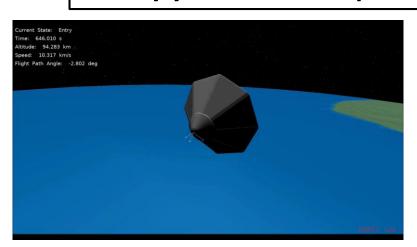
- For larger Venus missions, the principal benefit of aerocapture is greater delivered mass to orbit
 - Potential to open up new mission architectures with multiple flight elements in a single launch (i.e. orbiter and in-situ elements)
 - Alternatively, instead of bringing more mass, greater mass efficiency can be used to lower the total flight system mass and use a smaller launch vehicle
- There are many opportunities for aerocapture and future missions should consider this a rich trade space to explore

One study highlighting the increased mass efficiency of a Venus aerocapture orbiter

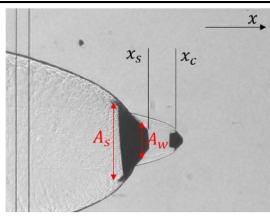
Into 300 x 300 km Venus orbit w/constant launch vehicle, Aerocapture delivers:

- 1.8x more mass into orbit than aerobraking
- 6.2x more mass into orbit than all chemical

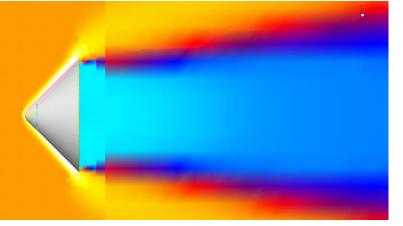
Reference: Lockwood et al, "Systems Analysis for a Venus Aerocapture Mission", NASA TM 2006-214291, April 2006


Credit: Michelle Munk & Thomas Spilker, 6th International Planetary Probe Workshop

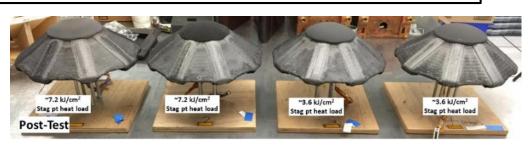
Aerocapture Tech Development Progress


Many years of development progress has advanced aerocapture for use in Venus missions

6-DOF simulation toolset provides capability to model the aerocapture maneuver

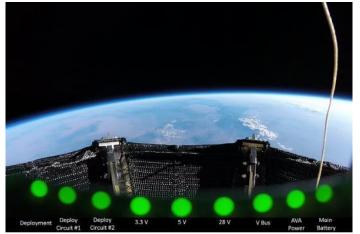


Investigated post-aerocapture PRM delta-v and operations requirements

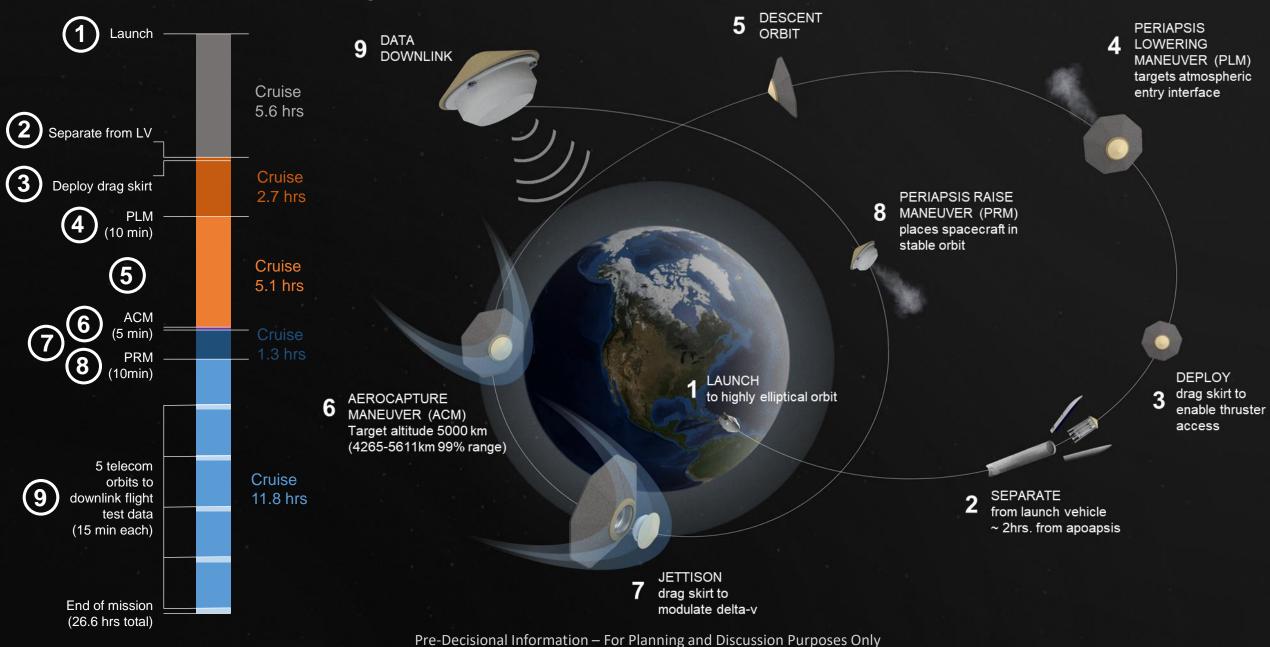


 $F_c = C_{D,c} A_c q_{\infty}$ $F_s = C_{D,s} (A_s - A_w) q_{\infty} + C_{D,s} A_w k q_{\infty}$

JPL and ARC performed 8 sub-scale ballistic range shots at Mach 10, giving valuable test data to inform modeling efforts


Cart3D CFD simulations at Venus flight conditions

ARC performed arcjet testing of flexible carbon fabric at Mars relevant conditions



ADEPT vacuum bag and subsonic wind tunnel tests to assess shape change and possibility of flutter

ARC successfully flew a 70 cm diameter ADEPT skirt on a suborbital sounding rocket

Aerocapture Earth Flight Test

Aerocapture Decadal Whitepaper

WHITE PAPER FOR THE

PLANETARY SCIENCE AND ASTROBIOLOGY DECADAL SURVEY, 2023 - 2032

Enabling and Enhancing Science Exploration Across the Solar System: Aerocapture **Technology for SmallSat to Flagship Missions**

Primary Author:

Jet Propulsion Laboratory/California Institute of Technology

Phone: 818-393-7521

E-Mail: Alexander.Austin@jpl.nasa.gov

Co-Authors:

Gonçalo Afonso² Roberto Gardi¹¹ Richard Powell8 Samuel Albert3 Athul Girija12 Zachary Putnam¹⁰ Hisham Ali4 Jeffrey Hill5 Jeremy Rea¹⁴ Antonella Alunni⁵ Tiago Hormigo² Thomas Reimer¹⁹ James Arnold6 Shavna Hume3 Gilles Bailet7 Christopher Jelloian¹³ Sarag Saikia¹² Vandana Jha⁵ Kunio Sayanagi²² Patricia Beauchamp¹ Stephan Schuster23 Alan Cassell⁵ Breanna Johnson¹⁴ Jim Cutts1 Craig Kluever¹⁵ Jennifer Scully1 Rohan Deshmukh8 Jean-Pierre Lebreton16 David Skulsky¹ Robert Dillman9 Marcus Lobbia1 Ronald Sostaric14 Sarah D'Souza5 Ping Lu¹⁷ Christophe Sotin¹ Ye Lu¹⁸ Soumyo Dutta9 Ben Tackett8 Charles Edwards1 Rafael Lugo9 Ethiraj Venkatapathy⁵ Paul Wercinski5 Donald Ellerby⁵ Daniel Matz14 John Elliott¹ Robert Moses9

Alberto Fedele¹¹ Adam Nelessen1 Jay Feldman⁵ Isil Sakraker Özmen¹⁹ Anthony Freeman¹ Miguel Pérez-Ayúcar²⁰

¹Jet Propulsion Laboratory/California Institute of ¹³University of California, Los Angeles Technology

Michelle Munk9

2Spin.Works S.A 15University of Missouri

¹⁶French National Centre for Scientific Research

3University of Colorado Boulder 4Georgia Institute of Technology 5NASA Ames Research Center

19 Institute of Structures and Design - German

6AMA, Inc. at NASA Ames Research Center 7University of Glasgow

8AMA, Inc. at NASA Langley Research Center

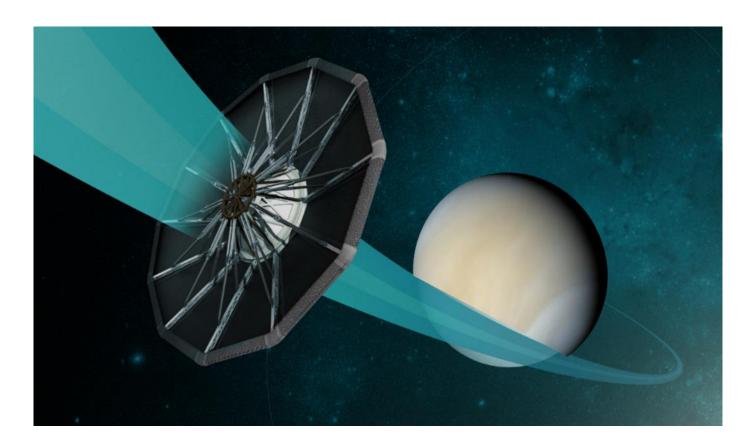
Giusy Falcone¹⁰

9NASA Langley Research Center

10University of Illinois at Urbana-Champaign

11C.I.R.A. Italian Aerospace Research Center 12Purdue University

23European Space Agency - ESTEC


Sachin Alexander Reddy²¹

Michael Wilder⁵ Michael Wright5

Cindy Young9

14NASA Johnson Space Center ¹⁷San Diego State University 18Kent State University

Summary and Recommendations

- Aerocapture uses the drag from a single pass through the atmosphere to slow down and enter orbit, rather than a large burn from a propulsion system.
- Aerocapture can enable greater payload mass to Venus, open up new mission architectures with multiple flight elements, or allow the use of smaller launch vehicles.
- Recent research and technology development of drag modulated aerocapture has identified that this could be an enabling technology to allow SmallSats to enter orbit at Venus, especially as secondary payloads taking advantage of rideshares on larger missions.
- Continuing to develop aerocapture technologies, with the next step being a SmallSat Earth Flight Test, will have a positive impact on Venus exploration with multiple classes of missions in the coming decades.

Acknowledgements

Colleagues from NASA Jet Propulsion Laboratory:

Adam Nelessen, Marcus Lobbia, Leon Alkalai, Bill Strauss, Josh Ravich, Liz Luthman, Damon Landau, Aaron Schutte, Rashied Amini, David Skulsky, Dan Forgette, Matt Jadusingh, Brian Kennedy, Abhi Jain, Kat Park, David Levine, Matt Kowalkowski, Chris Bertagne, Bobby Braun, Jim Cutts, Pat Beauchamp, Jeff Hall, Tony Freeman, Tom Cwik, Andrew Shapiro-Scharlotta, Andrew Gray

Colleagues from NASA Ames Research Center:

Ethiraj Venkatapathy, Paul Wercinski, Alan Cassell, Robin Beck, Bryan Yount, Michael Aftosmis, Michael Wilder, Gary Allen, Dinesh Prabhu, Ryan McDaniel, Peter Gage, Owen Nishioka, Antonella Alunni, Jeff Hill

Colleagues from NASA Langley Research Center:

Som Dutta, Rohan Deshmukh, Rafael Lugo, Michelle Munk, Richard Powell, Ben Tackett, Ron Merski, Karl Edquist