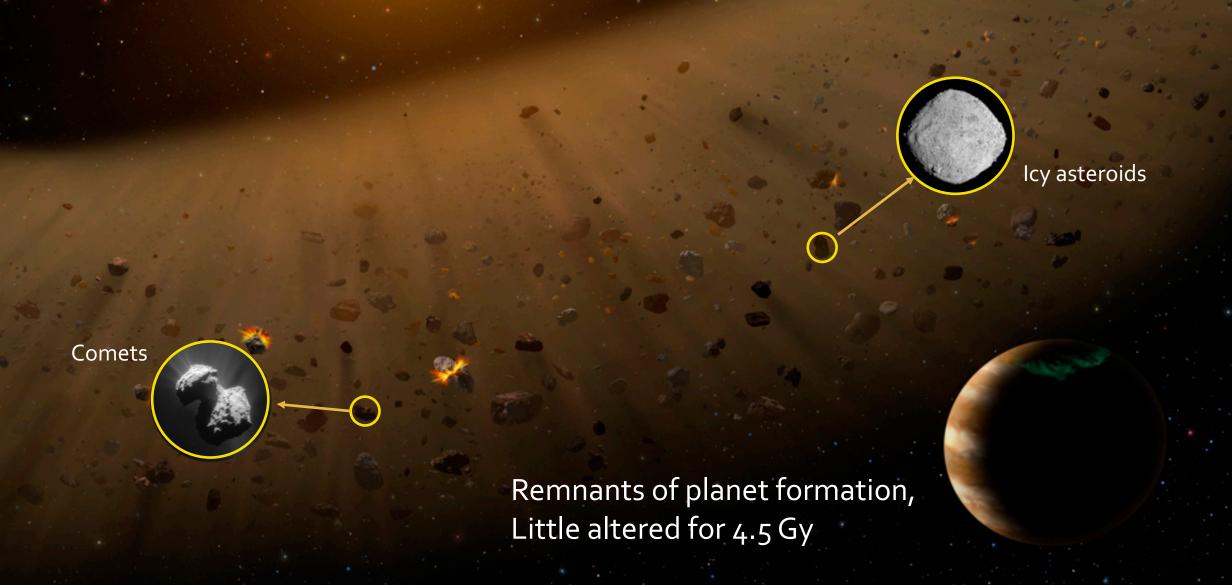
Spacecraft Missions to Interstellar Comets and Oort Cloud Comets

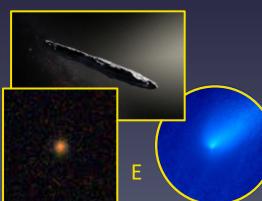
K. Meech (IfA, Univ. Hawai'i)

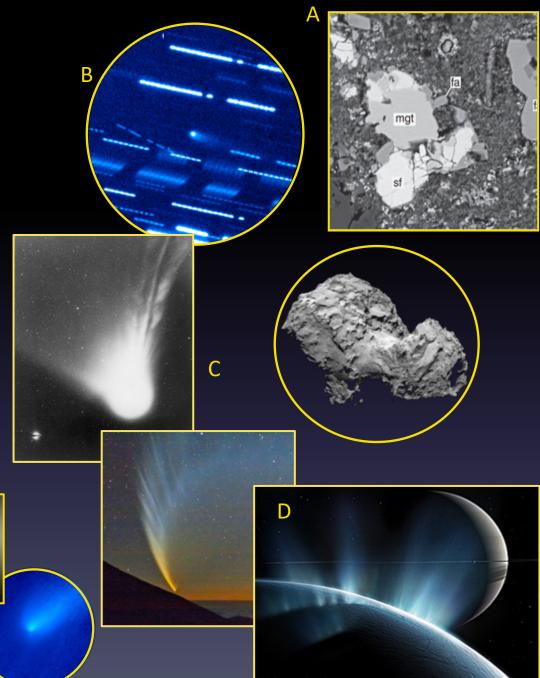
SBAG November 2, 2020


Astrobiology objectives

- Trace physics & chemistry of terrestrial planet formation in the pp disk
- ALMA's sensitivity and resolution can reach giant planets > 20-30 au
- The next generation telescopes will probe terrestrial planet formation regions

How do we explore Habitable Planet formation in our Solar System?

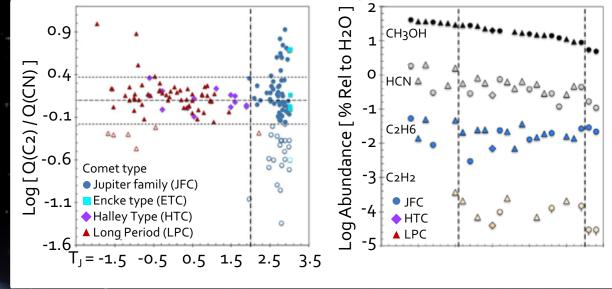



Primitive Tracers

A. Meteorites (well-studied)

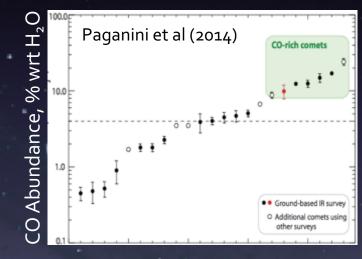
- Contain water, have been altered
- B. Icy asteroids (unexplored)
 - Formed locally, or migrated from farther out
 - Contain unaltered material
- c. Comets (many missions, ground, but no OCCs)
 - Formed cold, remained cold, untraceable dynamics
- D. Icy satellites (Cassini)
 - Formed cold, have been heated evolved
- E. Interstellar objects (unexplored....)

Small Body Tracers

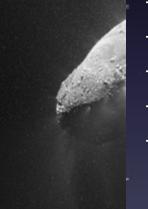

Comets – Ground Based

- Parent organics & daughter fragments chemistry uncorrelated with dynamical type
- Isotopes D/H, ¹⁵N/¹⁴N, ¹³C/¹²C (~20)

C. Alexander, CIW

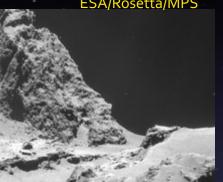

Space Missions (Pre-Rosetta)

- CO₂ a major driver of activity (uncorrelated with dynamics)
- Comets are very low density, very low thermal inertia
- Very dark organic rich surfaces
- Silicates nebular processing
- Stardust significant nebular mixing


After A'Hearn et al 1995

After Mumma & Charnley, 2011

Meteorites


- Aqueous alteration (everywhere)
 - Chondrite classes different zones
 - No Earth feeding zone material

EPOXI: 103P/Hartley 2

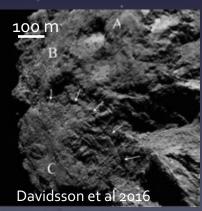
ESA/Rosetta/MPS

40 m

Small Body Volatile Tracers: Rosetta

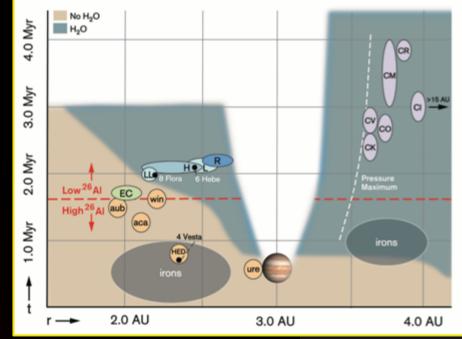
Formed very cold

- Abundant supervolatiles: CO (13%), CO₂(8%), O₂ (4%), N₂ (0.07%), noble gases
- Rich array of pre-biotic chemical species
- Inheritance from pre-solar cloud . . .

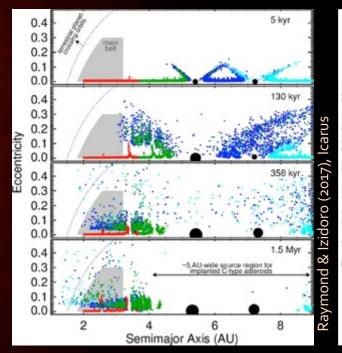

Comets are low density, low strength – preserve early SS history

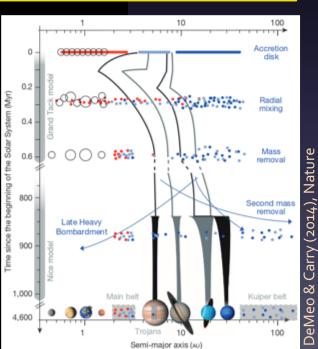
Questions

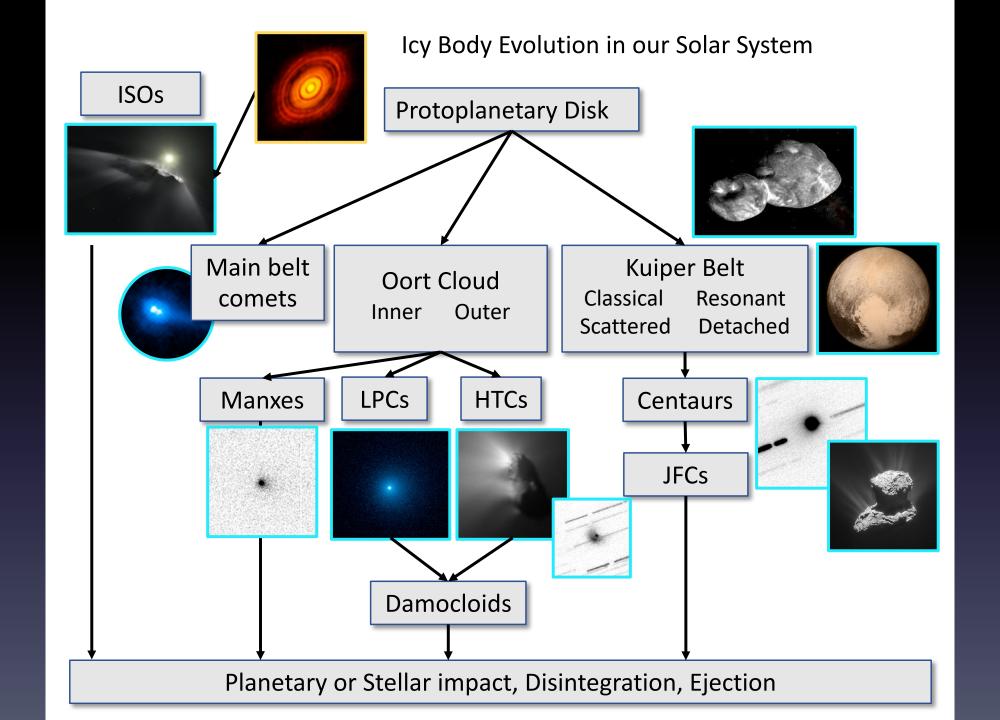
- What is primordial and what is the effect of insolation? (How do comets work)
- How and where do comets form?
- What role do comets play in bringing volatiles to the inner solar system, to Earth?

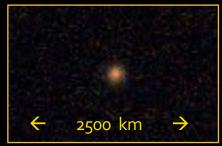


Jupiter forms early, opens gap (Kruijer et al 2017)

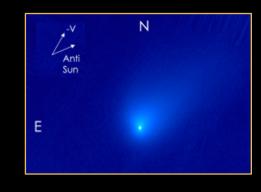

- Impedes inward flow of icy material
- Terrestrial planets form in warm inner disk
- Giant planet growth → scatters planetesimals
- From where depends on where Jupiter formed, and if it migrated



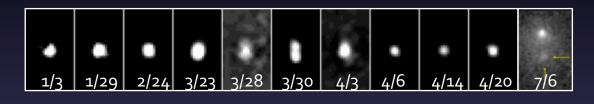



Earth volatile scenarios

- 1. Earth captured volatiles & organics from inner disk
- 2. Delivery from scattered planetesimals



ISO "Legacy"



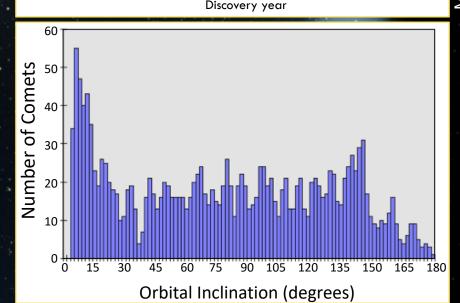
Characteristics

- 11: Very small 102 m for 4% albedo, excited rotation, surface reflectivity like outer SS material, excited rotation, no dust, no gas directly detected, but non-gravitational acceleration
- 21: Looks like a typical comet, but very CO-rich, C-Chain depleted, changing comp w/distance



Interpretation

- Planetesimal ejected during extrasolar system formation
- Tidal disruption (giant planets, white dwarf)
- Fluidization of material during red giant phase
- Molecular hydrogen iceberg
- Alien visitors


LP Objects – Once in a Lifetime Targets

Transformative science

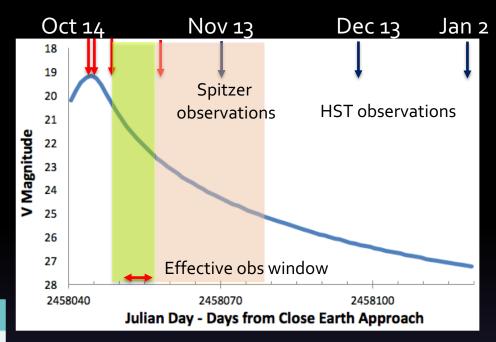
- Unheated objects best preserve the early solar system environment
- Critical constraints for planet building in our and other solar systems
- Want to know detailed chemical & physical properties

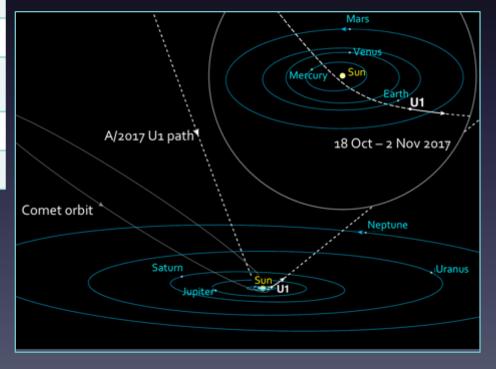
Mission challenges

- LSST (first light 2022) may detect LPOs ~ 10 yr pre-perihelion
- All inclinations more challenging for rendezvous
- LPCs are driven by CO, CO₂ → large debris
- Small objects: characterization requires very large aperture from Earth, much science demands in-situ

Heliocentric distance [au]

Challenging Timelines

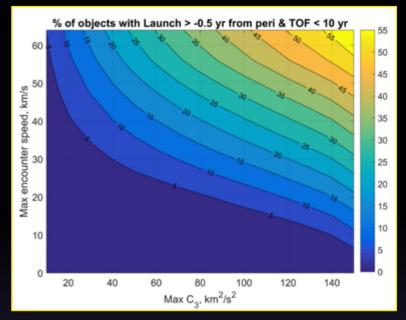

1/ Oumuamua's Circumstances (worst case)

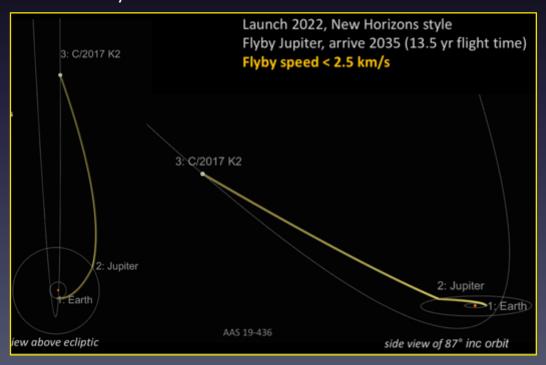

- Observations best over a few weeks
- ~65 hrs on 4-10 m telescopes over 1 wk
- 30 hrs on Spitzer, 9 HST orbits
- >130 papers

Sun	Mon	Tue	Wed	Thu	Fri	Sat
← Sep 9 Perihelion						14- Close Earth, CSS Pre-covery
15	16	17	18-PS1 Pre-covery	19-PS1 Discovery	20-Astrometry	21-Astrometry
22- Hyperbolic orbit confirmed	23-DD prop VLT, GS; VLT Approve	24- GS prop Approved; MPEC orbit announce	25-VLT Obs, HST prop submit, UKIRT DD award; ★	26- VLT, GS obs; HST Approve; PR ★	27- GS,CFHT, UKIRT, Keck obs	28- UKIRT obs ★
29 – Hawaiian name	30- ★	31- Nature paper submit	1	2	3	4
5	6-Ref. Rpt. IAU Name OK	7	8-Resubmit paper	9	10-Paper in production	11

2l/Borisov (a good case)

- Discovered Aug 30, 2019, perihelion in December 2019
- Major observing campaign \rightarrow went into solar conjunction in Oct 2020
- Visible again in Mid Jan 2021 and likely still bright enough for observations

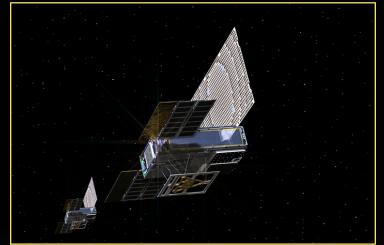




LPO Mission Challenges

- High relative velocities (50-90 km/s)
 - Giotto was destabilized by 1 gm grain impact at 68 km/s
- Unique challenge for missions
 - Changes paradigm of how missions are done now: proposal to launch ~ 6 yrs
 - Spacecraft needs to be implemented fast or ready to go
- How many targets are likely?
 - Want rendezvous, can only get flybys

Launch E	Enc Velocity	% reachable	Comment
High	High (< 64 km/s)	90	
Low	High	20	
High	Low (< 4 km/s)	2-5	Long travel time


What and How?

Compelling Science – solar system formation

- Detailed information on: refractory & volatile isotopic composition, nucleus structure and density
- Instruments: vis camera, UV spectrometer, sub-mm spectrometer, dust, mass spectrometer

New Mission Paradigm

- New type of reactive NASA mission
 - Launch within < 2 years of discovery
 - Spacecraft on parking orbit waiting for target (e.g. Comet Interceptor)
- Multi-spacecraft architectures increase the observation window with stage deployment of small daughtercraft
- Long-term spacecraft storage (on earth, in orbit)
- Synergy with needs for planetary defense missions

Multi-spacecraft Architectures

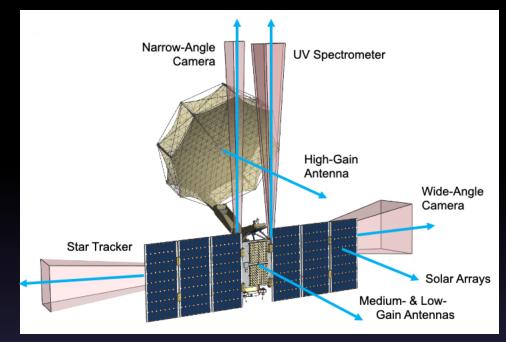
- Provides redundancy / hazard mitigation
- Multiple vantage points
- Multiple experiments enabled

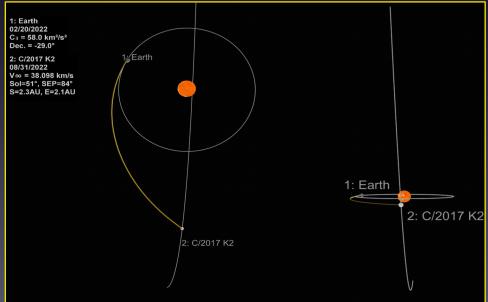
Cubesat development is enabling

- Low-cost multiple space craft
- Requires coordinated autonomy
- Accomplish rendezvous goals with a flyby

Feasibility requires further study

Programmatic Recommendations


- SIMPLEx modifications required to enable smallsat ISO or OCC exploration
 - Larger cost cap
 - Allowance for dedicated launch vehicle
 - Allowance for flexible targets
- Discovery/New Frontiers modifications required to enable OCC exploration
 - Flexible targets
- Alternatively, rapid response mission category could enable exploration of targets of this class
 - Could provide annual resources for storage


Architecture	Sched. Risk	Cost Risk	Technic al Risk	Operations Risk
A1 – Ground Storage	Low	Med	Med	Low
A2 – Space Storage	Low	Med	Low	High
A ₃ – Build After Detection	High	Low	Med	Low

Extra Slides

Xenia

- Focused study in FY19 to develop twin-smallsat flight systems to encounter C/2017 K2
 - 2 x 75-kg smallsat with high resolution imager, UV spectrometer
 - Predominantly COTS parts, where possible
- Significant conclusions:
 - Smallsat exploration of Oort cloud comets or ISOs is technically feasible given that there is > 2 years notice between discovery and launch
 - Developments in autonomy, smallsat telecom, smallsat propulsion, and miniaturized instrumentation would enhance mission and reduce risk
 - Programmatically, there is no path for a rapid response mission concept

Tracing the volatiles Required Source Icy bodies that record history of volatile migration Source close enough to observe in detail No aqueous alteration in parent body Measurements from multiple chemical markers

SMD Vision & Voyages (2013-2022) & the Astrobiology Roadmap

How do Habitable Worlds Form?

With thousands of exoplanetary systems known, ours, so far is unique in its architecture with a habitable planet in the habitable zone. Water is the most abundant condensable molecule so solar composition gas should condense water-rich planets, yet the inner solar system is dry.

- Planetesimals gain chemical fingerprints from the disk
- Planetesimals were then scattered by the giant planets

- Did planetesimals drive inward from beyond the snow line to form terrestrial planets?
- Meteorites (cosmochemistry) gives us clues to what happened
- Volatiles in small primitive bodies are the best connection to protoplanetary disks and how habitable worlds are built.

