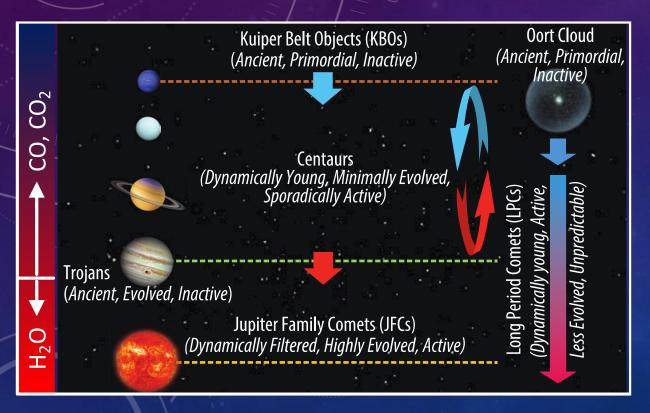
EXPLORATION OF ACTIVE PRIMORDIAL BODIES

Walt Harris
University of Arizona

Yan Fernandez (UCF), Gal Sarid (SETI), Jordan Steckloff (PSI), Kat Volk (UA), Maria Womack (NSF-USF), and Laura Woodney (UCSB)

WHAT IS AN ACTIVE PRIMORDIAL BODY?

29P/Schwassmann-Wachmann 1

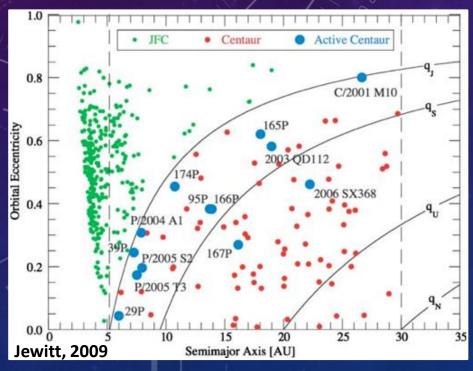

Properties

- Icy small bodies active at R_h>5AU
- No significant exposure to the inner solar system

Examples

- Active Centaurs
- LPCs with q>5AU
- Dynamically New LPCs

WHY DO THEY MATTER?


Activity

- Not driven by water sublimation
- Source mechanism(s) not understood

Physical State

- Minimal physical evolution
- (Centaurs) Parent population of the JFCs

ACTIVITY PATTERNS

- Direct gas production detected for only a few objects
- ~20% of Centaurs active w/perihelion dependence
- LPCs do not display consistent behavior with R_H
- Suspected Sources of CO, CO₂
 and CH₄ are hyper-volatile
- Outbursts do not track with R_H
 (Amorphous Ice?)

PHYSICAL EVOLUTION

Stardust Deep Space-1 Giotto/Vega

Rosetta

Rosetta

Peep Impact EPOXI Stardust-NExT

New Horizons

Lucy

New Horizons

Lucy

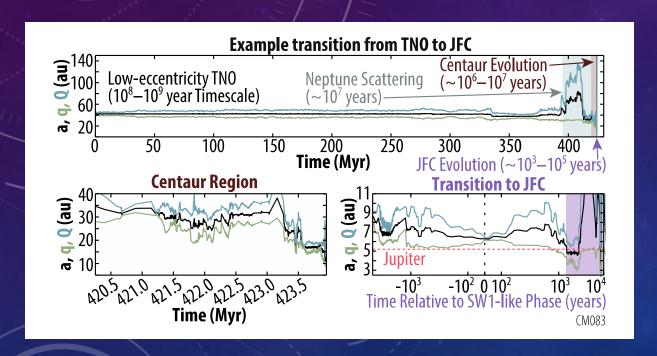

- Water sublimation rapidly erodes objects within the JFC region
- Evolutionary signature of outer solar system activity is unknown
- Active Centaurs are physically intermediate between TNOs and JFCs
- APBs offer physical connection between mission targets

A DECADE OF DISCOVERY

Much has been learned since the last survey

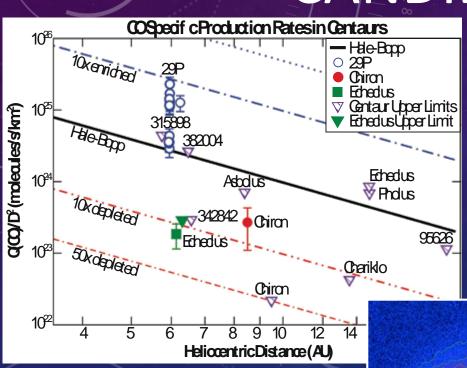
- The majority of ABPs have been identified since 2010 (now over 200)
- The patterns of heliocentric activity dependence of APBs are being revealed
- Ring systems have been discovered around Centaurs (Chiron, Chariklo)
- We have orbited a JFC and flown by a progenitor TNO
- An orbital resonance linking Centaurs to JFCs has been identified

AN EXPLORATION IMPERATIVE



- Active primordial bodies are the keys to many locks
- They connect previous and future mission targets
- They are the most pristine objects accessible to spacecraft
- The provide sampling of volatiles
- They are an evolutionary bridge
- The most scientifically valuable targets are accessible now.

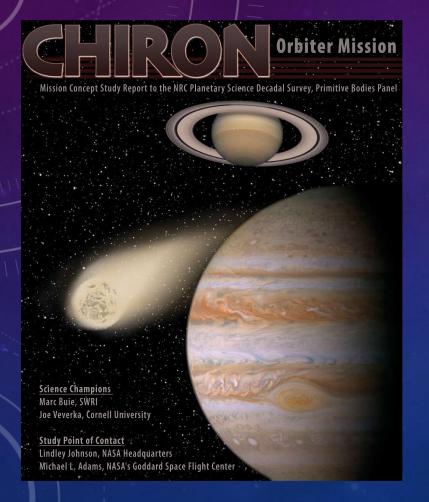
AN EXPLORATION IMPERATIVE


	Question:	Goal:	Exploration Objective:	Volatiles
		Understand how presolar processes are recorded in	Measure the relative composition and isotopic signature of escaping volatiles	Outburst
111		the materials of primitive bodies	Map the distribution, local environment and energy balance of active regions on APB surfaces	
	What physical mechanisms drive	Probe accretion and	Identify the features and morphology of real-time physical modification of APB nuclei	
0 1	activity and evolution of ice-rich	formative processes in the solar nebula	Investigate early stage evolutionary processes associated with Centaur transition through the gateway region	Topography
	planetesimals beyond 5 au?	Determine the effect and	Explore the mechanisms, compositional distinctiveness, and energetics of outbursts	Composition
1		timing of secondary processes on the evolution of primitive	Probe the interior structures of the near-subsurface and deep interior of APBs	Temperature
1		bodies	Compare the activity patterns and evolution of APBs in different dynamical classes	Interior

THE ORBITAL GATEWAY

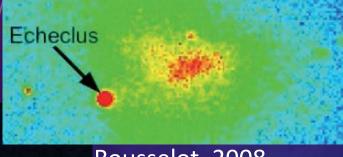
- The Active Centaurs are the most accessible of the APBs
- Sarid et al. (2019) Reported the on and orbital resonance through which 70% of future JFCs pass
- Gateway' APBs are embryonic comets

THE PRIME CANDIDATES



Wierzchos, Womack, & Sarid, 2017

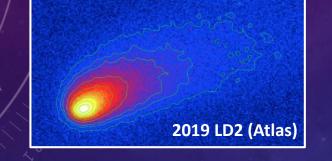
2019 LD2 (Atlas)


- There are 3 outbursting ABPs
 where CO production has been detected
- One candidate has a 'ring' system
- A recently discovered object is in current transition to the JFCs
- All are accessible with missions in the Discovery/New Frontiers class

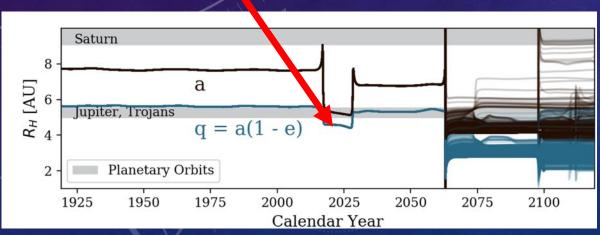
95P/CHIRON

- Chiron was the first object identified with the Centaur group
- It is the largest of the candidate objects
- o It has a ring/shroud of debris
- Is consistently active further than any where CO is measured
- It has has experienced outbursts in the past
- Study of an orbital mission in 2013 survey-New Frontiers option

174P/ECHECLUS



Rousselot, 2008


- Experiences periodic large outbursts
- Major outburst in 2005 produced a separate object
- Quiescently active near perihelion
- Most eccentric orbit of the best candidates
- Chiron orbiter study compared accessibility. An Echeclus orbiter is a stretch for New Frontiers.

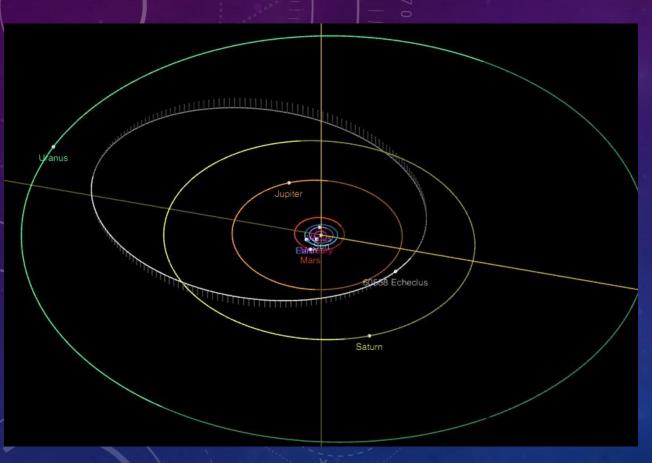
Kareta, 2020

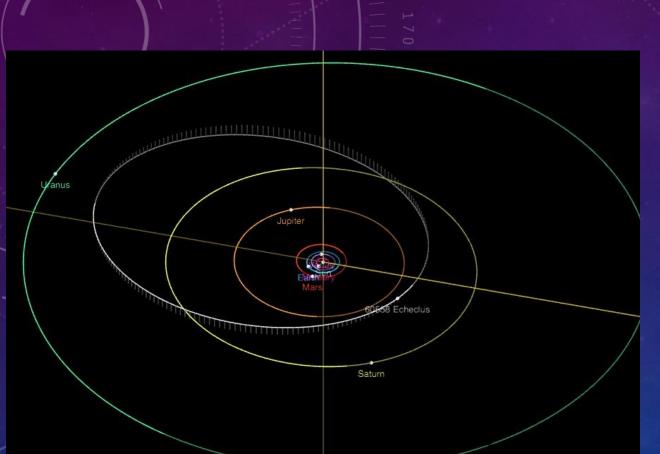
2019 LD2 (ATLAS)

Current orbit

Kareta et al., 2020

- Recent APB discovery
- Near co-orbital with Jupiter
- Rapidly developing orbit: Jupiter encounters in 2027 and 2063
- >90% chance of entering JFC population (~40% q<3 AU)
- Ideal candidate for study of transition
- Activity patterns not well studied
- Possible sample return option


29P/SCHWASSMANN-WACHMANN 1



- First active object discovered with an orbit beyond Jupiter (1927)
- Continuously active for 90+ years
- Highest CO production of any Centaur
- Experiences ~7 outbursts per year
- Low eccentricity/inclination orbit
- Gateway orbit resident with 70% likelihood of becoming a JFC

MISSION CHALLENGES

- Orbital encounters are require assist or advanced propulsion
- Orbital periods and assist phasing opportunities are widely spaced
- Debris clearing from active bodies is slow-Dangerous for a flyby
- Potential for sporadic activity makes orbit preferable
- Cruise phases are *long* (>10 yr) for orbital encounters

TIME IS OF THE ESSENCE

- The best candidates are near most favorable mission configuration
- 29P and 2019 LD2 are phased with Jupiter for assist in the late 2030s
- Chiron and Echeclus orbit within
 Saturn in the 2040s through 2050s
- If these opportunities are missed,
 29P, Echeclus, and Chiron are not available until after 2100.
- o 2019 LD2 becomes a JFC in 2063

THE WINDOW IS ALREADY OPEN

- Two mission concepts were proposed (to 29P and Chiron) in the 2019 Discovery call...however
- The Discovery window closes soon
- Proposal through launch adds 10-20 years to cruise phase
- New Frontiers concept development must begin in the next 2 rounds