

sampling brines of an evolved ocean world

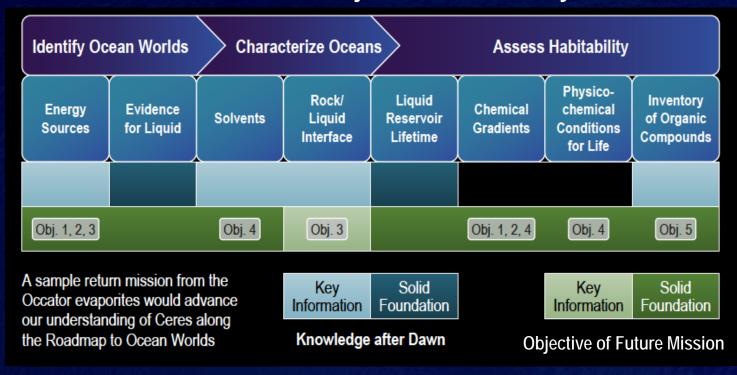
## CERES

planetary mission concept study

### **Major Findings**

PRINCIPAL INVESTIGATOR Julie Castillo-Rogez

> STUDY LEAD John Brophy


Presentation to Planetary Science and Astrobiology Decadal Survey

Small Bodies Panel – November 2, 2020

© 2020. California Institute of Technology. Government sponsorship acknowledged.

# CERES: Compelling Ocean World Science Close to Home

#### **PMCS Science Objectives - Summary**



- Major Dawn discoveries:
  - Water-rich body
  - Abundant organics
  - Geologically active within 2 Ma
  - Possible origin in outer solar system
- Key open questions:
  - Are deep brines habitable?
  - What drives Ceres' activity?
  - Where did Ceres form?

## Future Ceres Mission is Synergistic with Near-Term Landscape



Moon

(Artemis)



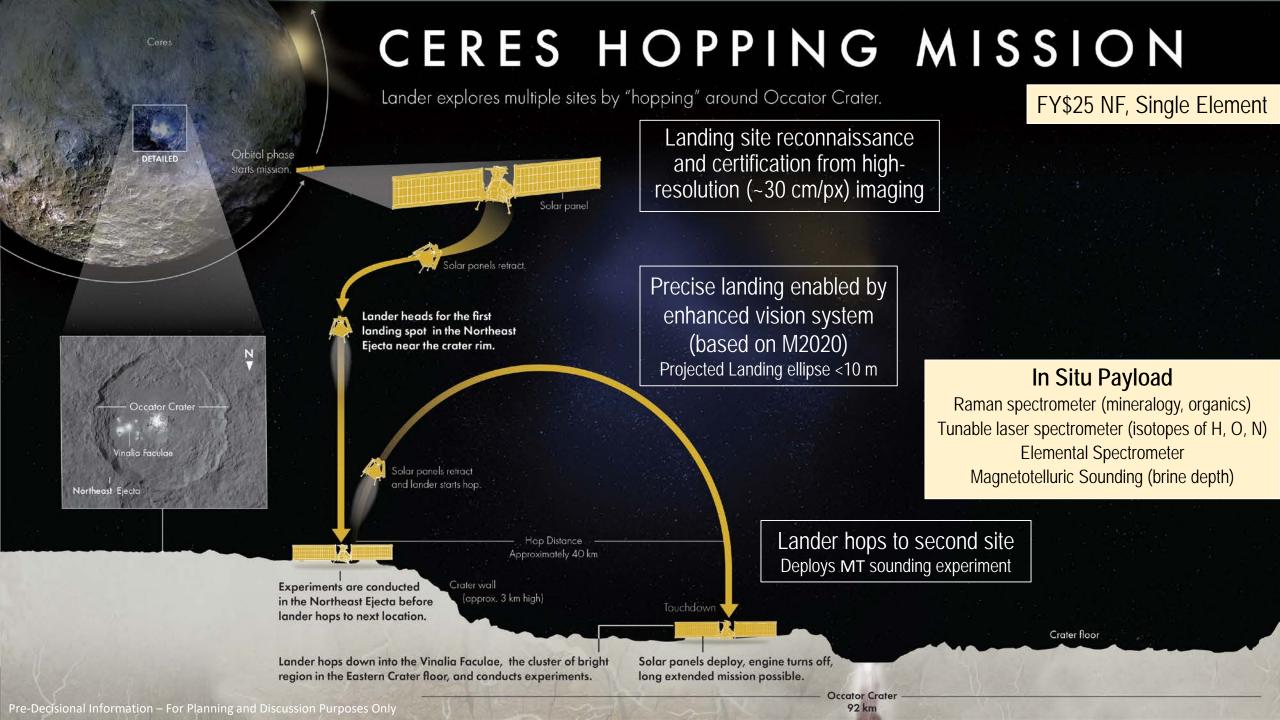


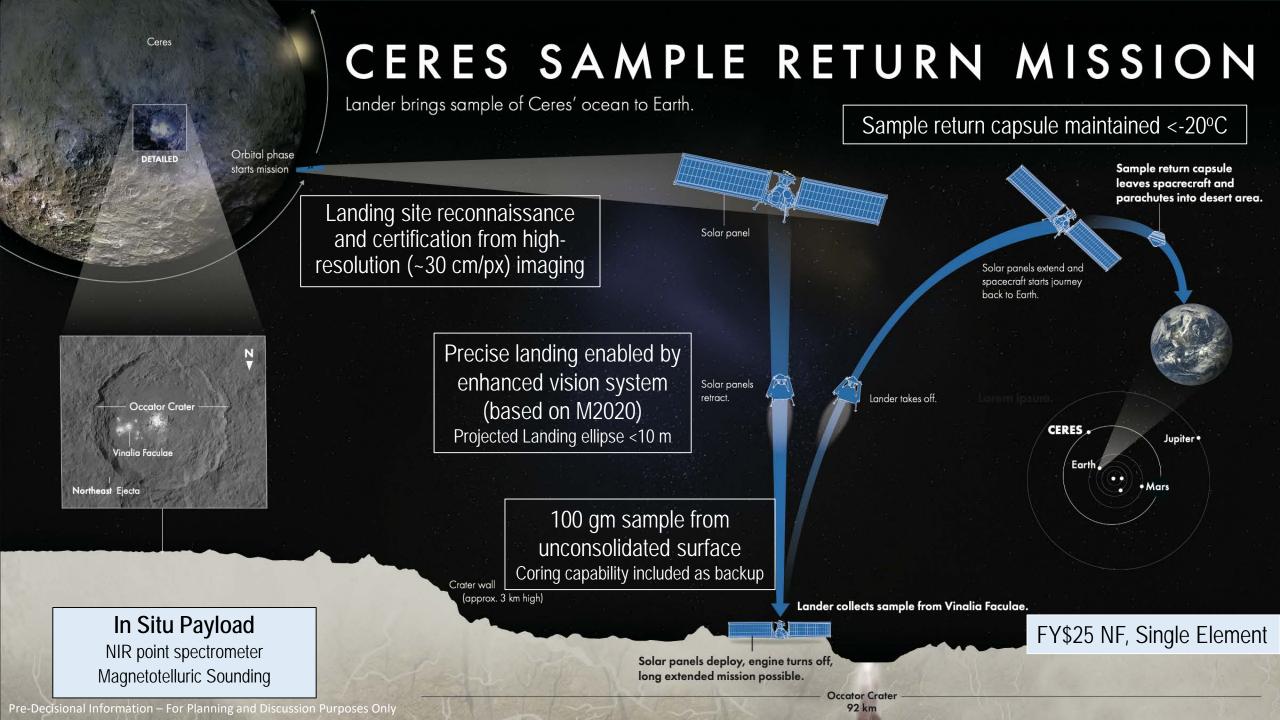
Organics and volatiles from Ceres retire gaps on the origin of habitable worlds in the inner solar system





Returned samples


2020 2025 2030 2035 2040 2045


#### Ocean world mission arrivals

Geophysical investigations and evaporites returned from Ceres set firm constraints on OW evolution









## SCOPE: KEY FINDINGS WITH APPLICATION TO OTHER MAIN BELT ASTEROIDS



Ceres / PMCS specific / Other large, water-rich bodies

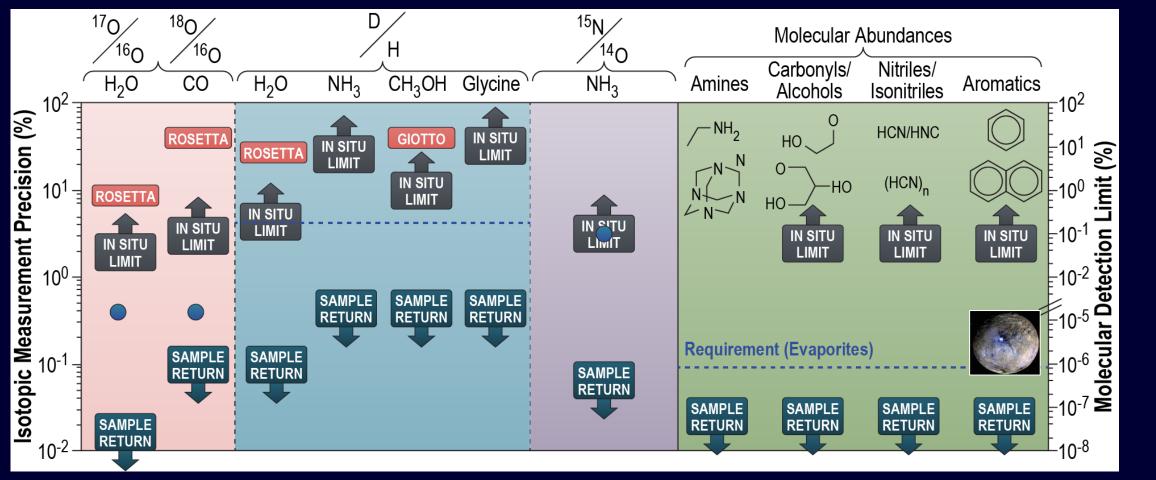


Applies to all main belt asteroids (independent of size and distance)



Size dependent

Supporting slides in backup package


### Key Findings – Science

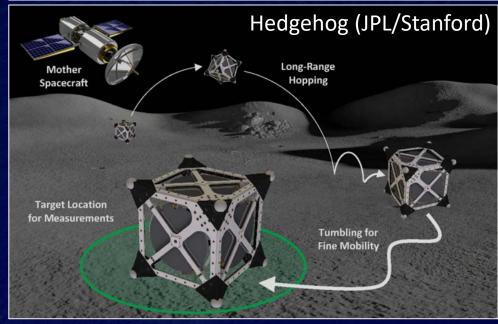
- ➤ In situ exploration for habitability and origin science is challenging under New Frontiers budget \*\*
  - Contamination control for the study of organic matter is major cost driver
     → requires protocols developed for Mars 2020
  - Complexity of origin science, e.g., lack of reference framework → requires multiple analysis techniques, high sensitivity and spatial resolution \*\*
  - Surface contamination and weathering → requires sample cherry picking or high-spatial resolution in situ remote sensing instruments \*\*
  - Mobility is prohibitive on large body and for targeted science \* ★ ★ ★ ★
- ➤ In situ phase great for deployment of geophysical sounding experiment \*\*



Vesta fragments on Bennu Credits: NASA/Goddard/University of Arizona

## In Situ Exploration Could not Address Origin and Organics Science at Ceres




### **Key Findings – Getting There**

- > Electric propulsion offers significant launch flexibility \*
  - Launch opportunity every year, about same travel time →
  - Delivers more mass into target orbit in shorter travel times than chemical propulsion +
- ➤ Landing/sampling site reconnaissance required → orbital phase ※
- > Retractable/redeployable solar panels required \*\*
  - Technology demonstrated on ISS (Deep Space Systems); lunar gravity demo in progress
  - Landed phase on battery only might be possible depending on science concept
- ➤ LiDAR not required for landing after deorbiting, feature tracking with Landing Vision System is sufficient \*\*
  - Demonstrated on OSIRIS-REx, soon on Mars 2020
  - Facilitated by low velocity in low gravity environment

### **Key Findings – Mobility**

- ➤ Mobility: Wheeled rovers do not have enough traction \*\*
  - Designing a dedicated mobility system was found expensive and low maturity +
    - Solutions exist for low-gravity targets, depending on science focus
- Hopping is energy intensive and risky+
  - Keeping thrusters warm drives surface power
  - Only two sites in close proximity under New Frontiers cost cap and Category IV vehicle
  - Dust is major source of risk \*\*
  - Solutions exists depending on object size and science objectives +





### Summary

- ➤ In situ exploration and sample return at Ceres both at New Frontiers cost cap [\$FY25] with 50% reserves
  - Proximity and low-gravity → Single element architectures with orbital and landed phases + sample return \* (Caveat: dust and  $\mu$ –gravity might require different strategy)
  - In situ: Science risk (origins and organics) and challenging mobility \*\*
  - Could be << NF cost cap for smaller bodies depending on science; e.g., if landing is required vs. Touch and Go; thruster- vs. reaction wheel-based hopping; attitude control requirements
- ➤ Concepts were found feasible with existing technologies +
  - Retractable/redeployable solar arrays need further demonstration in relevant environment
  - Additional engineering of sampling system and transfer to return scapsule needed
  - Investing in lighter, multi-functional structures could significantly reduce cost

### Back-up

### **PMCS Study Team**

#### PMCS Co-Investigators

- Mike Bland (USGS)
- Debra Buczkowski (JHU/APL)
- Julie Castillo-Rogez (JPL/Caltech)
- Robert Grimm (SwRI)
- Amanda Hendrix (PSI)
- Kelly Miller (SwRI)\*
- Thomas Prettyman (PSI)
- Lynnae Quick (GSFC)\*
- Carol Raymond (JPL/Caltech)
- Jennifer Scully (JPL/Caltech)\*
- Yasuhito Sekine (Tokyo Tech)\*
- Mike Sori (Purdue University)\*
- Tim Titus (USGS)
- Dave Williams (ASU)
- Hajime Yano (ISAS/JAXA)
- Mike Zolensky (JSC)

#### JPL Study and Program Office

- John Brophy (Study Lead)
- Bill Frazier (Lead SE)
- John Elliott (Lead SE)
- Gregory Lantoine (Mission Design)
- Raul Polit Casillas (Spacecraft Configuration)
- Io Kleiser (Thermal)
- Mineh Vanigh (CAD support)
- Jahning Woo (Cost Lead)
- Tony Freeman (PSD Formulation PO)
- Greg Garner (PSD Formulation PO)
- Howard Eisen (PSD Chief Engineer)
- · Gentry Lee (PSD Chief Engineer)
- Carol Raymond (PSD Formulation PO)
- Kim Reh (PSD Formulation PO)
- Christophe Sotin (PSD Chief Scientist)
- . TeamX led by Alfred Nash (JPL)

#### NASA Program Office

- Mike Kelley (NASA/HQ)
- Doris Daou (NASA/HQ)
- PMCS Program (NASA/HQ)
- Todd White (NASA/ARC)
- Andy Spry (NASA/ARC)

#### Collaborators/Contributors

- Laurie Barge (JPL/Caltech)
- David Blewett (JHU/APL)
- Brett Denevi (JHU/APL)
- Cristina De Sanctis (INAF)
- Anton Ermakov (UC Berkeley)\*
- Jared Espley (GSFC)
- Chris Glein (SwRI)\*
- James Keane (JPL/Caltech)
- Jim Lambert (JPL/Caltech)
- Simone Marchi (SwRI)
- Erwan Mazarico (GSFC)
- Mohit Melwani Daswani (JPL/Caltech)\*
- Andreas Nathues (DLR)
- Marc Neveu (GSFC)\*
- Scot Rafkin (SwRI)

- Danielle Wyrick (SwRI)
- Andy Rivkin (JHU/APL)
- Gal Sarid (SSAI)
- Federico Tosi (INAF)
- Chris Webster (JPL/Caltech)
- Roger Wiens (LANL)
- Danielle Wyrick (SwRI)

#### **Private Company Contributors**

- Honeybee Robotics (PoC: K. Zacny)
- Lockheed Martin Corp. (PoC: T. Linn)
- Deployable Space Systems (PoC: B. Spence)

Dawn scientist



<sup>\*</sup> Early career scientist