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Traditional Missions, Voyager and Cassini,
use Flybys

Flybys require planning and alignment
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Challenges

Engelhardt Suggested that there may be one ISO present
within 1 AU at any given time
o Large Synoptic Survey Telescope will find at least 1 new 1SO
per year.
1SO have high Helirocentric velocity, JPL KISS Study
(Castillo-Rogez 2019 )

o “Oumuamua’s relative velocity to the Sun was 36-50 km/s at the
times of observation CFHT 2013/05/10-13 -v

o Very short observation window (< 2 weeks)

Orbital properties are not known In advance and can
span a broad range of inclinations

o Due to their expected small sizes, dark albedo (from space
weathering), they are hard to detect with sufficient lead time
to launch a mission from Earth

Flyby of Jupiter hard to plan for
»More |ntenS|ve volatile and dust activity at ltong
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Halley Comet 1986

aifficultiés as 1SO

Halley comet 1s an
example of LPC
encounter 1986

o Encounters occurred
at a relative
velocity of up to 79
km/s.

e (Julie C. Castillo-
Rogez, 2019 )

Six spacecraft were
sent by different space
agenclies:

0 NASA, ESA, Roskosmos
(USSR), and JAXA
(1ts first space
mission)



Traditional Trajectories, KISS

Study

LPO Flyby Trajectory LPO Fly-by Trajectory, Jupiter Flyby
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Starshot Breakthrough Initiative

Using combination of
Lasers and aggressive
material design

oGround to space laser
i1llumination of a solar
sail for DeltaV

oCan achieve high
hel1ocentric velocities

Material are very
exotic but
theoretically possible

oAtwater, Harry A., et
al. "Materials
challenges..for the
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Electrostatic Sail Propulsion

Benefits of Electrostatic Sail Propulsion
U ﬂ p rOve n b u t > Revolutionary propellant-less propulsion
= = > Ability to survey entire Solar System
p rom I S I ng » Very rapid speeds are attainable (>10 AU/yr)
Hel1ocentric = I . -

-

Ve I OC | t | eS Of The electrostatic solar wind sail, or
electrostatic sail for short, is a

(> 10 AU/y r) propulsion invention made in 2006 at
Finland’s Kumpula Space Centre by
Dr. Pekka Janhunen




N\ o Statite: an artificial satellite
AN ' - that employs a solar sail to
\, ' | . continuously modify its orbit
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Statites Concept

Statites use solar sail technology to “cancel”
out the gravitational acceleration from the Sun
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Figure 3: Solar Sail Reflection Geometry

(credit www.deorbitsail.com).

oArea-to-mass ratio 1Is 0.625 m?/g

o These values are potentially achievable with exotic
materials (SnS).
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Release Trajectories

Additionally, since the solar sail 1s levitating or
hovering, 1ts velocity 1s zero and therefore 1f 1t I1s

rel Semi-major axis it
wit v 2ue r T 1 r3 (1 AU)?
E=—4+—=- 2 a=-—-_-=_-2m =T > = 0.1768 years
r 2 a 2 |_2'_, 2 BUsun 8 x4
Energy Orbital Period Orbital Period @ 1 AU

This relationship shows that a statite at 1 AU has a
free-fall trajectory of about 64 days.

This fast response time to a potential 1SO can be
thought of as a slingshot effect, since the solar sail
IS used to ‘“‘store energy” that i1s released when
desired.



Release Trajectories
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Statite Constellation: to
provide global coverage of
all possible incoming ISO
directions

. Statite

Optimal Statite to
release
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Inttral Results

Statite Rendezvous

|I Earth Orbit
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Statite Rendezrvous
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ISO Trajectory ISO Trajectory

2(a) Borisov Rendezvous 2{b) *Oumuamua Rendezvous
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I1SO Coverage

Figure shows “back of the envelope" calculation 'Oumuamua Statite Rendezvous Trajectories
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For comparison ,
Voyager 1 achieved only 3.6 AU/yr \

— N
(@] o
Z [AU]

o

Escape speed AU/yr
N

0 1 1 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 1

Perihelion AU
Solar System Escape trajectories for Statites.
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Conclusion

The existence of I1SOs offer us a great
scientific opportunity to develop a detail
understanding of the formation and history of
other star systems.

However, due to their high helirocentric
velocities and relatively short lead time, this
may be extremely difficult with current
satellite propulsion systems.

The proposed approach can respond to a newly
detected 1SO within 2-3 month to perform a
Tlyby.

The proposed approach also allows for rapid
response:--rendezvous missions.
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