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Next-Generation Planetary Radar

Science Case — Next-Generation Planetary Radar

Driving use cases identified at KISS
Workshop

- Near-Earth Asteroids and Planetary
Defense

 Venus

* Outer Solar System satellites * Venus  Sif

Mons
Other potential targets
* Mini-moons
 Interstellar objects
- Earth Trojans

Ariel
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Next-Generation Planetary Radar

Science Case - Near-Earth Asteroids and Planetary
Defense

Radar delivers size, rotation,
shape, density, surface
features, precise orbit, non-
gravitational forces, presence
of satellites, mass, ...

- Science: Decipher the record in
primitive bodies of epochs and
processes not obtainable
elsewhere

* Robotic missions: Navigation,
orbit planning, observations

- Planetary defense: Precise orbit
determination, size, shape for
hazard assessment




Next-Generation Planetary Radar

International Radar Assets

Goldstone Solar System Arecibo (NAIC) Green Bank Telescope

Radar (DSN) (GBO)
70 m antenna, 450 kW 100 m antenna, no transmitter
transmitter, 4 cm (vet!)

wavelength (X band)

Canberra DSS-43 (DSN)
70 m antenna, 80 kW
transmitter, 4 cm wavelength
(C band)

+ Australia Telescope

Compact Array




Next-Generation Planetary Radar

Radar and NEA Detectability

Goldstone SNR

Declination: —20 degrees

Arecibo SNR

Declination: 18 degrees
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Next-Generation Planetary Radar

Planetary Radar Trade Space

Received Power (a.k.a. Radar Equation)

1
Ppx = (4m)? LGvRX(PTXJGTX)AZ}

Receiver Effective Asteroid
Gain Isotropic Characteristics
Radiated
Power

Over the next decade, a variety of technologies

- arrays of transmitting antennas;

 modular, solid-state microwave amplifiers; and

* improved data acquisition, processing, data fusion, and archiving

will mature and could be deployed to produce a much more capable and
reliable ground-based radar for planetary science and planetary defense.
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Next-Generation Planetary Radar

Future I: Modular, Solid-State Amplifiers

i

1 inch

State of the Art: high-power
amplification via klystrons (vacuum
tubes)

- Planetary radar klystrons have
challenging power densities and
manufacturing tolerances (~ 1
MW/mm?)

* Only 50% efficient

- Even small beam deviations lead
to potentially damaging heat
dissipation
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Next-Generation Planetary Radar

Future I: Modular, Solid-State Amplifiers

1 kW Spatial Power Combining Amplifier (SPCA)
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, -~ = Boards

Input RF
Splitter

Output
Waveguide

Waveguide
Combiner

1kW SPCA
Module

64 kW SPCA Assembly

* Klystrons have challenging power
densities and manufacturing tolerances
(~ 1 MW/mm?2)

« Solid-state amplifiers
— Modular / scalable, a.k.a. graceful
degradation
— Reliable: Device lifetimes > 100 yr
in optimal operating conditions
— Used in commercial and military
communications/radar systems

 Technology Development

— JPL: 16 x 80 W (commercial)

MMICs, 90% combining efficiency
— 1 kW output @ 8.56 GHz

— JAXA: 30 kW solid-state system
transmitter

> Need to scale to~1 MW
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Next-Generation Planetary Radar

Planetary Radar Trade Space

Received Power (a.k.a. Radar Equation)

1
Ppx = (4m)? LGvRX(PTXGTX)AZ}

Receiver Effective Asteroid
Gain Isotropic Characteristics
Radiated
Power

Over the next decade, a variety of technologies

- arrays of transmitting antennas;

v modular, solid-state microwave amplifiers (Pryx); and

* improved data acquisition, processing, data fusion, and archiving

will mature and could be deployed to produce a much more capable and
reliable ground-based radar for planetary science and planetary defense.
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Next-Generation Planetary Radar

Future lI: Arrays of Transmitting Antennas
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v Arrays of receiving antennas are well-developed
Both for radio astronomy (1974 Nobel Prize) and DSN

f==]
n

« Arrays of transmitting antennas . |
Vilnrotter et al.;
« Array gain Gy «< N? for N-antenna array D’Addario et al.

v Demonstrated in context of communication for up to 3 antennas
> See backup

» Need to show ranging performance expected for planetary radar
On-going work at JPL and elsewhere to do so
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Next-Generation Planetary Radar

Planetary Radar Trade Space

Received Power (a.k.a. Radar Equation)

1
(4m)3

Ppx = X(PTXGTX)AZ}

Receiver Effective Asteroid
Gain Isotropic Characteristics
Radiated
Power

Over the next decade, a variety of technologies

v arrays of transmitting antennas (Gqy);

v modular, solid-state microwave amplifiers (Pryx); and

* improved data acquisition, processing, data fusion, and archiving

will mature and could be deployed to produce a much more capable and
reliable ground-based radar for planetary science and planetary defense.
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Next-Generation Planetary Radar

Planetary Radar Trade Space

Received Power (a.k.a. Radar Equation)

1
Ppx = (4 n)g[GRXCPTXGTX))'}

Effective
Isotropic

Radiated Power
(EIRP)

EIRP < N2 D2 Py,

™~

Number of | | Antenna Transmitter
Antennas Diameter Power per
Antenna Prx

» Maximize Pgry subject to cost cap
including operations! N
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Next-Generation Planetary Radar

Planetary Radar Trade Space

Transmitter Power Py

Focus on
”’lower power,”
more reliable
systems

100

\ IIIIII|

DSN 80 kW klystron
JAXA 30 kW solid state

DSN 20 kW klystron

Individual Transmitter
Power
(kW)
10

- JPL |y

< ) 1 kW solid [Fsiifiil 5
- state ? =
prototype ﬁfﬁﬁ
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Next-Generation Planetary Radar

Planetary Radar Trade Space

Antenna Diameter D

SKA
South Africa

SKA

1

DOM

Focus on smaller,
deployed or to be
deployed,
antennas

Antenna Diameter (m)

20
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Next-Generation Planetary Radar

Planetary Radar Array Performance: 20 m asteroid

Cost Cap ~ Discovery-class mission
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Next-Generation Planetary Radar

Radar Array Performance and Optimization

Target . . .
Following three slides describe
planetary radar arrays optimized

-0 ~ 72 Discovery for maximum range to target at
Tx. Power minimum construction+operations
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Next-Generation Planetary Radar

Planetary Radar Array Performance

Target: 20 m S-class Asteroid

Max Asteroid Range [LD]
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Next—Generation Planetary Radar

Planetary Radar Array Performance

Target: 20 km S-class Asteroid

Max Asteroid Range [au]

~ 2 Discovery ~ Discovery ~ New Frontiers Inner
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Next—Generation Planetary Radar

Planetary Radar Array Performance

Target: 100 km S-class Asteroid

~ 2 Discovery ~ Discovery ~ New Frontiers
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Next-Generation Planetary Radar

Schedule

CY 2024 CY 2025 CY 2026 CY 2027
Q3 Q4 Q1 Q@2 Q3 Q4 Q1 Q2 Q3 Q@4 Q@1 Q@2 Q3

Design
Decadal g
Recommendation A
y System .
system PDR system PDR Operation
PDRs CDRs

Elements of preliminary design
include

« Antenna optics
« Transmitter and power supply
(klystron or solid state)

» Site infrastructure
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Summary

Multi-antenna array transmit-receive system feasible ~ 2026

Benefits
Enable diverse science portfolio

Individual transmitters would be lower power, (much) higher
reliability projected
Graceful degradation

Today: loss of one klystron = 50% decrease

Array: Loss of one antenna/transmitter decreases EIRP by ~ (1-1/N)

Potential synergies with radio astronomy array projects
requiring new antennas

Il



Next-Generation Planetary Radar

Three-Antenna Uplink Array Demonstration

EPOXI Spacecraft

Received Power (dBm)
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Next-Generation Planetary Radar

Uplink Array Demonstration

Delay-Doppler Improvement

3-antenna Uplink Array vs. Single Antenna Comparison

* Comparison of DSS24/25/26 (20kW/20kW/80kW) 3-antenna uplink array image vs. DSS26
(80kW) single antenna image

* Both images are with 5-us chips (750-m resolution) and 300-sec integration

2007 WV4 Image using 3-antenna Uplink Array 2007 WV4 Image using Single Antenna (DSS-26)
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