

Contributors

PMCS Co-Investigators

Thank you!

- Mike Bland (USGS)
- Debra Buczkowski (JHU/APL)
- Julie Castillo-Rogez (JPL/Caltech)
- Robert Grimm (SwRI)
- Amanda Hendrix (PSI)
- Kelly Miller (SwRI)*
- Thomas Prettyman (PSI)
- Lynnae Quick (GSFC)*
- Carol Raymond (JPL/Caltech)
- Jennifer Scully (JPL/Caltech)*
- Yasuhito Sekine (Tokyo Tech)*
- Mike Sori (Purdue U)*
- Tim Titus (USGS)
- Dave Williams (ASU)
- Haiime Yano (ISAS/JAXA)
- Mike Zolensky (JSC)

JPL Study and Program Office Thank you!

- John Brophy (Study Lead)
- Bill Frazier (Lead SE)
- John Elliott (Lead SE)
- Gregory Lantoine (Mission Design)
- Raul Polit Casillas (Spacecraft Configuration)
- Io Kleiser (Thermal)
- Mineh Vanigh (CAD support)
- Jahning Woo (Cost Lead)
- Tony Freeman (PSD Formulation PO)
- Greg Garner (PSD Formulation PO)
- Howard Eisen (PSD Chief Engineer)
- Gentry Lee (PSD Chief Engineer)
- Carol Raymond (PSD Formulation PO)
- Kim Reh (PSD Formulation PO)
- Christophe Sotin (PSD Chief Scientist)
- TeamX led by Alfred Nash (JPL)
- Rosaly Lopes (PSD Chief Scientist)
- Laura Newlin (Planetary Protection Office)
- Karl Mitchell (Reviewer)
- Bryana Henderson (Reviewer)*

NASA Program Office Thank you!

- Mike Kelley (NASA/HQ)
- Doris Daou (NASA/HQ)
- PMCS Program (NASA/HQ)
- Todd White (NASA/ARC)
- Andy Spry (NASA/ARC)

Private Company Contributors

Thank you!

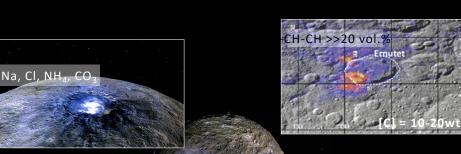
- Honeybee Robotics (PoC: K. Zacny)
- Lockheed Martin Corp. (PoC: T. Linn)
- Deployable Space Systems (PoC: B. Spence)

Collaborators/Contributors

- Laurie Barge (JPL/Caltech)
- David Blewett (JHU/APL)
- Brett Denevi (JHU/APL)
- Cristina De Sanctis (INAF)Anton Ermakov (UC Berkeley)*
- Jared Espley (GSFC)
- Chris Glein (SwRI)*
- James Keane (JPL/Caltech)
- Jim Lambert (JPL/Caltech)
- Simone Marchi (SwRI)
- Erwan Mazarico (GSFC)
- Mohit Melwani Daswani (JPL/Caltech)*
- Andreas Nathues (DLR)
- Marc Neveu (GSFC/UMd)*
- Scot Rafkin (SwRI)

Thank you!

- Danielle Wyrick (SwRI)
- Andy Rivkin (JHU/APL)
- Gal Sarid (SSAI)
- Federico Tosi (INAF)
- Chris Webster (JPL/Caltech)
- Roger Wiens (LANL)
- Danielle Wyrick (SwRI)


Ceres' surface mineralogy indicates alkaline liquid source

Triton

at present

Ceres is rich in carbon and nitrogen

Ceres

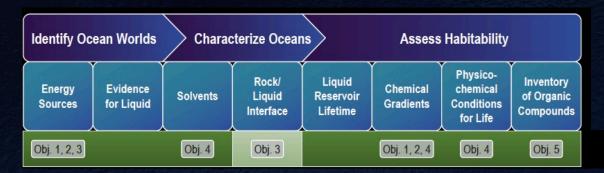
WHY CERES?

Carbon in carbonates, organics, and

clathrates

Halley [C] = 20wt.%

Ceres is the most water rich body in the inner solar system (W/R~1:4)


Na, Cl, NH₃, CO₃

Ceres is partially differentiated with a low density rocky mantle and water-rich crust

CERES A POTENTIAL HABITABLE WORLD CLOSE TO HOME

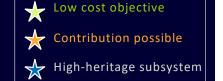
Key Solid Foundation

Projected Sample Return Mission

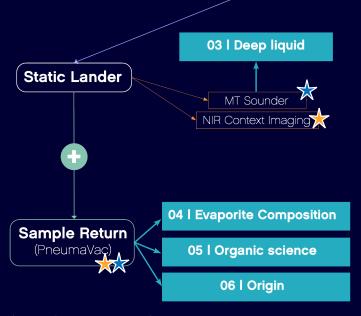
Obj. 1: Test if extrusion from a brine-rich mantle occurred during Ceres' recent history

Obj. 2: Test if endogenic activity is ongoing at Occator crater

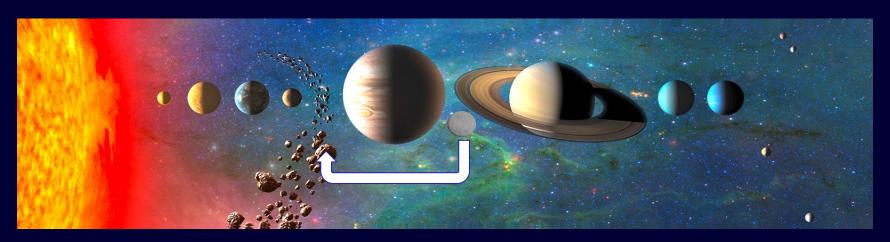
Obj. 3: Map the distribution of brines below Occator crater


Obj. 4: Characterize Ceres' deep brine environment at Occator crater

Obj. 5: Characterize the evolution of organic matter in long-lived ocean


Obj. 6: Determine Ceres' accretional environment

New Frontiers \$FY25 (50% reserves)
Single Element Architecture


Objectives	Driving Measurements	
1- Test if extrusion from a brine-rich mantle occurred during Ceres' recent history	High-res color imaging and gravity measurement of multiple landforms that may be of cryovolcanic origin	
2- Test if endogenic activity is ongoing	Imaging at <5 m/pix of Occator crater faculae	
3- Map the distribution of brines below Occator crater	Magnetic and electric field at Vinalia Faculae (200 m baseline)	
4- Characterize Ceres' deep brine environment	Elemental, mineralogical, and isotopic composition of salts and rock	
5- Characterize the evolution of organic matter in long-lived brines	Elemental, mineralogical, and isotopic composition of organic matter mixed with rock and salts (10 nm scale)	
6- Determine Ceres' Origin	Ratios of elemental abundances, isotopic ratios of volatiles and minor elements (<<1 wt.%) sampled in salts and rock	

Pre-Decisional Information – For Planning and Discussion Purposes Only

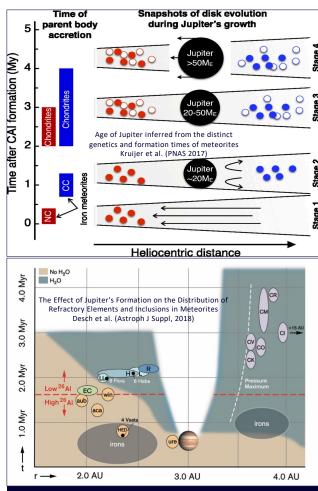
CERES

INVESTIGATING THE ONLY DWARF PLANET IN THE INNER SOLAR SYSTEM RETIRES KNOWLEDGE GAPS ON THE FORMATION OF HABITABLE WORLDS

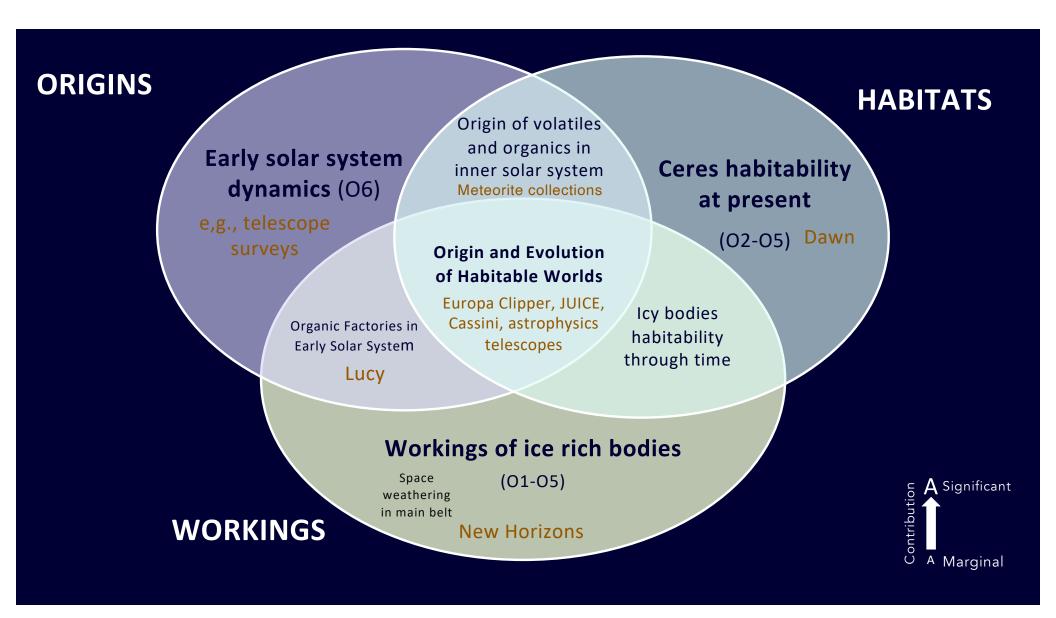
SCIENCE THEME	EXAMPLES OF TESTABLE HYPOTHESES	SIGNIFICANCE / PROJECTED IMPACT
Genetic Relationships with icy moons and inner solar system volatiles	Test if Ceres originated from between giant planet orbits, Kuiper Belt, in situ (pebble accretion)	 Retires knowledge gap on the origin of volatiles and organics in inner ss Narrows down likely early ss evolution scenarios → exoplanet science Potentially provides information on Ocean Worlds accretional environment

V&V – What governed the accretion, supply of water, chemistry (organics), and internal differentiation of the inner planets and the evolution of their atmospheres, and what roles did bombardment by large projectiles play?

LETTERS


nature

astronomy


Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth Gerrit Budde@*, Christoph Burkhardt and Thorsten Kleine@ 0.6 0.4 0.2 0.0 0.6 0.4 of the terrestrial planets in the Solar System Eccentricity Johansen et al. (Sci Adv 2021) 0.0 0.6 0.2 0.0 10 15 Semimajor Ax Origin of water in the inner planetesimals scattered in Jupiter and Saturn's rapid Raymond and Izidoro (Ic:

WHAT FORMED WHERE AND WHEN?

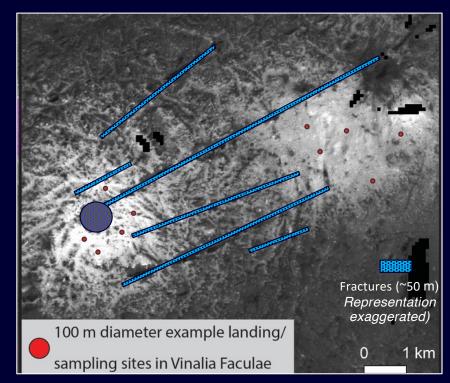
V&V – How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions?

TARGET IS <2 Ma VINALIA EVAPORITES

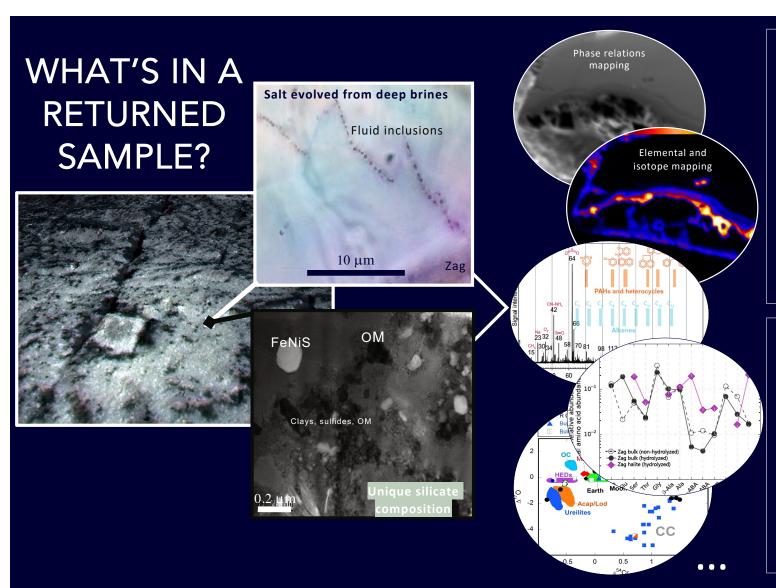
Allows sampling both bright and dark materials associated with vents and/or fractures from a static lander

Occator crater - 92 km diameter

State of knowledge:


- Dawn (<5 m/px) indicate many possible safe sites adequate for science
- Analysis indicates loose material

Approach to Landing


- Landing site imaging at <30 cm/pix
- Requirement to land outside of large fractures (<5% of surface area)
- TRN allows <20 m landing ellipse input from M2020 TRN Lead A. Johnson

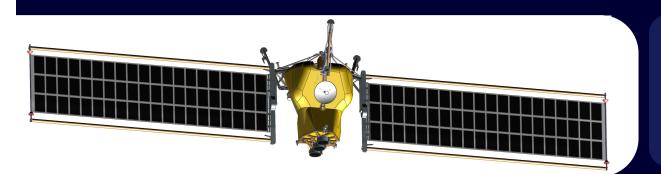
Approach to Sampling

- Use PneumaVac system (Honeybee Robotics, e.g., Dragonfly): sample loose material with drilling capability as backup
- Preliminary analysis indicates that sample mass requirement (~100 gm) is met with margin from 2 PneumaVac

Pre-Decisional Information – For Planning and Discussion Purposes Only

SCIENCE FROM SALTS

Conditions (e.g., T, redox, pH, chemical energy)
Inventory of organics, formation conditions

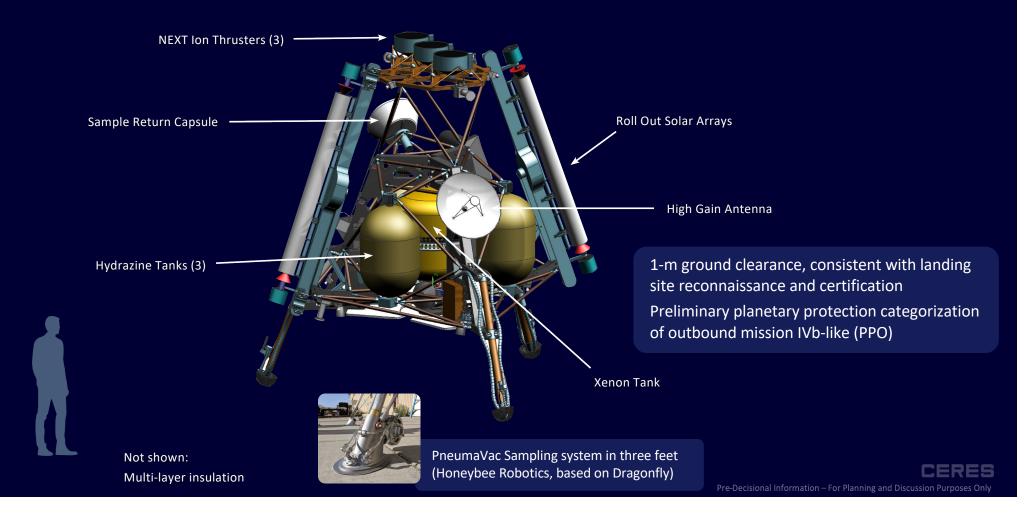

Tests current habitability

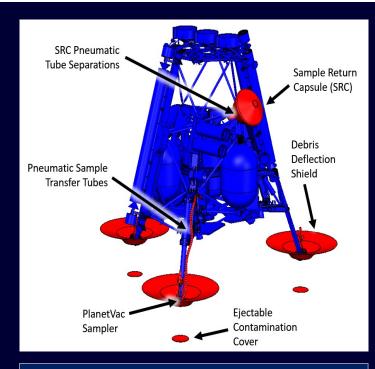
Backtracks origin of fluids (residual, secondary)

SCIENCE FROM ROCK

Inventory of organics, formation conditions
Isotopic relationships
Radioisotope inventory
Tests Ceres origin
Backtracks evolution
refractory material

BASELINE FLIGHT SYSTEM — CRUISE CONFIGURATION




- 27.5-kW solar array (BoL at 1 au)
- 1.5-m dia. high gain antenna
- 3 NEXT gridded ion thrusters
- Hydrazine monopropellant system for deorbit, landing, and takeoff

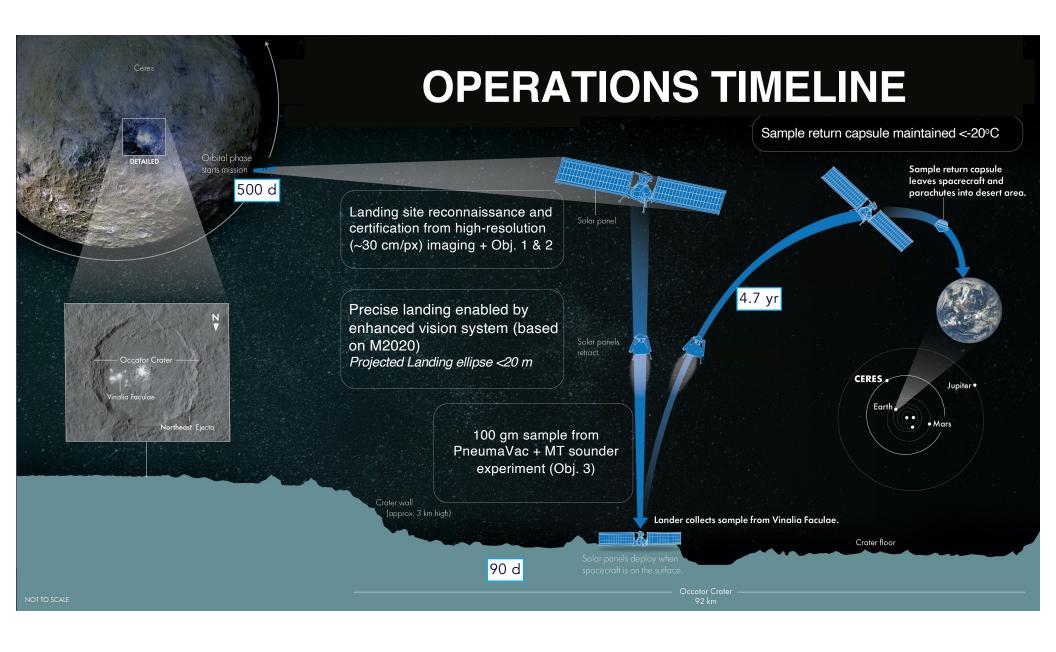
- Launch Mass: 4669 kg
 Earth Return Mass: 2269 kg
 Xenon Mass (with margin): 1320 kg
- Hydrazine Mass (with margin): 1200 kg
- Option 4: 5-meter fairing, with high performance range, equivalent to the Falcon Heavy reusable
- Regular launch opportunities permitted by solar electric prop
- Mars gravity assist in most cases
- ~6.5 yr trip inbound and 4.7 yr outbound
- Total mission duration ~12.5 yrs including 500 d stay at Ceres

BASELINE – STOWED CONFIGURATION

Sample Canister

Hold up to sample mass of: 200 g (100 g and 100% margin)

Particulate contamination control to >ISO 5 and non-volatile organic residue limited to level A/2

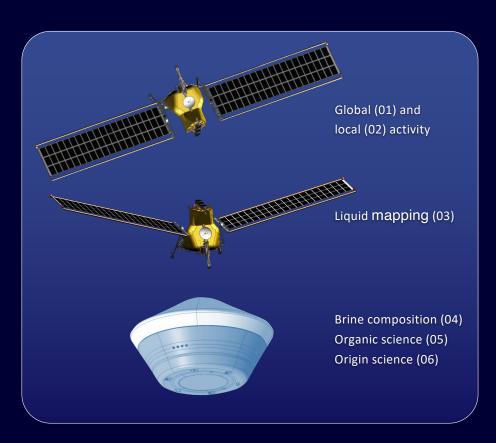

Return at ≤-20°C to prevent reaction between anhydrous material and liquid water in the spacecraft.

Prevent atmospheric leakage into the SRC during and after Earth entry until SRC recovery;

Maintain internal pressure $< 10^{-7}$ torr after SRC closure through SRC recovery

SAMPLING REQUIREMENTS

- Vinalia evaporites likely to have been emplaced recently
 - Not subject to sufficient TID for sterilization (>500kyr for 2.5 MRad)
 - If backcontamination concerns lead to Cat V restricted mission, then would leverage Mars Sample Return infrastructure investments
 - Alternative option is to seek salt deposits that are older impact on Objective 5 to be assessed
- No requirement on stratigraphy preservation
- 100 gm sample mass requirement (~50 cm³) based on the diversity of techniques (esp. destructive and semidestructive) involved for addressing Obj. 4-6


OPEN ITEMS AND TECHNOLOGY DEVELOPMENTS

- CML 4 Concept
 - Open trades: thruster location, drop altitude, SRC
 - Up to \$150M of possible contributions and descopes (e.g., point spectrometer, shorter orbital/in situ ops, target older brine region, SRC)
- Standard Engineering: Sample transfer from sampling system to return capsule needs to be refined
- Technology Maturation: ROSA partially demonstrated on ISS and lunar conditions; needs to be assessed in Ceres' conditions
- Needs formal planetary protection categorization

CERES IS A COMPELLING NEW FRONTIERS TARGET

- Sample return from Ceres' evaporites is high science return per \$\$
 - OW Science, Origins, Processes in a single mission
 - Complementary to OW missions planned in next decade
- Close distance to Earth and low gravity → single element architecture
 - Feasible with TRL5+ technologies
 - 13-yr roundtrip; 3 objectives achieved at Ceres
- Leverages NASA's >\$100M investments in ground-based facilities and benefit from decade-long analyses

