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Why is the crustal magnetic field important?

1. Theformationandevolution ofthecrust, includingits mineralogy and modification over the past
~4.5 Gyr, by tectonic, impact, fluvial, hydrothermal and magmatic processes (MEPAG Goal Il A+B)

2. Theevolution of the core dynamo, and its implications for core composition and dynamics,
interior evolutionincluding early global heat flow, mantle dynamics and tectonic regime (e.g.,
whether Mars had an early phase of plate tectonics) (MEPAG Goal Il B)

3. Thelink between atmosphere evolution and the extinction of the martian dynamo and thus
importantinformation on habitability (MEPAG Goal |l C)

4. Implications for future human exploration (MEPAG Goal IV A)

The crustal magnetic field holds broad implications for Mars’ early habitability, interior structure,
thermal history, for the fundamental physics of planetary dynamos, and human exploration.



Towards new science opportunities exploring the martian magnetic field

(1) What do(n’t) we
know?

Nature of martian
crustal magnetism?

Magnetization
acquisition processes?

Characteristics of the
martian Dynamo?

Exploration

O km , ¢-=======mmmmmmemceeeceeeeee» > 100 km
No coverage

(2) Available Data /
Current Limitations

+ Meteorites

(3) Recommendation:

Planning and implementation of
magnetometers on aerial platforms
such as airplanes, drones and/or long-
lived balloons to obtain low-altitude
magnetic measurements over
kilometers to hundreds of kilometers.

E Hall et al.,
= 2007




(1) What do(n’t) we know?

The global crustal magnetic field
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Some MAG background

Rocks acquire remanent magnetization when exposed to a magnetic field via these
mechanisms:

1) Thermal (TRM) = cooling below Tc
2) Shock (SRM) = impact
3) Chemical (CRM) = magnetic alteration products
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(1) What do(n’t) we know?

The global crustal magnetic field
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(1) What do(n’t) we know?

The global crustal magnetic field
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(2) Available Data / Current Limitations

The global crustal magnetic field

Resolution matters

150 km altitude ~ 3km altitude

e

Earth example
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Spatial resolution of these models is
approx. the altitudes of orbital
observations.

= robust modeling of crustal magnetic
fields globallyis currently limited to
spatial scales of ~¥135 km.

- Value of low altitude measurements:
near-surface magnetic surveys detected
the prominent north-south magnetic
“stripes” along mid oceanic ridges.



(2) Available Data / Current Limitations

The global crustal magnetic field

Resolution matters

MGS (1997-2006): mainlyin a circular
orbit at 400 km (Mapping Orbit = MO) in
2am/pm orbit

MAVEN (since 2014): elliptic orbit
covering variety of altitudes (periapsis: 135
km) and local times
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(2) Available Data / Current Limitations

The global crustal magnetic field

Correlations of the
magnetic field with geology
° (age!), mineralogy,

Lt gravimetry, ... allow asking
guestionsabout dynamo
timing, carrier distribution,
source depth, ...

Resolution matters

]

IRinnT 356 450 km

180-220km Recent suggestion of a dynamo at4.5 and 3.7 Ga

Mittelholz etal., 2020




InSight not meant to do magneticfield science =2 Useful addition!!
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The magnetic field from the surface

(1) What do(n’t) we know?

Crustal field 10x stronger than predicted from orbital data

Mean Magnetic Field sol 14-567

Magnetization (M) age and strength?

Constraints: geology & crustal thickness

2020

1. Deep-burial, hosted by Noachian units
> M>~1.8 Am™
B =203 + 158 nl » compatible with dynamo cessation by ~4.1 Ga (e.g. Lillis
etal., 2008) or longer-lived, depending on basement age
= 2. Shallow burial, partly hosted in younger HNt units
el e () C » M < 1Am™*unless magnetized layer entirely within HNt
unit
» longer-lived or restarted dynamo (Mittelholz et al., 2020;
Hemingway and Driscoll, 2020).

e Free parametersare burial depth and thickness of magnetized layer.

__regolith layer 3-5m

~Amazonian

Hesperian

HNt

Noachian
basement

lava flows
~200-300m

—phyllosilicate
-bearing deposit
~4-5 km

(not to scale)

(Johnson et al., 2020; Mittelholz et al., 2020b)



InSight not meant to do magneticfield science =2 Useful addition!! (2) Available Data / Current Limitations

The magnetic field from the surface

single data point
Crustal field 10x stronger than predicted from orbital data

Mean Magnetic Field sol 14-5G7
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(Johnson et al., 2020; Mittelholz et al., 2020)



(1) What do(n’t) we know?
Advantage:

Meteo rlteS Radiometric dating

* Timing of the dynamo: ALH 84001 suggest Earth-like paleointensities at ~4

Ga, consistent with the hypothesis of an early dynamo (Weiss et al., 2002;
2008; Gattaccecaetal., 2014)

e Avarietyof potential magnetic carriers suggested including magnetite,
hematite, titanohematite, titanomagnetite and pyrrhotite (Dunlop et al.,
2005; Rochette et al., 2005)

From Rochette et al., 2001



(2) Available Data / Current Limitations
Advantage:

MeteO rltes Radiometric dating

e Timing of the dynamo: ALH 84001 suggest Earth-like paleointensities at ~4

Ga, consistent with the hypothesis of an early dynamo (Weiss et al., 2002;
2008; Gattaccecaetal., 2014)

e A varietyof potential magnetic carriers suggested including magnetite,

hematite, titanohematite, titanomagnetite and pyrrhotite (Dunlop et al.,
2005; Rochette et al., 2005)

From Rochette et al., 2001

Limitations:

- limited constraints on the provenance of the samples (i.e., where on Mars they came from)
- complex histories, including exposure to shock and multiple reheating events.

- Thislack of context also contributes to uncertainty as to whether the magnetization was acquired in a crustal magnetic field or
dynamo magnetic field.



(3) Recommendation

How can we make progress?

MIND THE GAP

| mmmmmmm 5. 100 kM
! No coverage

+ Meteorites

(1) We recommendthat a magnetometerbe mountedon a
(preferentially) mobile surface and/or low altitude aerial platform =
spatially continuous measurements of crustal magnetic fields. 2
Preference: helicopter, aircraft or balloon will allow high resolution
spatial coverage over spatial scales of tens to hundreds of kilometers,
offering access to areas that might be hazardous or inaccessible from the
surface.

(2) Use opportunities!
Typical phase A-D costs are only a few million S (and even less for class D).

Magnetic cleanlinessis important but often relatively easy (e.g. a boom)



(1) What do(n’t) we know?

Future Exploration

0 1 2
Emoto et al., 2018 F;’
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(1) Resource Exploration:

Magnetic fields as proxy for subsurface variations = l l l l l l l J l ]
Association with lron bearing minerals IR : L.,

X

|dentification and Characterization of building materials

North

7000 km
West

(2) lons are a radiation hazard:
e Come from the sun and deep space.

Safe habitat
> —p
5300 km 2000 km

e Deflected by magnetic fields
e >~100 MeV reach the surface.
 >™~10 MeV can penetrate spacesuits.

e Depend strongly on crustal field geometry and angular/energy distribution of particles.
* Need to be modeled at high resolution with better crustal magnetic field maps.

- Realistic high resolution modeling needed.



(3) Recommendation

VIEPAG Goals and magnetic fields

(1) Dynamo  (2) Magnetic Carrier  (3) Acquisition (4) Exploration Effort

GOALIIl: UNDERSTAND THE ORIGIN AND EVOLUTION OF MARS AS A GEOLOGICAL SYSTEM
Objective A: Document the geologic record preserved in the crust and investigate the processes that have created and
modified thatrecord.
- NRM records the time at which a dynamo was present (2)
- NRM is dependent on surface conditions (3)

Objective B: Determine the structure, composition, and dynamics of the interior and how it has evolved.
- Dynamo cessation (1)

GOAL Il: UNDERSTAND THE PROCESSES AND HISTORY OF CLIMATE ON MARS

Objective C: Characterize Mars’ ancient climate and underlying processes.
- NRM is dependent on surface conditions / climate (1, 3)

GOALIV: PREPARE FOR HUMAN EXPLORATION
Objective A: Obtain knowledge of Mars sufficient to design and implement human landing at the designated human landing site with
acceptable cost, risk and performance.
- Geophysical exploration — iron bearing minerals (4)
= Small scale crustal fields as radiation shields? (4)




Broad Interest in Mars” Magnetic Field

e Supportfrom 11 co-authors and 33 signatories from 28 institutions

e Involvementin 2 further Decadal whitepapers

I
THANKYOU! Rapin et al.: “Critical knowledge gaps in the Martian
Sa geological record: A rationale for regional-scale in situ
exploration by rotorcraft mid-air deployment”)

Figure 6. (top-left) MOLA elevation
| and (top-right) global crustal magnetic
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(1) What do(n’t) we know?

Mars Crustal Magnetism: Puzzles
1) Dynamo

1) Timing, mechanism, strength, polarity change, ...

2) TRM dominant? CRM a viable alternative? Surface conditions / type of environment during
dynamo?

3) magnetic properties of the carriers? Distribution? What is the global pattern of Mars' crustal
magnetic fields (“km)? How does it correlate with characteristics such as topography, gravity,
morphology and stratigraphy?

2) Acquisition Mechanism 3) Magnetic Carrier

. (4) Radiation, astrobiology
4) Future Exploration Efforts  implications, resource

identification, ...



(3) Recommendation

VIEPAG Goals and magnetic fields

(1) Dynamo  (2) Magnetic Carrier  (3) Acquisition (4) Exploration Effort

(E

o

© $ A o HIGH RESOLUTION MAPPING

U — Affecting igneous, thermal

E g' tectonic evolution . - - —

ol Spatial Correlation of magnetic <— Magnetization Depth (2)

- X Climate / hydrologic history <— fields with geology (time) and

= O o other data sets (1) Surficial? What mineralogy observed in meteorites is
o g Future Landing Sites (4) & * consistent with those depths? (3)
(@]

"r_JU 8 Environmental conditions at the time of the dynamo (3)

—g Link of atmosphere and dynamo (1)

Implications for early life?

GOALII: UNDERSTAND THE ORIGIN AND EVOLUTION OF MARS AS A GEOLOGICALSYSTEM
(3) (2) Objective A: Document the geologic record preserved in the crust and investigate the processes that have created and modified that record.

(1) Objective B: Determine the structure, composition, and dynamics of the interiorand how it has evolved.

(1) GOALII: UNDERSTAND THE PROCESSES AND HISTORY OF CLIMATE ON MARS
(3) Objective C: Characterize Mars’ ancient climate and underlying processes.

(4) GOALIV:PREPARE FORHUMAN EXPLORATION
Objective A: Obtain knowledge of Mars sufficient to design and implement human landing at the designated human landing site with acceptable
cost, risk and performance.



Different data sets

Scales Data and Studies so far Optimal Measurement Platform
Global; resolution of ~150 km MGS and MAVEN Satellites

~100s-1000s km Missing Airplanes, Balloons

~1 km Missing Drone

~meters Missing Field Surveys, Rovers

in-situ spot measurement InSight Lander

Um-mm

(1) To some degree via meteorites

(2) Returned sample

Laboratory studies
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