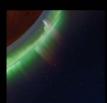
MOSAIC Concept Study

Final report delivered to NASA & NASEM August 7



MOSAIC

MARS ORBITERS FOR SURFACE-ATMOSPHERE-IONOSPHERE CONNECTIONS

AUGUST 2020 Mission Concept Study Planetary Science Decadal Surve

National Aeronautics and Space Administration

riillis@berkeley.ed University of California, Berkeley CO PRINCIPAL INVESTIGATOR

CO PRINCIPAL INVESTIGATOR
David Mitchel
davem@berkeley.ede
Jniversity of California, Berkeley

JPL POINT OF CONTACT Steve Matousek steven.e.matousek@jpl.nasa.gov Jet Propulsion Laboratory. California Institute of Technology

Mars Orbiters for Surface-Atmosphere-lonosphere **Connections**

Rob Lillis & the MOSAIC team

Presented to the Planetary Science Decadal Survey
2022-2032
Panel on Mars
Meeting No. 4
November 30, 2020

MOSAIC Study Team

Science Team

Principal Investigator	Robert Lillis	SSL, UC Berkeley
Deputy PI	David Mitchell	SSL, UC Berkeley
Interdisciplinary Science	Bruce Jakosky	LASP, University of Colorado
Subsurface & Surface Ice		
Lead	Tanya Harrison	Planet Federal Inc.
Co-lead	Cassie Stuurman	NASA Jet Propulsion Laboratory, California Institute of Technology
Member	Isaac Smith Gordon Osinski Catherine Neish	PSI/University of York University of Western Ontario (U. Western Ontario) University of Western Ontario (U. Western Ontario)
Lower & Middle Atmosphere	Catherine Helen	ominately of Medicin Ontains (c. Medicin Ontains)
Co-lead	Scott Guzewich	NASA Goddard
Co-lead	Luca Montabone	Space Science Institute
Thermosphere Lead Members Lonosphere Lead	Nick Heavens Amm Kleinbohl Lesile Tamppan Michael Michael Michael Smith Michael Wolff Melinda Kaffrea Ayment Spiga François Forget Brouc Cantor David Kass Scott England Justin Daighan Amanda Brecht Steve Bougher Paul Withers	Space Science Institute MASA Let Propulsion Laboratory, California Institute of Technolo MASA Jet Propulsion Laboratory, California Institute of Technolo MASA Alet Propulsion Laboratory, California Institute of Technolo MASA Ocadard Space Science Institute MASA Space Science Systems Masa Jet Propulsion Laboratory, California Institute of Technolo MSAS Alet Propulsion Laboratory, California Institute of Technolo Wignia Tech LASP, University of Colorado MASA Aries University of Michigan Boston University of Michigan Boston University
Members	Robert Lillis Christopher Fowler David Andrews Martin Patzold Kerstin Peter Silvia Tellman Mark Lester Beatriz Sánchez-Cano	SSL, UC Berkeley SSL, UC Berkeley IRF Updala, Sweden University of Kon University of Leicester University of Leicester
Exosphere & Neutral Escape	Makes Chaffe	LACE University of Coloreda
Lead	Michael Chaffin	LASP, University of Colorado
Co-lead Magnetosphere, Ion Escape, a	Justin Deighan	LASP, University of Colorado
Magnetosphere, for Escape, a Lead	Shannon Curry	SSL. UC Berkeley
Co-lead	David Mitchell	SSL, UC Berkeley
Members	Janet Luhmann Robert Lillis François Leblanc Jasper Halekas David Brain Xiaohua Fang Jared Espley Hermann Opgenoorth Oleg Vaisberg	SSL, UC Berkeley SSL, UC Berkeley LTMOS, Paris, France University of lowa LASP, University of Colorado LASP, University of Colorado LASP, University of Colorado University of Uniona, Sweden Iti, Moscow, Russia
Radio Science		
Lead	Chi Ao	NASA Jet Propulsion Laboratory, California Institute of Technological
Members	Sami Asmar Josh Vander Hook David Hinson Paul Withers Ozgur Karatekin	NASA Jet Propulsion Laboratory, California Institute of Technolo NASA Jet Propulsion Laboratory, California Institute of Technolo SETI Institute Boston University Royal Observatory of Belgium

MOSAIC Core team

PI: Rob Lillis (UC Berkeley)

DPI: Dave Mitchell (UC Berkeley) **Study Lead**: Steve Matousek (JPL)

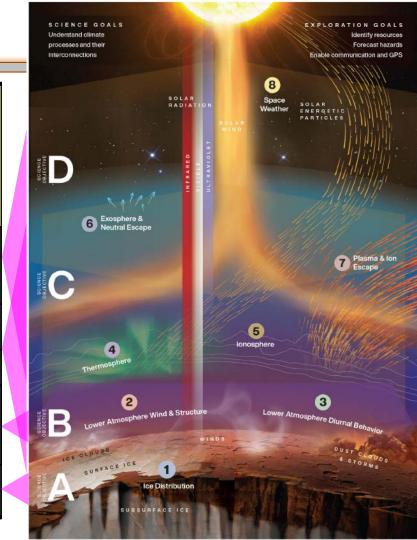
Systems Engineer: Nathan Barba (JPL)

Mission design: Ryan Woolley (JPL)

Science Leads: Luca Montabone, Scott

Guzewich, Nick Heavens, Tanya

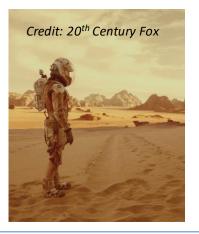
Harrison, Scott England, Shannon Curry, Mike Chaffin, Paul Withers, Chi Ao.


~125 people contributed

Technical/Management/Cost Team (JPL)

MOSAIC PMC	S JPL Study Team
Steve Matousek, Study Lead	Nathan Barba, Lead System Engineer
Ryan Woolley, Mission Design	Ivair Gontijo, Payload System Engineer
Carlos Brinoccoli, Cost	Katherine Park, Visual Strategy and Design
Valerie Scott, Payload	Mariko Burgin, Payload
Cassie Stuurman, Radar	Scott Hensley, Radar
Kevin Wheeler, Radar	Jan Martin, Radar
Brian Sutin, Payload	Jean Biancone, Editor
Marc Lane, Configuration	David Hinkle, Graphics
Chester Everline, Constellation Probability of Success Analysis	Barbara Insua, Graphics
A Team, De	cember 17, 2019
Justin Boland, Facilitator	Damon Landau, Mission Design
Paul Johnson, Asst Study Lead	Jonathan Murphy, Project Systems Engineering & Formulation
Kamal Oudrhiri, Communications Architectures & Research	Valerie Scott, Study Lead
Antranik Kolanjian, Cost	Mark Chodas, Assistant Study Lead
Claire Marie-Peterson, Documentation	Katherine Park, Visual Strategy
A Team Trade Sp:	ace, February 5–6, 2020
Justin Boland, Facilitator	Steven Zusack, Project Systems Engineering & Formulation
Randii Wessen, Architect	Mariko Burgin, Radar Science and Engineering
Paul Johnson, Asst Study Lead	Valerie Scott, Study Lead
Antranik Kolanjian, Cost	Alexander Austin, Systems Engineering
Claire Marie-Peterson, Documentation	Karla Hawkinson, Logistics
Damon Landau, Mission Design	
	February 2020
Alfred Nash, Facilitator	Shelly Sposato, cPower
Aron Wolf, cACS	Matthew Devost, cPropulsion
Davide Sternberg, cACS	Matthew Kowalkowski, cPropulsion
William Jones-Wilson, cACS	Jonathan Murphy, cSystems
Roger Klemm, cCDS	Alexander Austin, cSystems
Karen Lee, cCDS	Alessandra Babuscia, cTelecom Systems
Marc Lane, cConfiguration	Nick Emis. cThermal
Antranik Kolanjian, cCost	Eric Sunada, cThermal
Jonathan Murphy, cDeputy Systems Engineer	Daniel Forgette, cThermal
Robert Miller, cDeputy Systems Engineer	Hared Ochoa, cThermal
Gregory Welz, cGround Systems	Karla Hawkinson, Logistics
Jeffrey Stuart, cMission Design	Laura Newlin, Planetary Protection
Ronald Hall, cPower	Zachary Dean, Planetary Protection
Dhack Muthulingam, cPower	Jonathan Murphy, Systems Engineer
• •	. March 2020
Alfred Nash, Facilitator	Matthew Spaulding, Mechanical
Aron Wolf, ACS	Jeffrey Stuart, Mission Design
Roger Klemm, CDS	Laura Newlin, Planetary Protection
Karen Lee, CDS	Ronald Hall. Power
Daniel Kolenz, Configuration	Paul Woodmansee, Propulsion
Antranik Kolanjian, Cost	William Smythe, Science
Benjamin Donitz, Deputy Systems Engineer	Edward Benowitz. Software
Gregory Welz, Ground Systems	Kareen Badaruddin, SVIT
Melora Larson, Instruments	Jonathan Murphy, Systems Engineer
Karla Hawkinson, Logistics	Thaddaeus Voss, Telecom Systems
rana raminoori, Lugidud	maaaaaa . Joo, Toloonii Oyalana

Science Traceability


MOSAIC GOALS	Mission Objectives	Inv	estigations:	1. Ice distribution	2. Atmosphere structure	3. Atm. Diurnal behavior	4. Thermosphere	5. Ionosphere	6. Exosphere/neutral esc	7. Plasma /ion escape	8. Space weather
I. Understand Mars's present day	in the upstream throughout the	n sola magr ere, so	netosphere and eparating spatial					√	✓	✓	✓
climate processes and their	I.C: Correlate variability in thermosphere,		The space weather environment				✓	✓	✓	√	✓
inter- connections,	ionosphere, an escape rates to		The lower-middle atmosphere.		✓	√	✓	√	√	√	
from the sub-surface to the solar wind	atmosphere on	e Mar mes o	structure and tian lower-middle o- and global scales, liurnal, and seasonal		√	√					
	I.A: Characteriz between the su atmospheric re	ıbsurf	face, surface and	✓	✓	✓					

Preparing for Human Exploration

MOSAIC GOALS	Exploration Objectives	Investigations	1. Ice distribution	2. Atmosphere structure	3. Atm. Diurnal behavior	4. Thermosphere	5. Ionosphere	6. Exosphere/neutral esc	7. Plasma /ion escape	8. Space weather	9. Tech Demonstration
II. Identify hazards,	ice resources to sup	-	✓								
characterize resources,	Allow accurate data weather forecasting			✓	✓						
and demonstrate	Characterize neutra mesosphere/therm	l winds in the osphere for aerobraking.				✓					
technologies to enable the Human		variability to mitigate communication and					✓		√	√	
Exploration of Mars.	Demonstrate high-l communication bet orbit, and Earth.	oandwidth ween Mars surface, Mars									✓
	Characterize the enpenetrating ions (> AU.	vironment of 10 MeV/nuc) at 1.4-1.6								✓	

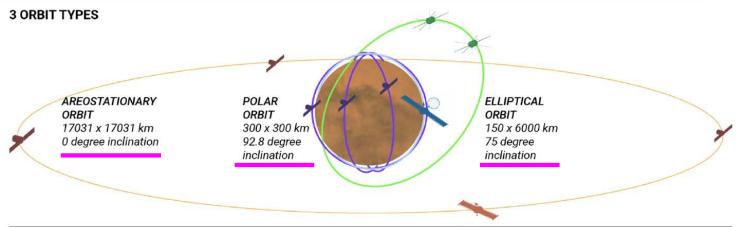
Relevant to NASA Exploration Goals. knowledge gap-filling activities identified by Precursor Strategy Analysis Group (PSAG):

- Ice depth variation within the first meter (for drinking water & propellant synthesis). Activity D1-5, D1-6.
- 2. Weather forecasting: dust climatology (B1-1), model validation (A2-1), global-scale T, wind, aerosols (A1-1, A1-2, A1-3).
- 3. Communications & GPS: high-bandwidth comms (A4-2), delay-tolerant networking, Global positioning, and continuous Earth comm with all longitudes.

Goals to Investigations

MOSAIC Traceability

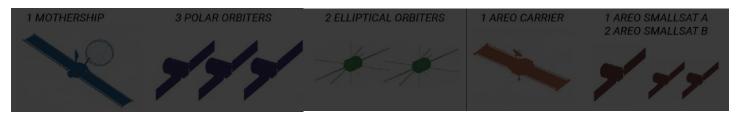
ATION GOALS


MOSAIC	KEY MOTIVATING	MISSION		ice Distribution Almospher Structure Almosphere Durnal Behavior Thermosphere	onosphere xosphere & Neutral Escape	Plasma & Ion Escape Space Weather	SCIENCE GOALS Understand climate processes and their interconnections	EXPLOR Enable con
GOALS	QUESTIONS	OBJECTIVES		3 4 2 4	5 %			
SCIENCE		SCIENCE OBJECTIVES			8	-	8	
Understand Mars's present day climate	How do volatiles move between the subsur- face, surface, and atmosphere?	A Characterize vola between the subs and atmospheric	surface, surface	•••			SOLAR Space RADIATION Weather	SOLAR ENERGETI PARTICLE
processes and their inter- connections, from the sub-surface to the solar wind.	How does the Martian lower-middle atmosphere respond diumally, on meso- and global scales, to the seasonal cycle of insolation?	B Characterize the dynamics of the M middle atmosphe global scales, and diurnal, and seas	Martian lower- re on meso- and d its geographic,	• •		۱	NAND SOLVE	
wind.	How does coupling from the lower atmo- sphere combine with	Correlate variability in the thermosphere,	Conditions in the lower-middle atmosphere.		• •	•	***	14
	the influence of space weather (solar wind, SEPs, and solar EUV) to control the upper	ionosphere, and escape rates to:	The space weather environment.		• •		6 Exosphere & Neutral Escape	
	atmospheric system++ and drive atmospheric escape?	D Characterize field flows in the upstreand throughout th and upper ionosp spatial from temp	eam solar wind e magnetosphere here, separating		• •	• •		
EXPLORATION		EXPOLORATION OBJE	CTIVES					
II. Identify hazards, characterize resourc-	How, where, and when can future astronauts access extractable water ice resources?	Characterize potent tractable water ice i support in situ resor	esources to	•	I			
es, and demonstrate technologies to enable the Human Exploration	With what degree of accuracy can Martian weather be forecast, for operational pur- poses?	Characterize the Ma spheric state with s sampling and cader accurate data assin weather forecasting	ufficient spatial nce to allow nilation and	••	I		4 tonosphere	
of Mars.	How will mesospheric and thermospheric winds affect aerobrak- ing spacecraft?	Characterize neutra mesosphere and lo sphere (60 km-130 variability with lowe conditions and sola	wer thermo- km) and their r atmospheric					3
	How will space weath- er effects on the Mars ionosphere affect surface-surface and surface-orbit communi- cations?	Characterize the Mi state and variability to determine its like effect on communic positioning.	sufficiently ly disruptive				WINDS	tmosphere Diu
	How will energetic particle radiation affect astronauts in Mars orbit?	Characterize the en penetrating ions (>1 at 1.38-1.62 AU with solar cycle.	0 MeV/nuc)				SURFACE ICE 1	
	Can reliable high-band- width Earth-Mars communication be maintained?	Demonstrate delay- networking, Deep S Communication (DS lay communication surface Mars orbit	pace Optical SOC), and re- between Mars		I		SUBSURFACE ICE	

Investigations to Instruments

	INVESTIGATIONS	MEASUREMENTS	INSTRUMENTS+	FUNCTIONAL REQUIREMENTS
1	Measure the three-dimensional distribution of ice from the surface to 10 m below.	Subsurface ice abundance derived from dielectric constant Surface thermal inertia Surface water ice & albedo	P-band SAR & Sounder Visible imager	<400 km circular near-polar orbit. Hi mass and power
2	Measure the geographic and altitude distribution of pressure, winds, aerosol concentrations, water vapor, ozone, and temperatures in the Mars lower and middle atmosphere.	Vertical profiles (0-80 km) of: temperature, winds, dust, H2O and C02 ices, H2O vapor, 03 Surface temperature and pressure	Thermal IR radiometer Wind LIDAR Sub-mm sounder	<400 km circular near-polar orbit
3	Measure the complete diurnal and geographic behavior of the attmo-sphere and evolution of Martian dust and ice clouds.	Visible and/or UV imagery of clouds/hazes Column opacities/abundances of dust, H2O, ozone, and CO2 ice Temp/pressure profiles 0 - 40 km Vertical profiles (0-80 km) of temperature, dust, H2O	Visible imager Near IR spectrometer Thermal IR radiometer Radio occultation	Four Areostationary orbits, spaced evenly in longitude Four <400 km circular near-polar
1)	Measure the global 3-D composition, structure, and winds in Mars's thermosphere.	and CO2 ices, H2O vapor, spread evenly across 8 local times Vertical profiles (90 - 200 km) of: + Horizontal wind velocity - Density and temp. of O,	Wind Doppler inter- ferometer FUV/MUV spectro- graph	orbits, spaced evenly in local time <400 km circular near-polar orbit
5	Measure the global 3-D structure of Mars ionosphere.	CO, N2, CO2 Vertical profiles (90-400 km) of: • electron density • electron temperature	Langmuir probe Radio Occultation	< 400 km circular AND elliptical orbits < 170 km periapse
3	Measure the 3-D density and temperature structure of Mars's hydrogen and oxygen exospheres.	Vertical profiles (200 - 30,000 km) of: • O density and temperature • H density and temperature	• FUV/EUV spectro- graph	Circular orbit >10,000 km altitude
7	Measure (from multiple viewpoints) fluxes of light and heavy ions, magnetic field and topology, plasma waves, and electric fields within and between all regions of Mars' hybrid magnetosphere.	Magnetic field Electric field Suprathermal electron pitch angle distributions — magnetic topology lon mass, energy, and angular distributions. Thermal electron temperature and density Plasma waves	Fluxgate magne-tometer Search coil magne-tometer lon energy/angle/mass Electron energy/angle Electron energy/angle Electric fields	2 spacecraft Orbit inclination ~75°, Apoapsis >6000 km, <170 km periapse
В	Measure magnetic field and plasma conditions in the upstream solar wind, and solar extreme ultraviolet irradiance.	Magnetic field Solar wind density, speed, temp Solar EUV irradiance Solar Energetic Particle Flux	Fluxgate Magne- tometer ton energy/angle Electron energy/ angle Extreme UV monitor Energetic ion/electron	2 spacecraftCircula orbit >10,000 km altitude
9	formance onboard process	it networking (DTN), high-per- sing, high-bandwidth optical usly available relay communi-	Electra/Relay antennas Optical communication DTN protocols	All

The MOSAIC Constellation



5 PLATFORMS

10 SPACECRAFT

AREO SMALLSAT

PLATFORM (B)

MOSAIC constellation movie

MOSAIC Descopes

Platform:		P	olar-orb	oiting Mo	othershi	р		Polar SmallSa		Elliptical Areostationary SmallSats Satellites				Traditional cost	Newspace cost	Preserves	What is Lost?
Instrument:	P-band Radar	Wind LIDAR	Sub-mm Sounder	Doppler Interfer- ometer	FUV/MUV Spectro- graph	TIR radiometer Visible Camera NIR Spectr.	Relay		Radio Occultatio (includes mothership	Plasma			Mini TIR radiometer Viz. camera NIR spectr.		\$FY25 with 50% reserves		
\$FY 20 (\$M)	170	40	35	40	30	35	TBD	12 x 3 = 36	6 x 2 = 12	19 x 2 = 38	20	13x2 = 26	11 x 4 = 44				
Investigation	1	2	2	4	4	1,2		2,3	3,5	5,7	6	8	3				
Baseline	1	1	1	1	1	1	1	3	6	2	1	2	4	4,220	4,060	Full MOSAIC Capability	
In case of Ice Mapper		1	1	1	1	1	1	3	6	2	1	2	4	Still in work		Full top to bottom atmosphere sampling	Ice mapping & exchange of water with subsurface
Descope		1 0	of 2			1	1	3	6	2	1	2	4	3,073		Comprehensive lower atmosphere sampling	Above + Thermosphere Winds above 50 km
Descope Lite		1 c	of 2			1	1	2	4	1	1	1	3	Still in work		atmosphere sampling	Above + Full diurnal coverage Ion escape short variability Full space weather coverage
Threshold						1						1	3	Discovery/ New Frontiers cost bin	cost bin	constellation providing multiple perspectives	Above + Boundary layer & Winds Ionosphere Magnetosphere Exosphere & neutral escape

Notes:

- Class B costs assumed.
- Class C, Class D will be lower cost.
- Threshold Class D Tailored single string will be ~50% of Discovery.
- JPL still working on robust cost estimates for various options.

MOSAIC: Sharing the Burden

HEOMD may fund:

- Ice mapping
- Weather monitoring.
- X-band surface to areostationary relay comm.
- Radiation monitoring

STMD may fund:

- Delay-tolerant networking
- High-bandwidth Earth-Mars communications.

Heliophysics Division may fund:

- Space weather monitoring
- Magnetosphere measurements (ESCAPADE is funded by HPD)

Other space agencies:

- All copies of one instrument
- All copies of one platform
- Active coordination only required for occultations

European Space Agency

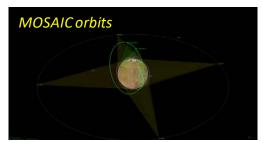
Commercial partners:

• SpaceX May wish to partner with HEOMD.

Can other missions substitute pieces?

• Existing/planned spacecraft can fulfill aspects of MOSAIC Investigations, but only if measurements are simultaneous.

Mission Status	Missions & Instruments	Investigations:	1. Ice distribution	2. Atmosphere structure	3. Atm. Diurnal behavior	4. Thermosphere	5. Ionosphere	6. Exosphere, neutral escape	7. Plasma & ion escape	8. Space weather
Operational	Mars Reconnaissance Orb	iter MCS								
	MAVEN Particles & Fields	Package								
	MAVEN IUVS									
	Trace Gas Orbiter NOMAI	0 & ACS								
In	Emirates Mars Mission EX	XI, EMUS, & EMIRS (2021-								
Development	China Tianwen-1 ion anal	yzer & magnetometer (2021-								
	NASA ESCAPADE (2026-	*not confirmed								
	JAXA-ESA MMX MacrOme	ega, MSA, & IREM (2025-2028)								
Concepts	Ice Mapper									
	COMPASS									

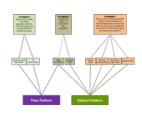

Fulfillment:

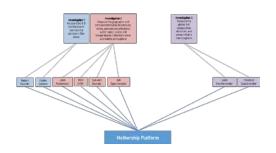
Baseline
Threshold
Partial
Marginal
None

Summary

- MOSAIC represents many of the next logical steps in orbital investigation of the Mars climate system.
 - Simultaneous systematic observations of relevant quantities are required for science closure.
 - Most investigations help prepare for human exploration.
- Full Constellation has a high price tag, but mitigations exist:
 - Other simultaneously-observing missions.
 - Cost-sharing with HEOMD, STMD, Helio Division.
 - Contributions from other agencies (instruments, platforms).
 - Threshold mini-constellation (4 SC) fits within Discovery or less, depending on mission class.

MOSAIC in Single 5 m fairing


MOSAIC cost can spread over 3 Mars launch opportunities



Spacecraft delivery via rideshare or propulsive tug element

- 4 Areostationary SSc
- Delivered via rideshare low DV prop capability
- Commercial SSc Builder (target < 40M per ssc bus)
- DTE Using Iris and commercial antenna
- Optional: relay capability for future low Mars orbiters

- 4-5 SSc
- Delivered via rideshare very low DV prop capability
- Commercial SSc Builder (target <25M per SSc bus)
- Relay using exisiting relay network including Areo network

Icemapper or another mission

2026

2028

2031

Backup: MOSAIC Descope Science matrices

Case 1: No Ice Radar

				maller thership		x Areo atforms		Polar atforms		Elliptical Itforms
Science & Exploration Goals	Scientific Objectives	Investigations:	1. Ice distribution	2. Atmosphere structure	3. Atm. Diurnal behavior	4. Thermosphere	5. Ionosphere	6. Exosphere, neutral escape	7. Plasma & ion escape	8. Space weather
I. Understand	LA: Characterize volatile cycling between the subsurface, surface and atmospheric reservoirs.			✓	✓					
	LB: Characterize the structure and dynamics of the Mand global scales, and its geographic, diurnal, and sea		✓	✓						
		The lower-middle atmosphere.		✓	✓	✓	✓	✓	✓	
connections, from		The space weather environment				✓	✓	✓	✓	✓
the sub-surface to the solar wind	LD: Characterize fields and plasma flows in the upstream solar wind and throughout the magnetosphere and upper ionosphere, separating spatial from temporal variability.						✓	✓	✓	✓
II. Identify	#A: Characterize potentially extractable water ice re	esources to support in situ resource utilization								
	II.B: Characterize the Mars atmospheric state with staccurate data assimilation and weather forecasting.		✓	✓						
demonstrate	II.C: characterize neutral winds in the mesosphere at their variability with lower atmospheric conditions a				✓					
enable the Human Exploration of	II.D: Characterize the Mars ionospheric state and variability sufficiently to determine its likely disruptive effect on communications and positioning						✓		✓	✓
Mars	II.E: characterize the environment of penetrating ior	ıs (>10 MeV/nuc) at 1.38-1.62 AU.								√

Case 2: "Descope"

2 x Elliptical

3 x Polar

			Мо	thership	Pla	atforms	Pla	tforms	Pla	tforms
					1				1	1
Science & Exploration Goals	Scientific Objectives	Investigations:	1. Ice distribution	2. Atmosphere structure	3. Atm. Diurnal behavior	4. Thermosphere	5. Ionosphere	6. Exosphere, neutral escape	7. Plasma & ion escape	8. Space weather
Understand	14: Characterize volatile cycling between the subsurface, surface and atmospheric reservoirs.			✓	✓					
	LB: Characterize the structure and dynamics of the Martian lower-middle atmosphere on meso- and global scales, and its geographic, diurnal, and seasonal variability.			✓	✓					
	LC: Correlate variability in the thermosphere,	The lower-middle atmosphere.		✓	✓		✓	✓	✓	
connections, from	ionosphere, and escape rates to:	The space weather environment					✓	✓	✓	✓
the sub-surface to the solar wind	LD: Characterize fields and plasma flows in the upstream solar wind and throughout the magnetosphere and upper ionosphere, separating spatial from temporal variability.						✓	✓	✓	✓
II. Identify	HA: Characterize potentially extractable water ice	resources to support in situ resource utilization								
characterize	II.B: Characterize the Mars atmospheric state with accurate data assimilation and weather forecasting		✓	✓						
resources, and demonstrate technologies to	ILC: characterize neutral winds in the mesosphere and lower thermosphere (60 km-130 km) and their variability with lower atmospheric conditions and solar activity.									
nable the Human Exploration of	ILD: Characterize the Mars ionospheric state and variability sufficiently to determine its likely disruptive effect on communications and positioning						✓		✓	✓
Mars	II.E: characterize the environment of penetrating ic	ons (>10 MeV/nuc) at 1.38-1.62 AU.								✓

Smaller

4 x Areo

Case 3: "Descope Lite"

1 x Elliptical

				thership	Pla	atforms	Pla	atforms		tforms
					1			/	1	7
Science & Exploration Goals	Scientific Objectives	Investigations:	1. Ice distribution	2. Atmosphere structure	3. Atm. Diurnal behavior	4. Thermosphere	5. Ionosphere	6. Exosphere, neutral escape	7. Plasma & ion escape	8. Space weather
. Understand	LA: Characterize volatile cycling between the subsurface, surface and atmospheric reservoirs.			✓	✓					
	LB: Characterize the structure and dynamics of the Martian lower-middle atmosphere on meso- and global scales, and its geographic, diurnal, and seasonal variability.			✓	✓					
	LC: Correlate variability in the thermosphere,	The lower-middle atmosphere.		✓	✓		✓	✓	✓	
connections, from	ionosphere, and escape rates to:	The space weather environment					✓	✓	✓	✓
the sub-surface to the solar wind	LD: Characterize fields and plasma flows in the upstream solar wind and throughout the magnetosphere and upper ionosphere, separating spatial from temporal variability.						✓	✓	✓	✓
II. Identify	HA: Characterize potentially extractable water ice	resources to support in situ resource utilization								
characterize	II.B. Characterize the Mars atmospheric state with accurate data assimilation and weather forecasting.		✓	✓						
resources, and demonstrate technologies to	II.C. characterize neutral winds in the mesosphere their variability with lower atmospheric conditions									
enable the Human Exploration of	ILD: Characterize the Mars ionospheric state and variability sufficiently to determine its likely disruptive effect on communications and positioning						✓		✓	✓
Mars	II.E: characterize the environment of penetrating ic	ns (>10 MeV/nuc) at 1.38-1.62 AU.								✓


Smaller

3 x Areo

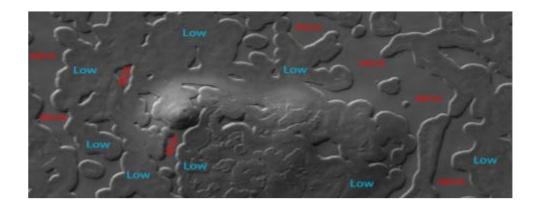
2 x Polar

Case 4: Threshold

Science & Exploration Goals	Scientific Objectives	Investigations:	1. Ice distribution	2. Atmosphere structure	3. Atm. Diurnal behavior	4. Thermosphere	5. Ionosphere	6. Exosphere, neutral escape	7. Plasma & ion escape	8. Space weather
I. Understand	LA: Characterize volatile cycling between the subsurface, surface and atmospheric reservoirs.			✓	✓					
day climate	LB: Characterize the structure and dynamics of the Martian lower-middle atmosphere on meso- and global scales, and its geographic, diurnal, and seasonal variability.			✓	✓					
processes and their inter-	LC: Correlate variability in the thermosphere,	The lower-middle atmosphere.		✓	✓					
connections, from		The space weather environment								✓
the sub-surface to the solar wind	LD: Characterize fields and plasma flows in the upstream solar wind and throughout the magnetosphere and upper ionosphere, separating spatial from temporal variability.									✓
II. Identify	H.A: Characterize potentially extractable water ice i	esources to support in situ resource utilization								
characterize resources, and	II.B: Characterize the Mars atmospheric state with sufficient spatial sampling and cadence to allow accurate data assimilation and weather forecasting.			✓	✓					
	ILC: characterize neutral winds in the mesosphere and lower thermosphere (60 km-130 km) and their variability with lower atmospheric conditions and solar activity.									
Exploration of	H.D: Characterize the Mars ionospheric state and variability sufficiently to determine its likely disruptive effect on communications and positioning									✓
Mars	ILE: characterize the environment of penetrating io	ns (>10 MeV/nuc) at 1.38-1.62 AU.								✓

Backup: MOSAIC Investigations

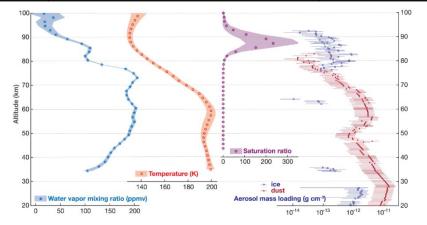
Science Investigations


	460	No.	100			
- Experience of the second	士司	使生	-	311		
	417	Ship	4.4	4	10.7	

Investigations *	Measurements**	Instruments	Platforms
Measure the three-dimensional distribution of ice from the surface to 10 m below.	Subsurface ice abundance derived from dielectric constant. Surface thermal inertia Surface water ice & albedo		Mothership
2. Measure the geographic and altitude distribution of pressure, winds, aerosol concentrations, water vapor, ozone, and temperatures in the Mars lower and middle atmosphere.	Vertical profiles (0-80 km) of: temperature, winds, dust, $\rm H_2O$ and $\rm CO_2$ ices, $\rm H_2O$ vapor, $\rm O_3$. Surface temperature and pressure.	Microwave/sub-mm limb and nadir sounder Thermal infrared spectrometer/radiometer Near-infrared spectrometer LIDAR	Mothership
3. Measure the complete diurnal and geographic behavior of the atmosphere and evolution of Martian dust and ice clouds.	Visible and/or UV imagery of clouds/hazes Column opacities/abundances of dust, H ₂ O, ozone, and CO ₂ ice Temp/pressure profiles 0 - 40 km	Visible and/or UV imager NIR spectrometer Thermal infrared spectrometer Radio Occultation	Areo-stationary
	Vertical profiles (0-80 km) of temperature, dust, H_2O and CO_2 ices, H_2O vapor.	Thermal infrared spectrometer/radiometer	Polar orbiting smallsats
4. Measure the global 3-D composition, structure, and winds in Mars's thermosphere.	Vertical profiles (90 - 200 km) of: Horizontal wind velocity Density and temp. of 0, CO, N2, CO2	Wind interferometer FUV/MUV Spectrograph	Mothership
5. Measure the global 3-D structure of Mars	Vertical profiles (90-400 km) of	Radio Occultation	All orbiters
ionosphere.	electron density electron temperature CO2+ density	Langmuir probe	Elliptical
		FUV/MUV Spectrograph	Mothership
6. Measure the 3-D density and temperature structure of Mars's hydrogen and oxygen exospheres.	Vertical profiles (200 - 30,000 km) of: density and temperature H density and temperature	FUV Spectrograph with hydrogen absorption cell.	Areostationary and/or Mothership
7. Measure (from multiple viewpoints) magnetic field and topology and fluxes of light and heavy ions across Mars's bow shock, through magnetosheath, down magnetotail, and into and out of the Martian upper atmosphere and ionosphere.	Magnetic field Suprathermal electron pitch angle distributions → magnetic topology Ion mass, energy, and angular distributions. Thermal electron temperature and density.	Magnetometer Electron analyzer Ion mass analyzer Langmuir probe	Elliptical
8. Measure magnetic field and plasma conditions in the upstream solar wind, and solar extreme ultraviolet irradiance.	Magnetic field Solar wind density, speed, temp. Solar EUV irradiance Solar Energetic Particle Flux	Magnetometer Solar Wind Ion analyzer Solar EUV monitor Solid State Telescope	Long Orbit

Investigation 1: Ice (subsurface & surface)

Investigations	Measurements	Instruments	Platform
1. Measure the three- dimensional distribution of ice from the surface to 10 m below.	 Subsurface ice abundance derived from dielectric constant. Surface thermal inertia Surface water ice & albedo 	 P-band radar with VV or HH polarization. Thermal IR imager Visible camera 	Near-polar low altitude circular orbit.


Leads: <u>T. Harrison, C. Stuurman</u>, C. Neish, I. Smith, G. Osinski,, S. Spencer.

Strong overlap with MORIE.

Investigations 2 & 3: lower-middle atmosphere

Investigations	Measurements	Instruments	Platforms
2. Measure the geographic and	Vertical profiles (0-80 km) of:	Microwave/sub-mmlimb	Near-polar
altitude distribution of pressure,	temperature, winds, dust, H ₂ O	and nadir sounder	low altitude
winds, aerosol concentrations,			circular
water vapor, ozone, and	Surface temperature and	spectrometer/radiometer	orbit.
temperatures in the Mars lower	pressure.	NIR spectrometer	
and middle atmosphere.		Wind LIDAR	

Fedorova et al., 2020

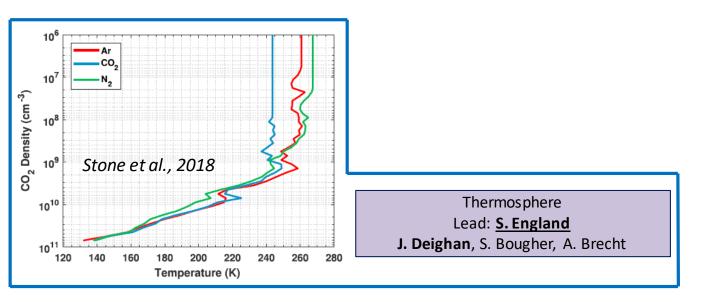
Leads: L. Montabone, S. Guzewich

M. Kahre, N. Heavens, M. Smith, A. Spiga, M. Mischna, M. Wolff, A. Kleinboehl, D. Hinson, F. Forget, L. Tamppari, B. Cantor

Investigations 2 & 3: lower-middle atmosphere

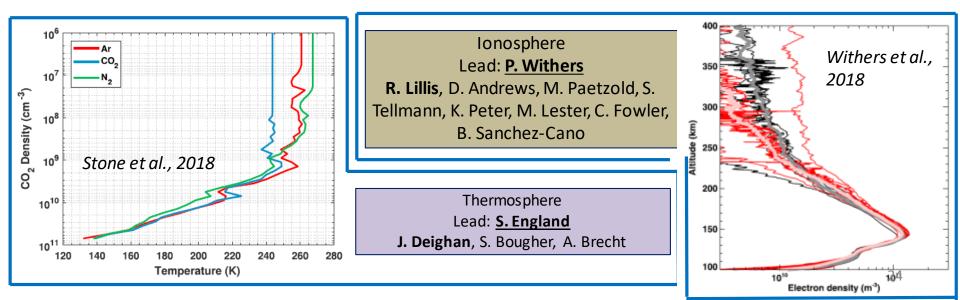
Investigations	Measurements	Instruments	Platforms
1	temperature, winds, dust, H_2O and CO_2 ices, H_2O vapor, O_3 . Surface temperature and pressure.	and nadir sounder	Near-polar low altitude circular orbit.
3. Measure the complete diurnal and geographic behavior of the atmosphere and evolution of Martian dust and ice clouds.	clouds/hazes Column opacities/abundances of dust, H ₂ O, ozone, and CO ₂ ice		Areo- stationary
		Thermal infrared spectrometer/radiometer	Near-polar low altitude circular @ different

Leads: L. Montabone, S. Guzewich


M. Kahre, N. Heavens, M. Smith, A. Spiga, M. Mischna, M. Wolff, A. Kleinboehl, D. Hinson, F. Forget, L. Tamppari, B. Cantor

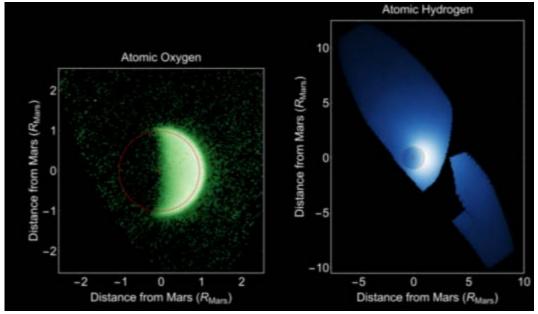
local times

Investigations 4 & 5: Thermosphere-Ionosphere


Investigations	Measurements	Instruments	Platforms
		Wind interferometer FUV/MUV	<u> </u>
1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	-Density and temp. of O, CO, N ₂ , CO ₂	2 1	altitude circular orbit.

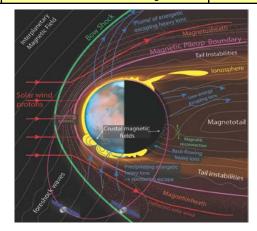
Investigations 4 & 5: Thermosphere-Ionosphere

			HE MICHELLA
		Instruments	Platforms
composition, structure, and		lo '. 1	Near-polar low altitude circular orbit.
	les . As . C		Elliptical+polar Elliptical orbit



Investigation 6: exosphere

Investigations	Measurements	Instruments	Platforms
	Vertical profiles (200 - 30,000	FUV Spectrograph.	Areostationary
	km) of:		
hydrogen and oxygen exospheres.			
	H density and temperature		


Team members: **M. Chaffin**, J. Deighan

Investigations 7&8: Magnetosphere & Escape

	Investigations	Measurements	Instruments	Platforms	
	heavy ions across Mars's bow shock and throughout the magnetosphere, from multiple simultaneous locations.	Suprathermal electron pitch angle distributions → magnetic topology	Electron analyzer Ion mass analyzer Langmuir probe	Elliptical orbit ~150km x ~6000 km	
	plasma conditions in the upstream solar wind, and solar extreme	Solar wind density, speed, temp. Solar EUV irradiance	Solar Wind Ion analyzer	Outside Mars' bow shock	

Magnetosphere/Escape Lead: <u>S. Curry</u> J. Luhmann, R. Lillis, F. LeBlanc, J. Halekas, D. Brain, X. Fang, J. Espley, H. Opgenoorth, O. Vaisberg

Connections between science and architectures

Investigation 1
Measure the 3D Distribution
of ice from the
surface to 10m
below.

Investigation 2
Measure the geographic and altitude distribution of pressure, winds, aerosol concentrations, water vapor, ozone, and temperatures in the Mars lower and middle atmosphere.

Investigation 3
Measure the complete diurnal and geographic behavior of the atmosphere and evolution of Martian dust and ice clouds.

Investigation 4
Measure the global 3-D composition, structure, and winds in Mar's thermosphere.

Investigation
5 Measure the global 3-D structure of Mars ionosphere.

Investigation
6 Measure the
3-D density
and
temperature
structure of
Mars
hydrogen and
oxygen
exospheres.

Investigation 7
Measure (from multiple view points) magnetic field and topology and fluxes of light and heavy ions across Mars' bow shock, down magnetotail, and into and out of the Martian upper atmosphere and ionosphere.

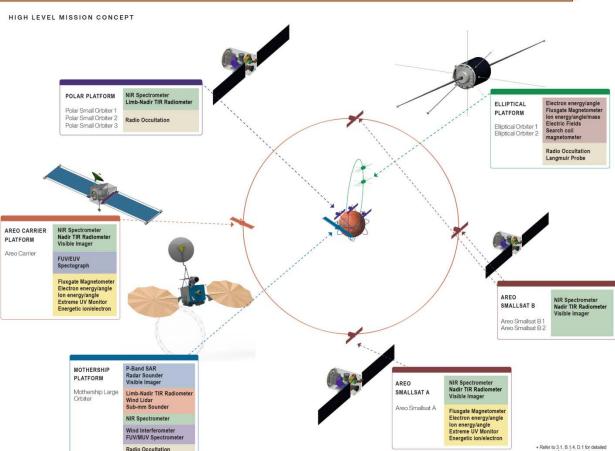
Investigation 8
Measure magnetic
field and plasma
conditions in the
upstream solar
wind, and solar
extreme ultraviolet
irradiance.

Mothership Platform

Areo Platform

Polar Platform

Elliptical Platform

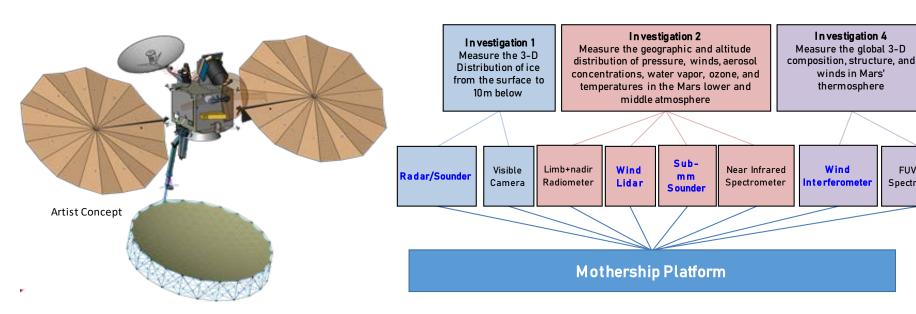

Backup: MOSAIC Orbital Platforms

Science drives mission architecture

information on instruments.

Mothership Platform

FUV/MUV


Spectrometer

Investigation 4

winds in Mars'

thermosphere

Wind

Solar Electric Large Orbiter

(1) Orbiter Spacecraft

Wet Mass: 3721 kg

Orbit: 300 km; ~93° (MRO Orbit)

Areostationary Platform

Orbiter

(1) Orbiter Spacecraft

Wet Mass: 565 kg

Orbit: 17,000 km;

Investigation 3 Measure the complete diurnal and geographic behavior of the atmosphere and evolution of Martian dust and ice clouds

Investigation 6 Measure the 3-D density and temperature structure of Mars hydrogen and oxygen exospheres.

Investigation 8 Measure magnetic field and plasma conditions in the upstream solar wind, and solar extreme ultraviolet irradiance.

Nadir IR FUV/EUV Visible Spectromet Spectrograp Radiomete Imager

Magnetomete

Electron energy/angle energy/angle

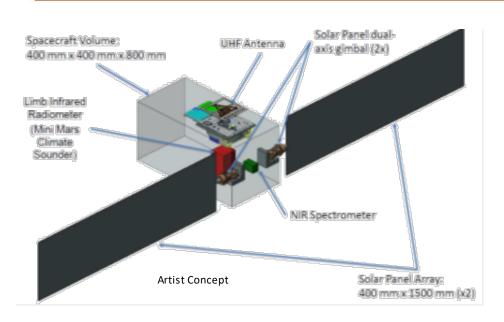
Extreme UV Monitor

Energetic ion/electron

Mini Areo Platform

Areo Platform

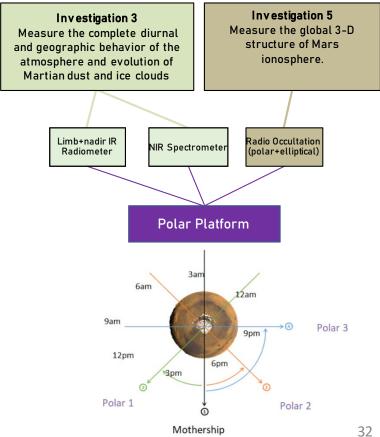
Mini Areostationary Orbiter


(3) Orbiter Spacecraft

Wet Mass: 93 kg

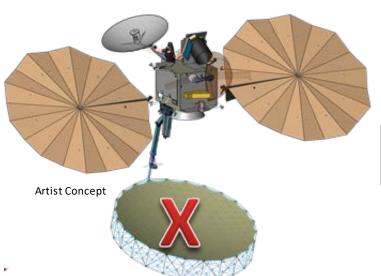
Orbit: 17,000km; Equatorial

Polar Platform



Polar Small Spacecraft

(3) Orbiter Spacecraft


Wet Mass: 93 kg

Orbit: 300 km; ~93° (MRO Orbit)

"Mini" Mothership Option

In vestigation 1
Measure the 3-D
Distribution of ice
from the surface to
10 m below

Visible

Camer

Investigation 2
Measure the geographic and altitude distribution of pressure, winds, aerosol concentrations, water vapor, ozone, and temperatures in the Mars lower and middle atmosphere

In vestigation 4

Measure the global 3-D
composition, structure, and
winds in Mars'
thermosphere

Raduund

Limb+nac ir Radiome er

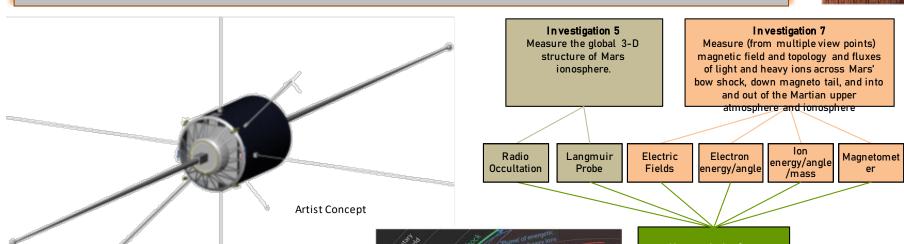
Near Infrared Spectromet er

FUV/MUV Spectromet

Mothership Platform

- Solar Electric Small Orbiter
- (1) Orbiter Spacecraft

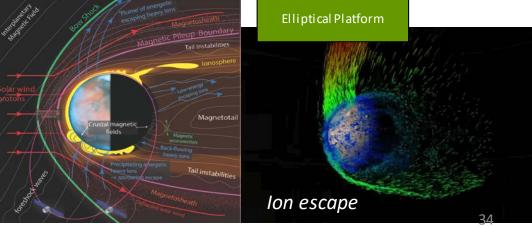
Wet Mass: \sim 3700 \rightarrow \sim 750 kg


Orbit: 300 km; ~93° (MRO

Orbit)

- <u>Huge reduction</u> in mass and cost
- <u>Preserves</u>: global coverage of atmospheric connections
- <u>Sacrifices</u>: brand-new measurements (ice and wind)

Elliptical Platform

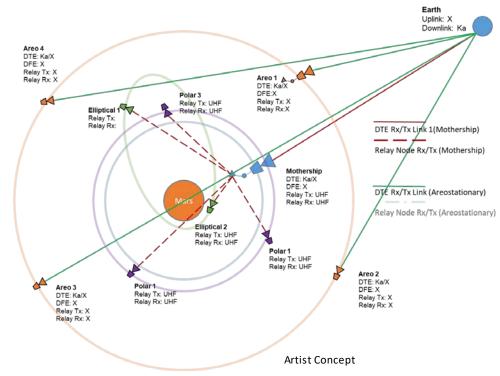


Elliptical Small Spinning Spacecraft

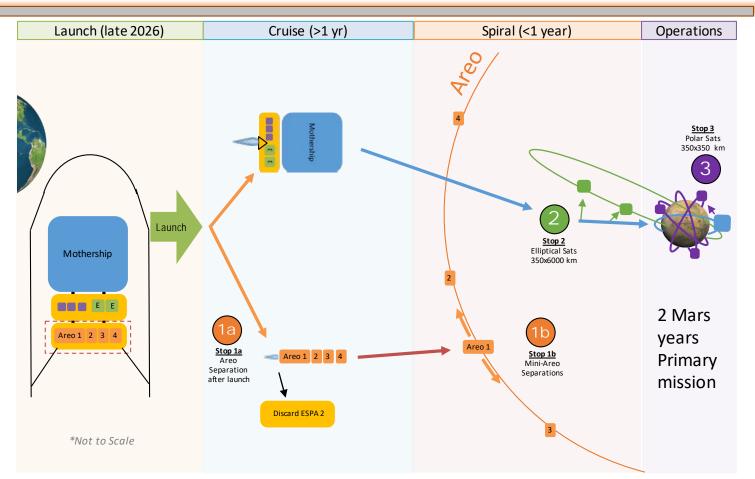
(2) Orbiter Spacecraft

Wet Mass: 221 kg

Orbit: 150 x 6000 km; 75°

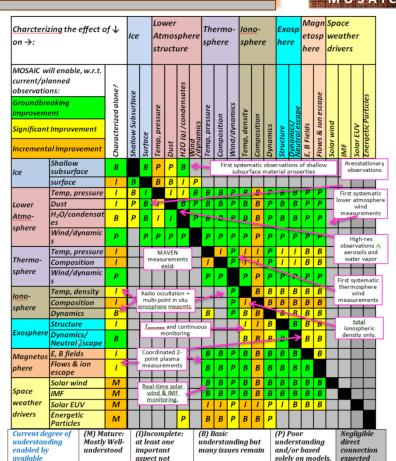

MOSAIC Architecture

MOSAIC By the Numbers


Spacecraft Elements Science Instruments Orbital Perspectives Launch Vehicle 1 – Large Orbiter 2 - Elliptical ESPA-Class S/C 3 - Polar ESPA-Class S/C 1 - Areostationary ESPA Class Artist Concept 3 – Small Areostationary S/C

MOSAIC Telecommunications Architecture

Constellation Delivery (Example Option)


Backup: MOSAIC Relevance and Rationale

MOSAIC Science Impact

Simultaneous measurements of all "regions" of the climate system will:

- Characterize geographic, diurnal, mesoscale, and seasonal behavior.
- Lead to groundbreaking improvements in our understanding of how climate variables correlate with one another.
 - I.e. uncover how different parts of the climate system "talk" to each other.
- Spur understanding of the physical processes occurring within and between regions.

<u>MEPAG.</u> Goal II "Understand the processes and history of climate on Mars":

- A1. Constrain the processes that control the present distributions of dust, water, & carbon dioxide in the lower atmosphere, at daily, seasonal & multi-annual timescales.
- **A2.** Constrain the processes that control the dynamics & thermal structure of the upper atmosphere & surrounding plasma environment.
- A4. Constrain the processes by which volatiles & dust exchange between surface & atmospheric reservoirs.
- **C3.** Determine present escape rates of key species & constrain the processes that control them.

Mars Science Goals, Objectives, Investigations, and Priorities: 2020 Version

Mars Exploration Program Analysis Group (MEPAG)

Prepared by the MEPAG Goals Committee:

Don Banfield, Chair, Cornell University (banfield@astro.cornell.edu)

Representing Goal I: Determine If Mars Ever Supported, or Still Supports, Life
Jennifer Stern, NASA Goddard Space Flight Center (Jennifer C.Stern@nasa.gov)

Alfonso Davila, NASA Ames (alfonso.davila@nasa.gov)

Sarah Stewart Johnson, Georgetown University (sarah.johnson@georgetown.edu)
Representing Goal II: Understand The Processes And History Of Climate On Mars

David Brain, University of Colorado (<u>David Brain@lasp.colorado.edu</u>)

Robin Wordsworth, Harvard University (rwordsworth@seas.harvard.edu)

Representing Goal III: Understand The Origin And Evolution Of Mars As A 4

Representing Goal III: Understand The Origin And Evolution Of Mars As A Geological System
Briony Horgan, Purdue University (briony@purdue.edu)

Rebecca M.E. Williams, Planetary Science Institute (williams@psi.edu)

Representing Goal IV: Prepare For Human Exploration

Paul Niles, NASA Johnson Space Center (paul.b.niles@nasa.gov)

Michelle Rucker, NASA Johnson Space Center (michelle.a.rucker@nasa.gov)
Keyin Watts, NASA Johnson Space Center (keyin.d.watts@nasa.gov)

Mars Program Office, JPL/Caltech

Serina Diniega (Serina.Diniega@jpl.nasa.gov)
Rich Zurek (richard.w.zurek@jpl.nasa.gov)
Dave Beaty (david.w.beaty@jpl.nasa.gov)

Recommended bibliographic citation:

MEPAG (2020), Mars Scientific Goals, Objectives, Investigations, and Priorities: 2020. D. Banfield, ed., 89 p. white paper posted March, 2020 by the Mars Exploration Program Analysis Group (MEPAG) at https://mepag.jpl.nasa.gov/reports.cfm.

2013-2022 Decadal Survey calls for a mission like MOSAIC, stating:

"Fundamental advances in our understanding of modern climate would come from a complete determination of the three-dimensional structure of the martian atmosphere from the surface boundary layer to the exosphere. This should be performed globally, ideally by combining wind, surface pressure and accurate temperature measurements from landed and orbital payloads."

VISION VOYAGES

for Planetary Science in the Decade 2013-2022

Committee on the Planetary Science Decadal Survey

Space Studies Board

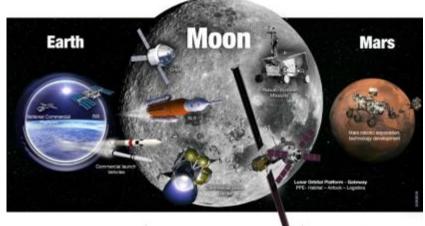
Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu

Concept maturity/relationship to SAGs.

NEX-SAG and ICE-SAG outline the needed measurements in the lower-and middle atmosphere. BUT:


- SAGs didn't account for recent discoveries:
 - Strong relationships between lower/middle atmospheric dynamics and escape from the upper atmosphere.
 - Extreme weather in mesoscale systems.
- This concept is **technically immature** at present. We need to:
 - Understand the risks and challenges of flying and operating a mothership with several linked daughtercraft in the Mars environment
 - Specify the resolution and sampling frequency needed to understand extreme weather at sub-100 km scales.

Relevant to NASA Exploration Goals. MOSAIC fulfills **seven** high-priority knowledge gap-filling activities identified by PSAG:

- Ice depth variation within the first meter (for drinking water & propellant synthesis). Activity D1-5, D1-6.
- Weather forecasting: dust climatology (B1-1), model validation (A2-1), global-scale T, wind, aerosols (A1-1, A1-2, A1-3).
- Communications: deep space optical comms (A4-2), delay-tolerant networking, and continuous relay-to-Earth from any Mars longitude.

Backup: MOSAIC Synergies with other Mars missions

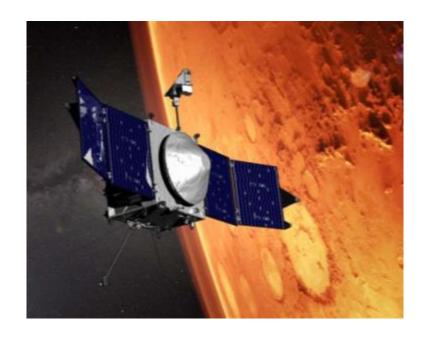
Fitting in with the Crowd: TGO

The ESA Trace Gas Orbiter:

- measures altitude profiles of H₂O, O₃, and aerosols but only at 6 AM and 6 PM (via solar occultation), providing a precursor to MOSAIC's much more systematic sub-mm limb sounding.
- conducts traditional nadir mapping of temperature profiles, ice, and aerosols, as MRO MCS has done, but takes ~55 days to cover all local times. MOSAIC will ensure full diurnal, geographic, altitude, and seasonal coverage.
- uses neutrons to derive total water ice abundance in the top ~1 m with 100-200 km resolution, i.e. complementary to the muchhigher resolution, and deeper ice depth profiles from MOSAIC's radar.

Fitting in with the Crowd: EMM

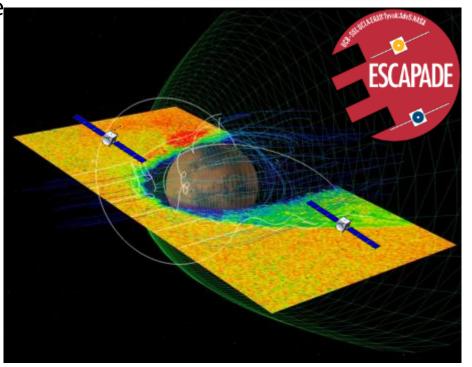
- Starting in May 2021, the Emirates Mars Mission will make total column abundance/opacity measurements from a 55-hour high circular orbit.
 - no altitude info except crude temperature profiles
- As a single spacecraft, EMM will observe most of the diurnal cycle over most of the planet once every 10 days (inevitable gaps in latitude-local time space), not *continuously* as MOSAIC will.



Fitting in with the Crowd: MAVEN

Hopefully MAVEN is still operational in the 2028-2034 timeframe. However MAVEN, as a single spacecraft:

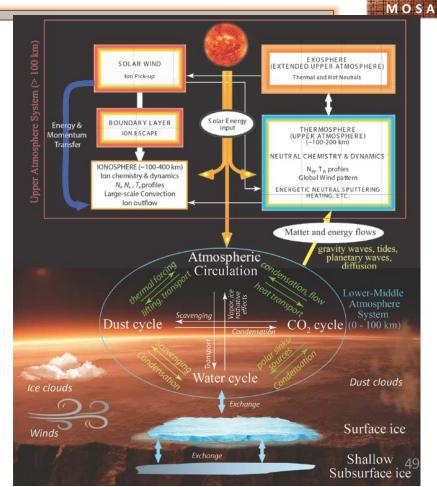
- Samples the upstream solar wind for 10s of minutes per 3.7-hour orbit on only ~40% of orbits.
- Has raised its periapsis to ~200 km in September 2020, continuing its remote FUV/MUV measurements of thermosphere density (MOSAIC Investigation 4) but no longer sampling the thermosphere or photochemical ionosphere in situ (needed for MOSAIC Investigation 5).



Fitting in with the Crowd: ESCAPADE

ESCAPADE fulfills some of the science goals of MOSAIC's elliptical orbit satellites. However ESCAPADE:

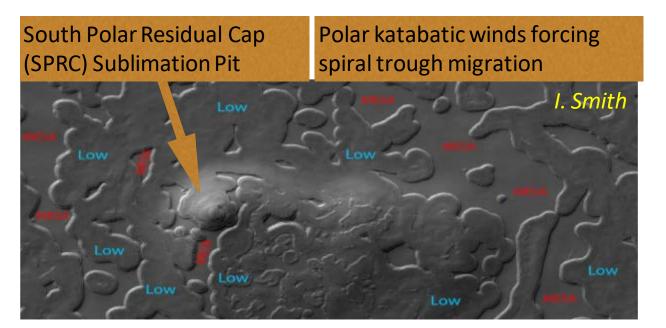
- Does not measure electric fields, which are <u>the</u> key factor in accelerating plasma throughout the Mars magnetosphere.
- Must pass its PDR & Confirmation Review summer 2021.
- Does not have any budget line item within HPD. Contingent on available funds.



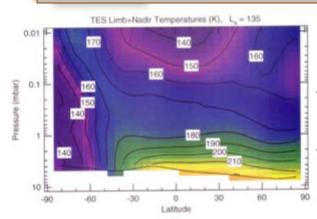
MOSAIC Science Background

MOSAIC Motivating Questions

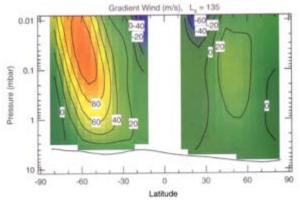
- 1. How do volatiles (e.g. H₂O and CO₂) move between the subsurface, surface, and atmosphere?
- 2. How does the Martian lower-middle atmosphere respond on meso- and global scales, to the diurnal and seasonal cycles of insolation?
- 3. How does coupling with the lower atmosphere combine with the influence of space weather to control the upper atmospheric system and drive atmospheric escape?



Ice-Atmosphere interactions


Numerous high latitude processes \rightarrow surface pressure and distribution of ice on Mars.

- Quantification of their effects is in its relative infancy.
- To adequately characterize surface-atmosphere flux, need simultaneous monitoring of shallow subsurface and surface for changes, and the lower atmosphere for effects.
- SAR and thermal monitoring would detect changes that result from these interactions.

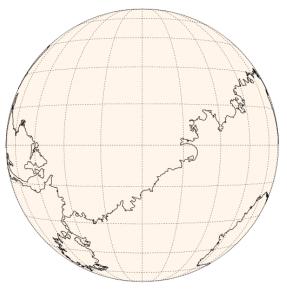

The Mysteries of Martian Winds

Knowledge of global winds is indirect: estimated from temperature
measurements and the thermal wind relationship.

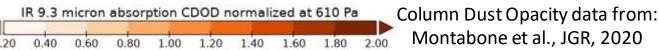
Smith et al. (2001)

While useful to understand global dynamics, this approach is:

- inappropriate for winds in the tropics.
- too imprecise for winds in synoptic systems at all latitudes like the high-latitude low pressure systems pictured above.


Our study considered the tradeoffs of different instrumentation types for winds and other important measurable quantities (e.g. aerosols, temperatures, trace gases).

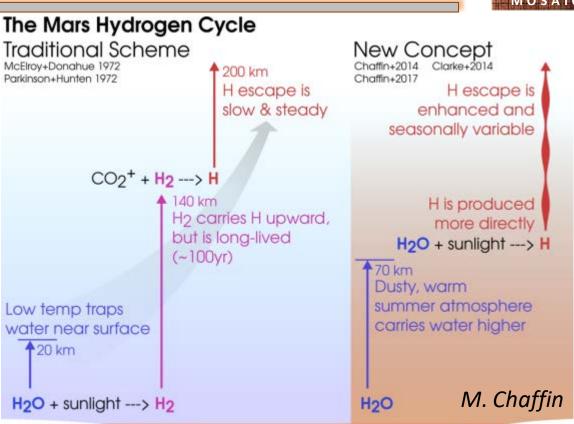
The extreme nature of Global Dust Events



Synthetic perspectives based on real observations (equivalent to areostationary view from about 17,000 km above the equator)

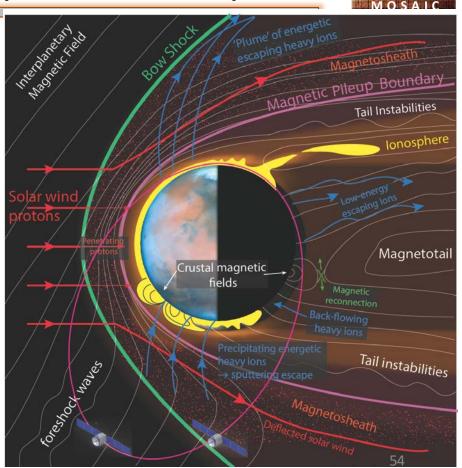
Centered on 0° lon, 0° lat

Montabone et al., 2019



Areostationary satellites provide the global perspective necessary to understand the storms

Lower/Upper Atmosphere Connections


- Measured 10-20x seasonal variability in hydrogen loss to space requires enhanced lower/upper atmosphere interchange.
- Water is observed at higher altitudes than expected, but observations are limited to the terminator (solar occultation).
- Mechanism for water transport unknown; multiple competing hypotheses.

Ionosphere-Magnetosphere & Escape

- Crustal magnetic fields create unique "hybrid" magnetosphere.
- Need coordinated multipoint in situ plasma measurements to:
 - Untangle spatial & temporal variability.
 - Measure real-time response to space weather.
 - Unravel chain of cause and effect as sun and solar wind energize ions to escape and precipitate.

MOSAIC Concept Study Science Process

Science Requirements Definition

For each investigation we defined:

- <u>Measurement</u> requirements: range, accuracy, resolution, coverage, physical parameter vs. observable quantity, baseline vs. threshold.
- <u>Instruments</u> that can meet measurement requirements.
- Example below from investigation 2:

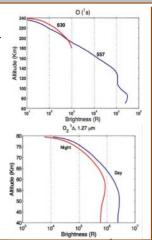
TLDR: we compiled all the MEASUREMENT requirements in 8 spreadsheets

Instrument Requirements

For each instrument we defined:

 Description, name, platform, measurements, supplier, TRL, FOV, mass, power, volume, accommodation, resolution, data rate, cost.

TLDR: we compiled lots of INSTRUMENT requirements to guide the JPL concept study team


Quad chart example: NIR, Visible Doppler Interferometer

Middle-Upper Atmosphere Winds

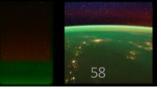
- Knowledge gap in dynamics especially between homopause and near exobase.
- Winds reveal global-scale dynamics, large-sale waves, provides inputs to models.

MOSAIC Objectives: I.C, II.C

Resources/accommodations

Platform (order)	М	
# platforms	Baseline: 1	
Mass	40 kg (for both channels	
Power (incl. heat)	20 W ave. (heat est.)	
Data Rate	Baseline: 14 kbps (number already accounts for duty	
	cycling of 2 images per 3 min)	
FOV	3°H x 5°V x 2 channels, 45° and 135° to ram	
Limb Pointing (deg)	Contrl: 0.1, Know: 0.05, Jitter., 0.06 over 30s	
Keep out zones.	No sun in FOV while on. Baffle scatter below ~50km	
Conops.	Always on, 2x30s exp per 3 min	

<u>Measurement Requirements</u>

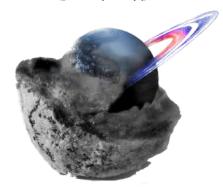

		Doppler shift of O_2 1 Δ (1.27 μ m)
•	, , ,	60-80 km
Altitude resolution	5 km ⁺⁺	2.5 km ⁺⁺
Precision - f(alt)	10-20 m/s	5-10 m/s
Cadence	3 minutes	3 minutes

⁺Daytime only

TRL story/development required

THE Story, activities		
Current TRL	5 Recent flight, 1 channel needs different wavelengths, vastly different radiation, thermal	
Heritage	ICON MIGHTI	
\$ to TRL 6	? Not too much ?	
Time to TRL 6	Months?	
Notes:	Thermal control, pointing stability, knowledge are drivers	




^{**}Must be ½ scale height or better

JPL A-Team & Team-X Studies

- Examined the study trade space and produced the MOSAIC architecture "building blocks" relevant to the trade space.
- Defined technologies would enable parts of the trade space over the Decadal Survey span (e.g. optical comm).
- Looked at 13 potential architectures, quickly narrowed to four
- Team-Xc and Team-X (in their first ever virtual session) produced point designs by early April 2020.

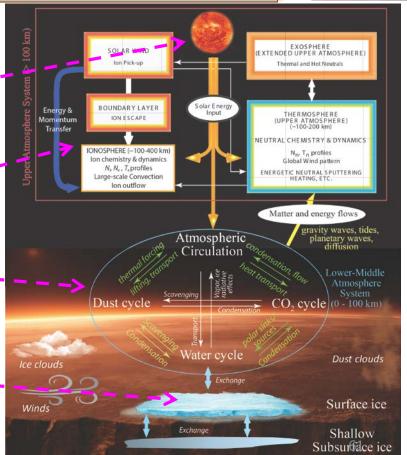
Backup: MOSAIC Science Slides

MOSAIC Goals & Objectives: Science

MOSAIC GOALS

I. Understand
Mars's present day
climate processes
and their interconnections, from
the sub-surface to
the solar wind

Mission Objectives

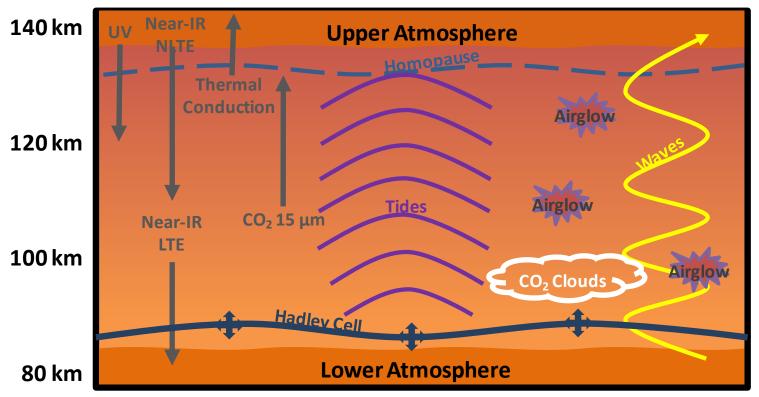

I.D Characterize fields and plasma flows in the upstream solar wind and throughout the magnetosphere and upper ionosphere, separating spatial from temporal variability.

I.C: Correlate variability in the thermosphere, ionosphere, and escape rates to: Conditions in the lower-middle atmosphere.

The space weather environment

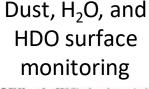
I.B: Characterize the structure and dynamics of the Martian lower-middle — atmosphere on meso- and global scales, and its geographic, diurnal, and seasonal variability.

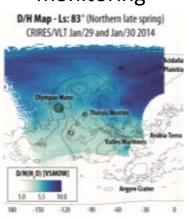
I.A: Characterize volatile cycling between the subsurface, surface and atmospheric reservoirs.


MOSAIC Goals & Objectives

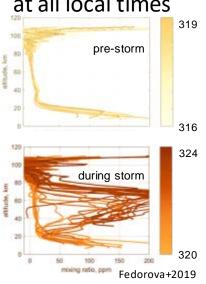
MOSAIC GOALS	Mission Objectives		
I. Understand Mars's present day climate processes and their inter-connections, from the sub-surface to the solar wind	I.A: Characterize volatile cycling between the subsurface, surface and atmospheric reservoirs.		
	I.B: Characterize the structure and dynamics of the Martian lower-middle atmosphere on meso- and global scales, and its geographic, diurnal, and seasonal variability.		
	I.C: Correlate variability in the thermosphere, ionosphere, and escape rates to:	Conditions in the lower-middle atmosphere.	
		The space weather environment	
	I.D Characterize fields and plasma flows in the upstream solar wind and throughout the magnetosphere and upper ionosphere, separating spatial from temporal variability.		
II. Identify hazards, characterize resources, and demonstrate technologies to enable the Human Exploration of Mars.	II.A: Characterize potentially extractable water ice resources to support in situ resource utilization		
	II.B: Characterize the Mars atmospheric state with sufficient spatial sampling and cadence to allow accurate data assimilation and weather forecasting.		
	II.C: Characterize the Mars ionospheric state and variability sufficiently to determine its likely disruptive effect on communications and positioning		
	II.D: Demonstrate delay-tolerant networking and relay communication between Mars surface, Mars orbit, and Earth.		
	II.E: Demonstrate high-bandwidth deep space communication between Earth and Mars.		

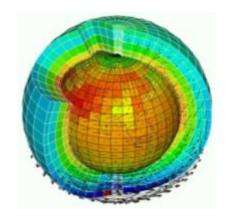
Lower/Upper Atmosphere Connections





A. Brecht


Need comprehensive Lower-Upper atmosphere monitoring


H₂O profiles to ~100km, at all local times

Vis/IR, Microwave, and submm limb and nadir observations

Villanueva+2013

Waves, Tides, and Winds, revealing dynamics

Wind LIDAR, Wind interferometer,
Tidal analysis of other datasets

Monitoring of H+O escape

FUV spectroscopy, H absorption cell, Ion Mass Analyzer